
1

REST Web Service Maintenance Through API
Policy Enforcement

Hiranya Jayathilaka, Chandra Krintz, Rich Wolski
Department of Computer Science

Univ. of California, Santa Barbara, CA
Email: {hiranya,ckrintz,rich}@cs.ucsb.edu

Abstract—Web services and cloud computing have revolution-
ized the way software is developed, deployed, and consumed. As
a consequence, there has been a proliferation of web services,
which developers make accessible to users via web application
programming interfaces (web APIs) and cloud-based deployment
technologies. Because this model significantly simplifies and
expedites deployment of web APIs, it also poses new software
maintenance and evolution challenges. In particular, it becomes
difficult to track, control, and compel reuse of web APIs,
inadequately tested services can be deployed into production, and
API changes can be introduced that break API-user code or that
breach security or organizational procedures.

To address these challenges, we investigate a new approach
to API governance – combined policy, implementation, and
deployment control of APIs for software and data deployed as
web services. Our approach, called EAGER, provides a software
architecture that can be easily integrated into cloud platforms as a
cloud-native feature, and supports system-wide, deployment-time
enforcement of API governance policies. Specifically, EAGER
can check for and prevent backward incompatible API changes
from being deployed into production, enforces service reuse,
and facilitates enforcement of other best practices in software
maintenance via policies. We also describe a prototype EAGER
implementation that integrates with an open source platform-as-
a-service cloud and evaluate its feasibility, efficiency, scalability,
and effectiveness for enforcing cloud-based API governance.

I. INTRODUCTION

The growth of the World Wide Web (WWW), web ser-
vices, and cloud computing have significantly influenced the
way developers implement software applications. Instead of
implementing all the functionality from the scratch, developers
increasingly offload (i.e. as a “mash-up”) as much application
functionality as possible to remote, web-accessible services,
each of which exports its own application programming inter-
face (API). Thus, a modern application often combines local
program logic with calls to APIs that interface to cloud-hosted
services. This approach significantly reduces both the pro-
gramming and the maintenance workload associated with the
application. In theory, because the APIs interface to software
that is curated by cloud providers, the application leverages
greater reliability, scalability, performance, and availability in
the implementations it calls upon through these APIs than it
would if those implementations were local to the application
(e.g. as locally available software libraries). Moreover, by
accessing common services, developers avoid “re-inventing the

wheel” each time they need a commonly available service and
the scale at which clouds operate ensures that these services
have access to enough request capacity.

As a result, web-accessible APIs and the software imple-
mentations to which they provide access are rapidly prolif-
erating. At the time of this writing, ProgrammableWeb [1],
a popular web API index, lists more than 11, 000 publicly
available web APIs and a nearly 100% annual growth rate [2].
These APIs increasingly employ the REST (Representational
State Transfer) architectural style and many of them target
commerce-oriented applications (e.g. advertising, shopping,
travel, etc.). However, several non-commercial entities have
also recently published web APIs, e.g. IEEE [3], UC Berke-
ley [4], and the US White House [5].

This proliferation of web APIs demands new techniques
and systems that automate the maintenance and evolution of
APIs as a first-class software resource. API management in
the form of run-time mechanisms to implement access control
and performance-based service level agreements (SLAs) is not
new, and many good commercial offerings exist today [6],
[7], [8]. However, support for API governance – consistent,
generalized, policy implementation across multiple separate
APIs in an administrative domain – is a new area of research
made poignant by the emergence of cloud computing.

A lack of API governance can lead to security breaches,
denial of service (DoS) attacks, poor code reuse, violation
of service-level agreements (SLAs), naming and branding
issues, and abuse of digital assets by the API consumers.
Unfortunately, most existing cloud platforms within which web
APIs are hosted provide only minimal governance support,
e.g. registration and authorization. These mechanisms (avail-
able from various commercial vendors such as 3Scale [6],
Apigee [7], Layer7 [8]) are important to policy implementation
since governance policies often need to express access con-
trol specifications. However, developers are still responsible
for implementing governance policies that combine features
such as API versioning, dependency management, and SLA
enforcement as part of their respective applications. Moreover,
each application must implement its own governance – there
is no system for ensuring that the cloud administrators set and
enforce policy to which developers must conform.

In contrast API management solutions (which are typically
implemented as stand-alone services that are not integrated
with the cloud) do attempt to address some governance con-
cerns beyond access control. However, because they are not

2

integrated within the cloud provisioning environment, their
function is advisory and documentarian. That is, they do
not possess the ability to implement full enforcement and,
instead, alert operators to potential issues without preventing
non-compliant behavior. In addition, many of these systems
operate outside the cloud that actually hosts the APIs thereby
generating an additional cost that may preclude their use. As
such, they can fail independently of the cloud, thereby affecting
the scalability and availability of the software that they control.
Finally, because they are not integrated with the cloud itself it
is difficult for them to implement governance at deployment-
time – the phase of the software lifecycle during which an API
change or a new API is being put into service. Because of the
scale at which clouds operate, deployment-time governance
is critical since it permits policy violations to be remediated
before the changes are put into production (i.e. before run-
time).

Thus, our thesis is that governance must be implemented as a
built-in, native cloud service to overcome these shortcomings.
That is, instead of an API management approach that layers
governance features on top of the cloud, we propose to provide
API governance as a fundamental component of the cloud
platform. Cloud-native governance abstractions
• enable both deployment-time and run-time enforcement

of governance policies as part of the cloud hosting
functionality,

• avoid inconsistencies and failure modes caused by inte-
gration and configuration of governance services that are
not end-to-end integrated within the cloud fabric itself,

• leverage already-present cloud functionality such as fault
tolerance, high availability, elasticity, and end-to-end
security implementation to facilitate governance, and

• unify a vast diversity of API governance features across
all stages of the API lifecycle (development, deploy-
ment, evolution, deprecation, retirement).

As a native functionality, such an approach also simplifies
and automates API governance implementation for the ad-
ministrators or “DevOps” teams responsible for application
software deployment and maintenance thereby allowing the
separation of administrative and cloud management concerns
from development concerns.

To explore the efficacy of cloud-integrated API governance
we have developed an experimental cloud platform that sup-
ports governance policy specification and enforcement for the
applications it hosts. EAGER – Enforced API Governance
Engine for REST – is a model and an architecture that is
designed to be integrated within existing cloud platforms in
order to facilitate API governance as a cloud-native feature.
EAGER enforces proper versioning of APIs and supports de-
pendency management and comprehensive policy enforcement
at API deployment-time.

Using EAGER, we investigate the trade-offs between
deployment-time policy enforcement and run-time policy en-
forcement. Deployment-time enforcement is attractive for sev-
eral reasons. First, if run-time only API governance is imple-
mented, policy violations will go undetected until the offending
APIs are used, possibly in a deep stack or call path in an
application. As a result, it may be difficult or time consuming

to pinpoint the specific API and policy that are being violated
(especially in a heavily loaded web scalable web service). In
these settings, multiple deployments and rollbacks may occur
before a policy violation is triggered making it difficult or
impossible to determine the root cause of the violation. By
enforcing governance as much as possible at deployment-
time EAGER implements “fail fast” in which violations are
detected immediately making diagnosis and remediation less
complex. Further, from a maintenance perspective, the overall
system is prevented from entering a non-compliant state,
which aids in the certification of regulatory compliance. In
addition, run-time governance typically implies that each API
call will be intercepted by a policy-checking engine that uses
admission control and an enforcement mechanism creating
scalability concerns. Because deployment events occur before
the application is executing, traffic need not be intercepted
and checked “in flight” improving the scaling properties of
governed systems. However, not all governance policies can
be implemented strictly at deployment-time. As such, EAGER
includes run-time deployment facilities as well. The goal of
the research is to identify how to implement enforced API
governance most efficiently by combining deployment-time
governance where possible and run-time governance where
necessary.

EAGER implements policies governing the APIs that are
deployed within a single administrative domain. Focusing
governance on the APIs simplifies both policy specification and
the consistent and automatic implementation of policy enforce-
ment. At the same time, it promotes software maintainability
by separating the API lifecycle management from that of the
service implementations and the client users. That is, APIs are
often longer lived than the individual clients that use them
or the implementations of the services that they represent. At
the same time they represent the “gateway” between software
functionality consumption (API clients and users) and service
production (web service implementation). Policy definition and
enforcement at the API level permits the service and client
implementations to change independently without the loss of
governance control.

Enforced API governance further enhances software main-
tainability by guaranteeing that developers reuse existing APIs
when possible to create new software artifacts (to prevent API
redundancy and unverified API use). Concurrently, it tracks
changes made by developers to deployed web APIs to prevent
any backwards-incompatible API changes from being put into
production.

EAGER includes a language for specifying API governance
policies. The EAGER language is distinct from existing policy
languages like WS-Policy [9], [10] in that it avoids the
complexities of XML, and it incorporates a developer-friendly
Python programming language syntax for specifying complex
policy statements in a simple and intuitive manner. Moreover,
we ensure that specifying the required policies is the only
additional activity that API providers should perform in order
to benefit from EAGER. All other API governance related
verification and enforcement work is carried out by the cloud
platform automatically.

To evaluate the feasibility and performance of the pro-

3

posed architecture, we prototype the EAGER concepts in an
implementation that extends AppScale [11], an open source
cloud platform that emulates Google App Engine. We describe
the implementation and integration as an investigation of the
generality of the approach. By focusing on deployment actions
and run-time message checking, we believe that the integration
methodology will translate to other extant cloud platforms.

We further show that EAGER API governance and policy
enforcement impose a negligible overhead on the application
deployment process, and the overhead is linear in the number
of APIs in the applications being validated. Finally, we show
that EAGER is able to scale to tens of thousands of deployed
web APIs and hundreds of user defined governance policies.

In the sections that follow, we present some background on
API governance and overview the design and implementation
of EAGER. We then empirically evaluate EAGER using a wide
range of APIs and experiments. Finally, we discuss related
work, and conclude.

II. BACKGROUND

The popularization of network computing and the World
Wide Web (WWW) has led to the development and adoption of
web services [12] as the technology of choice for implementing
modern service-oriented architectures (SOA [13]). The inter-
face portion of a web service, which abstracts and modularizes
its service implementation details while making the service
network-accessible, is commonly referred to as a web API. As
far as the users and applications that consume a web service are
concerned, the web API is the only point of contact and source
of functionality for the underlying service implementation.

Software engineering best practices separate the service
implementation from API, both during development and main-
tenance. The service implementation and API are integrated via
a “web service stack” that implements functionality common
to all web services (message routing, request authentication,
etc.). Because the API is visible to external parties (i.e. clients
of the services), any changes to the API impacts users and
applications not under the immediate administrative control of
the API provider. For this reason, API features usually undergo
long periods of “deprecation” so that independent clients of the
services can have ample time to “get ready” for an API change.
At the same time, technological innovations often prompt
service reimplementation and/or upgrade to achieve greater
cost efficiencies, performance levels, etc. Thus, APIs typically
have a more slowly evolving and longer lasting lifecycle than
the service implementations to which they interface.

Cloud computing is based on the idea of exposing some
digital asset or a capability (e.g. compute power, database,
etc.) as a highly scalable web service. Mobile devices, due
to their limited hardware resources often offload much of their
processing and storage needs to remote services running in a
“cloud” connected to the Internet. Web APIs play a crucial
role in both these paradigms.

As a result, modern computing clouds, especially clouds
implementing some form of Platform as a Service (PaaS) [14],
have accelerated the proliferation of web APIs and their use.
Most PaaS clouds [11], [15], [16] include features designed to

ease the development and hosting of web APIs for scalable use
over the Internet. This phenomenon is making API governance
an absolute necessity in the cloud environments.

In particular, API governance promotes code reuse among
developers since each API must be treated as a tracked
and controlled software entity. It also ensures that software
users benefit from change control since the APIs they use
change in a controlled and non-disruptive manner. From a
maintenance perspective, API governance makes it possible to
enforce best-practice coding procedures, naming conventions,
and deployment procedures uniformly. API governance is
also critical to API lifecycle management – the management
of deployed APIs in response to new feature requests, bug
fixes, and organizational priorities. API “churn” that results
from lifecycle management is a common phenomenon and
a growing problem for web-based applications [17]. Without
proper governance systems to manage the constant evolution
of APIs, API providers run the risk of making their APIs
unreliable while potentially breaking downstream applications
that depend on the APIs.

Unfortunately, most web frameworks used to develop and
host web APIs do not provide API governance facilities.
This missing functionality is especially glaring for cloud
platforms that are focused on rapid deployment of APIs at
scale. Commercial pressures frequently prioritize deployment
speed and scale over longer-term maintenance considerations
only to generate unanticipated future costs.

As a partial countermeasure, developers of cloud-based web
services are frequently given additional tasks associated with
implementing custom ad hoc governance solutions using either
locally developed mechanisms or loosely integrated third-
party API management services. These add-on governance
approaches often fall short in terms of their consistency and
enforcement capabilities since by definition they have to oper-
ate outside the cloud (either external to it or as a cloud-hosted
application). As such, they do not have the end-to-end access
to all the metadata and cloud-internal control mechanisms that
are necessary to implement strong governance at scale.

III. ENFORCING API GOVERNANCE IN CLOUD SETTINGS

API governance policy enforcement, in a cloud setting,
is a tradeoff between application intrusiveness and policy
expressibility. Detailed, fine-grained policies that penetrate
the application provide maximal expressibility. In the logical
extreme, building policy into the application to govern each of
its internal operations or instructions is maximally expressive.
However, this expressivity introduces complexity and perfor-
mance overhead that may overshadow its benefit. Alternatively,
policy enforcement outside the application necessarily limits
what can be enforced. For example, ensuring that an applica-
tion does not connect to a specific network address and/or port
requires run-time traffic interception (typically by a firewall
that is interposed between the application and the offending
network). Thus, the tradeoff is between what can be enforced
and when (relative to application execution) it is enforced.

For policy implementation, often the additional complexities
introduced by late-binding and intrusiveness outweigh the

4

benefits. For example, in an application that consists of API
calls to services that, in turn, make calls to other services,
run-time policy enforcement can make violations difficult to
resolve, especially when the interaction between services is
non-deterministic. When a specific violation occurs, it may
be “buried” in a lattice of API invocations that is difficult
to traverse, especially of the application itself is designed to
handle large-scale request traffic loads.

Ideally, then, enforcement takes place as non-intrusively
as possible before the application begins executing. In this
way, a violation can be detected and resolved before the
API is used, thereby avoiding possible degradations in user-
experience that run-time checks and violations may introduce.
The drawback of attempting to enforce all governance before
the application begin executing is that policies that express
restrictions only resolvable at run time cannot be implemented.
Thus, for scalable applications that use API calls internally in
a cloud setting, an API governance approach should attempt to
implement as much as possible no later than deployment time
but must also include some form of run-time enforcement.

Note that the most effective approach to implementing
a specific policy is not always clear. For example, user
authentication is usually implemented as a run-time policy
check for web services since users enter and leave the system
dynamically. However it is possible to check statically, at
deployment time, whether the application is consulting with a
specific identity management service (accessed by a versioned
API) thereby enabling deployment-time enforcement.

Thus, any efficient API governance solution for clouds must
include the following functionalities.
• Policy Specification Language – The system must in-

clude a way to specify policies that can be implemented
either at deployment time (or sooner) or, ultimately at
run-time.

• API Specification Language – Policies must be able
to refer to API functionalities to be able to express
governance edicts for specific APIs or classes of APIs.

• Deployment Control – The system must be able to
check policies no later than the time that an application
is deployed.

• Run-time control – For policies that cannot be enforced
before runtime, the system must be able to intervene
dynamically.

In addition, a good solution should automate as much of the
implementation of API governance as possible. Automation in
a cloud context serves two purposes. First, it enables scale by
allowing potentially complex optimizations to be implemented
reliably by the system (and not by manual intervention).
Secondly, automation improves repeatability and auditability
thereby ensuring greater system integrity.

IV. EAGER
To experiment with implementation of API governance, we

have developed EAGER – an architecture for implementing
governance suitable for integration as a cloud-native feature.
In this section, we overview the high-level design of EAGER,
describe its main components and the policy language. Our

goal in its design is two fold. First, we wished to verify that
the integration between policy specification, api specification,
deployment control, and run-time control is feasible in a cloud
setting. Secondly, we wished to use the design as the basis for
a prototype implementation that we could use to evaluate the
impact of API governance empirically.

EAGER is designed to be integrated with cloud platforms
that provide PaaS services. PaaS platforms accept code (up-
loaded via a well-defined API) that is then deployed within the
platform so that it may make calls to existing services (each via
a separate API) supported by the platform. EAGER is designed
to intercept all events related to application deployment within
the cloud and enforces deployment-time governance checks
and logging. When a policy verification check fails, EAGER
aborts the deployment of the application and logs the informa-
tion necessary to perform remediation. EAGER assumes that
it is integrated with the cloud and that the cloud initiates1 in
a compliant state (i.e. there are no policy violations when the
cloud is started before any applications are deployed). It tries
to maintain the cloud in a “governed” state at all times. That
is, with EAGER active, the cloud is automatically prevented
from transitioning out of policy compliance due to a change
in the APIs it hosts.

Figure 1 illustrates the main components of EAGER (in
blue) and their interactions. Solid arrows represent the in-
teractions that take place during application deployment-time,
before an application has been validated for deployment. Short-
dashed arrows indicate the interactions that take place during
deployment-time, after an application has been successfully
validated. Long-dashed arrows indicate interactions at run-
time. The diagram also outlines the components of EAGER
that are used to provide deployment control and run-time
control. Note that some components participate in interactions
related to both deployment and run-time control (e.g. Metadata
Manager).

EAGER must be invoked by the cloud whenever a user
attempts to deploy an application in the cloud. The cloud’s
application deployment mechanisms must be altered so that
each deployment request is intercepted by EAGER, which
then performs the required governance checks. If a governance
check fails, EAGER will preempt the application deployment,
log relevant data pertaining to the event for later analysis, and
return an error. Otherwise, it proceeds with the application
deployment by activating the deployment mechanisms on the
user’s behalf.

Architecturally, the deployment action requires three inputs:
the policy specification governing the deployment, the code to
be deployed, and a specification of the APIs that the code ex-
ercises and exports. EAGER assumes that cloud administrators
have developed and installed policies (stored in the Metadata
Manager) that are to be checked against all deployments. API
specifications for the application must also be available to
the governance engine. Because the API specifications are
to be derived from the code (and are, thus, under developer

1We use the term “initiates” to differentiate the first clean installation of
the cloud, from a cloud restart. EAGER must be able to maintain compliance
across restarts, but it assumes that when the cloud is installed and suitably
tested, it is in a policy compliant state.

5

Fig. 1: EAGER Architecture

control and not administrator control) our design assumes
that automated tools are available to perform analysis on the
application, and generate API specifications in a suitable API
specification language. These specifications must be present
when the deployment request is considered by the platform.
In the prototype implementation described in Section V, the
API specifications are generated as part of the application
development process (e.g. by the build system). They may also
be offered as a trusted service hosted in the cloud. In this case,
developers will submit their source code to this service, which
will generate the necessary API specifications in the cloud and
trigger the application deployment process via EAGER.

The proposed architecture is designed not to require major
changes to the existing components of the cloud since its
deployment mechanisms are likely to be web service based.
However, EAGER does require integration at the service level
(e.g. it must be a trusted service component in a PaaS cloud).

A. Metadata Manager
The Metadata Manager stores all the API metadata in EA-

GER. This metadata includes policy specifications, API names,
versions, specifications and dependencies. It uses the depen-
dency information to compute the dependency tree among all
deployed APIs and applications. Additionally, the Metadata
Manager also keeps track of developers, their subscriptions to
various APIs and the access credentials (API keys) issued to
them. For these purposes, the Metadata Manager must logically
include both a database and an identity management system.

The Metadata Manager is exposed to other components
through a well defined web service interface. This interface

allows querying existing API metadata and updating them.
In the proposed model, the stored metadata is updated occa-
sionally (only when a new application is deployed or when
a developer subscribes to a published API). Therefore the
Metadata Manager does not need to support a very high
write throughput. This performance characteristic allows the
Metadata Manager to be implemented with strong transactional
semantics, which reduces the development overhead of other
components that rely on Metadata Manager. Availability can
be improved via simple replication methods.

B. API Deployment Coordinator
The API Deployment Coordinator (ADC) intercepts all

application deployment requests and determines whether they
are suitable for deployment, based on a set of policies specified
by the cloud administrators. It receives application deployment
requests via a web service interface. At a high-level, ADC is
the most important entity in the EAGER deployment control
strategy.

An application deployment request contains the name of the
application, version number, names and versions of the APIs
exported by the application, detailed API specifications and
other API dependencies as declared by the developer. Appli-
cation developers only need to specify explicitly the name and
version of the application and the list of dependencies (i.e.
APIs consumed by the application). All other metadata can
be computed automatically by performing introspection on the
application source code.

The API specifications used to describe the web APIs should
specify the operations and the schema of their inputs and

6

outputs. Any standard API description language can be used
for this purpose, as long as it clearly describes the schema of
the requests and responses. For describing REST interfaces, we
can use Web Application Description Language (WADL) [18],
Swagger [19], RESTful API Modeling Language (RAML) or
any other language that provides similar functionality.

When a new deployment request is received, the ADC
checks whether the application declares any API dependencies.
If so, it queries the Metadata Manager to make sure that
all the declared dependencies are already available in the
cloud. Then it inspects the enclosed application metadata to
see if the current application exports any web APIs. If the
application exports at least one API, the ADC makes another
call to the Metadata Manager and pulls any existing metadata
related to that API. If the Metadata Manager cannot locate
any data related to the API in question, ADC assumes it to
be a brand new API (i.e. no previous version of that API has
been deployed in the cloud), and proceeds to the next step
of the governance check, which is policy validation. However,
if any metadata regarding the API is found, then the ADC is
dealing with an API update. In this case, the ADC compares
the old API specifications with the latest ones provided in the
application deployment request to see if they are compatible.

To perform this API compatibility verification, the ADC
checks to see whether the latest specification of an API
contains all the operations available in the old specification.
API specifications are generated at the application developer’s
end and submitted to EAGER along with the application
deployment request. If the latest API specification is missing at
least one operation that it had previously, the ADC reports this
to the user and aborts the deployment. If all the past operations
are present in the latest specification, the ADC performs a
type check to make sure that all past and present operations
are type compatible. This is done by performing recursive
introspection on the input and output types declared in the
API specifications. EAGER looks for type compatibility based
on the following rules inspired by Hoare logic [20] and the
rules of type inheritance from object oriented programming:

• New version of an input type is compatible with the old
version of an input type, if the new version contains
either all or less attributes than the old version, and any
new attributes that are unique to the new version are
optional.

• New version of an output type is compatible with the old
version of an output type, if the new version contains
either all or more attributes than the old version.

In addition to the type checks, ADC may also compare
other parameters declared in the API specifications such as
HTTP methods, mime types and URL patterns. Once the API
specifications have been successfully compared without error,
the ADC initiates policy validation.

C. EAGER Policy Language and Examples
Policies are specified by cloud or organizational admin-

istrators using a subset of an object oriented language (we

chose Python for the prototype). We restrict the language to
prevent state from being preserved across policy validations.
In particular, the EAGER policy interpreter disables file and
network operations, third party library calls, and intrinsics that
allow state to persist across invocations. In addition, EAGER
processes each policy independently of others (i.e. each policy
must be self-contained and access no external state). All other
language constructs and language features can be used to
specify policies in EAGER.

To accommodate built-in APIs that the administrators trust
by fiat, all module and function restrictions of the EAGER
policy language are enforced through a configurable white-
list. The policy engine evaluates each module and function
reference against this white-list to determine whether they are
allowed in the context of EAGER. Cloud administrators have
the freedom and flexibility to expand the set of allowed built-in
and third party modules by making changes to this white-list.

As part of policy language, EAGER defines a set of as-
sertions that policy writers can use to specify various checks
to perform on the applications. Currently, this assertion list
includes:

a s s e r t t r u e (c o n d i t i o n , o p t i o n a l e r r o r m s g)
a s s e r t f a l s e (c o n d i t i o n , o p t i o n a l e r r o r m s g)
a s s e r t a p p d e p e n d e n c y (app , d name , d v e r s i o n)
a s s e r t n o t a p p d e p e n d e n c y (app , d name , d v e r s i o n)
a s s e r t a p p d e p e n d e n c y i n r a n g e (app , name ,\

lower , upper , e x c l u d e l o w e r , e x c l u d e u p p e r)

In addition to these assertions, EAGER adds a function
called “compare versions” to the list of available built-in
functions. Policy writers can use this function to compare
version number strings associated with applications and APIs.

In the remainder of this section we illustrate the use of the
policy language through examples. The first example policy
mandates that any application or mash-up that uses both Geo
and Direction APIs must adhere to certain versioning rules.
More specifically, if the application uses Geo 3.0 or higher,
it must use Direction 4.0 or higher. Note that the version
numbers are compared using the “compare versions” functions
described earlier.

g = f i l t e r (lambda dep : dep . name == ‘Geo ’ , \
app . d e p e n d e n c i e s)

d = f i l t e r (lambda dep : dep . name == ‘ D i r e c t i o n ’ ,\
app . d e p e n d e n c i e s)

i f g and d :
g api , d a p i = g [0] , d [0]
i f c o m p a r e v e r s i o n s (g a p i . v e r s i o n , ‘ 3 . 0 ’) >= 0 :

a s s e r t t r u e (c o m p a r e v e r s i o n s (d a p i . v e r s i o n ,
‘ 4 . 0 ’) >= 0)

In the above example, app is a special immutable logical
variable available to all policy files. This variable allows poli-
cies to access information pertaining to the current application
deployment request. The assert true and assert false functions
allow testing for arbitrary conditions, thus greatly improving
the expressive power and flexibility of the policy language.

The next example shows a policy file that mandates that
all applications deployed by the “admin@test.com” user must
have role-based authentication enabled, so that only users in

7

the “manager” role can access them. To carry out this check
the policy accesses the security configuration specified in the
application descriptor (e.g. the web.xml for a Java application).

i f app . owner == ‘ admin@tes t . com ’ :
r o l e s = app . web xml [‘ s e c u r i t y−r o l e ’]
c o n s t r a i n t s = app . web xml [‘ s e c u r i t y−c o n s t r a i n t ’]
a s s e r t t r u e (r o l e s and c o n s t r a i n t s)
a s s e r t t r u e (l e n (r o l e s) == 1)
a s s e r t t r u e (‘ manager ’ == r o l e s [0] [‘ r o l e−name ’])

Next, we present an example policy, which mandates that all
deployed APIs must explicitly declare an operation which is
accessible through the HTTP OPTIONS method. This policy
further ensures that these operations return a description of
the API in the Swagger [19] machine-readable API description
language.

o p t i o n s = f i l t e r (lambda op : op . method == ‘OPTIONS ’ ,
a p i . o p e r a t i o n s)

a s s e r t t r u e (o p t i o n s , ‘ API does n o t s u p p o r t OPTIONS ’)
a s s e r t t r u e (o p t i o n s [0] . t y p e == ‘ swagger . API ’ ,

‘ Does n o t r e t u r n a Swagger d e s c r i p t i o n ’)

Returning machine-readable API descriptions from web
APIs makes it easier to automate the API discovery and
consumption processes. Several other research efforts confirm
the need for such descriptions [21], [22]. A policy such as this
can help enforce such practices, thus resulting in a high-quality
API ecosystem in the target cloud.

The policy above also shows the use of the second and
optional string argument to the assert true function (the same
is supported by assert false as well). This argument can be
used to specify a custom error message that will be returned
to the application developer, if his/her application violates the
assertion in question.

The next example is a relatively simple policy file that
prevents developers from introducing dependencies on dep-
recated web APIs. Deprecated APIs are the those that have
been flagged by their respective authors for removal in the
near future. Therefore introducing dependencies on such APIs
is not recommended. The following policy will enforce this
condition in the cloud.

d e p r e c a t e d = f i l t e r (
lambda dep : dep . s t a t u s == ’DEPRECATED ’ ,
app . d e p e n d e n c i e s)

a s s e r t f a l s e (d e p r e c a t e d ,
’ Must n o t use a d e p r e c a t e d dependency ’)

Our next example presents a policy that enforces governance
rules in a user-aware (i.e. tenant-aware) manner. Assume a
multi-tenant private PaaS cloud that is being used by members
of the development team and the sales team of a company.
The primary goal in this case is to ensure that applications
deployed by both teams log their activities using a set of
preexisting logging APIs. However, we further want to ensure
that applications deployed by the sales team log their activities
using a special analytics API. A policy such as the one that
follows can enforce these conditions.

i f app . owner . e n d s w i t h (‘ @eng inee r ing . t e s t . com ’) :
a s s e r t a p p d e p e n d e n c y (app , ‘ Log ’ , ‘ 1 . 0 ’)

e l i f app . owner . e n d s w i t h (‘ @sales . t e s t . com ’) :
a s s e r t a p p d e p e n d e n c y (app , ‘ A n a l y t i c s L o g ’ , ‘ 1 . 0 ’)

e l s e :
a s s e r t a p p d e p e n d e n c y (app , ‘ Gener icLog ’ , ‘ 1 . 0 ’)

The example below shows a policy that mandates that all
HTTP GET operations exposed by APIs must support paging.
APIs that do so define two input parameters named “start” and
“count” to the GET call.

f o r a p i in app . a p i l i s t :
g e t = f i l t e r (lambda op : op . method == ‘GET ’ ,

a p i . o p e r a t i o n s)
f o r op i n g e t :

param names = map (lambda p : p . name ,
op . p a r a m e t e r s)

a s s e r t t r u e (‘ s t a r t ’ in param names and
‘ c o u n t ’ i n param names)

This policy accesses the metadata of API operations that is
available in the API descriptions. Since API descriptions can
be auto-generated from the source code of the APIs, this policy
indirectly references information pertaining to the actual API
implementations.

Finally, we present an example for the POST method. The
policy below mandates that all POST operations exposed by
an API are secured with OAuth version 2.0.

f o r a p i in app . a p i l i s t :
p o s t = f i l t e r (lambda op : op . method == ‘POST ’ ,

a p i . o p e r a t i o n s)
f o r op i n p o s t :

a s s e r t t r u e (op . a u t h o r i z a t i o n s . g e t (‘ oa u th 2 ’))

EAGER places no restrictions on how many policy files are
specified by administrators. Applications are validated against
each policy file. Failure of any assertion in any policy file
will cause the ADC to abort application deployment. Once an
application has been checked against all applicable policies,
ADC persists the latest application and API metadata into the
Metadata Manager. At this point, the ADC may report success
to the user and proceed with application deployment. In a PaaS
setting this deployment activity typically involves three steps:

1) Deploy the application in the cloud application run-time
(application server).

2) Publish the APIs enclosed in the application and their
specifications to the API Discovery Portal or catalog.

3) Publish the APIs enclosed in the application to an API
Gateway server.

Step 1 is required to complete the application deployment in
the cloud even without EAGER. We explain the significance
of steps 2 and 3 in the following subsections.

D. API Discovery Portal
The API Discovery Portal (ADP) is an online catalog where

developers can browse available web APIs. Whenever the ADC

8

approves and deploys a new application, it registers all the
APIs exported by the application in ADP. EAGER mandates
that any developer interested in using an API, first subscribe to
that API and obtain the proper credentials (API keys) from the
ADP. The API keys issued by the ADP can consist of an OAu-
thaccess token (as is typical of many commercial REST-based
web services) or a similar authorization credential, which can
be used to identify the developer/application that is invoking
the API. This credential management identification process is
used for auditing and run-time governance in EAGER.

The API keys issued by the ADP are stored in the Metadata
Manager. When a programmer develops a new application
using one or more API dependencies, we can require the
developer to declare its dependencies along with the API keys
obtained from the ADP. The ADC verifies this information
against the Metadata Manager as a part of its dependency
check and ensures that the declared dependencies are correct
and the specified API keys are valid.

Deployment-time governance policies may further incen-
tivize the declaration of API dependencies explicitly by making
it impossible to call an API without first declaring it as a
dependency along with the proper API keys. These types
of policies can be implemented with minor changes to the
application run-time in the cloud so that it loads the API
credentials from the dependency declaration provided by the
application developer.

In addition to API discovery, the ADP also provides a
user interface for API authors to select their own APIs
and deprecate them or retire them. Deprecated APIs will
be removed from the API search results of the portal, and
application developers will no longer be able to subscribe to
them. However, already existing subscriptions and API keys
will continue to work until the API is eventually retired. The
deprecation is considered a courtesy notice for application
developers who have developed applications using the API,
to migrate their code to a newer and active version if the API.
Once retired, any applications that have not still been migrated
to the latest version of the API will cease to operate.

E. API Gateway
Run-time governance of web services by systems such

as Synapse [23] make use of an API “proxy” or gateway.
The EAGER API Gateway does so to intercept API calls
and validate the API keys contained within them. EAGER
intercepts requests by blocking direct access to the APIs in
the application run-time (app servers), and publishing the API
Gateway address as the API endpoint in the ADP. We do so
via firewall rules or router configuration that prevents the cloud
app servers from receiving any API traffic from a source other
than the API Gateway. Once the API Gateway validates an
API call, it routes the message to the application server in the
cloud platform that hosts the API.

The API Gateway can be implemented via one or more
(load-balanced) servers. In addition to API key validation, the
API Gateway performs other functions such as monitoring,
throttling (rate limiting), SLA enforcement, and run-time pol-
icy validation.

V. PROTOTYPE IMPLEMENTATION

We implemented a prototype of EAGER by extending
AppScale [11], an open source PaaS cloud that is functionally
equivalent to Google App Engine (GAE). AppScale supports
web applications written in Python, Java, Go and PHP. Our
prototype implements governance for all applications and APIs
hosted in an AppScale cloud.

As described in subsection IV-C, our prototype policy spec-
ification language is based on Python. Using Python allows
EAGER to leverage existing programming tools to edit and
debug policy files. It also allows the deployment control
module (also written in Python) to execute the policies (using
a modified Python interpreter to implement the restrictions
previously discussed) directly.

The prototype relies on a separate tool chain (i.e. one not
hosted as a service in the cloud) to automatically generate API
specifications and other metadata (c.f. Section IV-B), which
currently supports only the Java language. Developers must
document the APIs manually for web services implemented in
languages other than Java.

Like most PaaS technologies, AppScale includes an applica-
tion deployment service that distributes, launches and exports
an application as a web-accessible service. EAGER controls
this deployment process according to the policies that the
platform administrator specifies.

A. Autogeneration of API Specifications

To autogenerate API specifications, the build process for
an application must include an analysis phase that generates
specifications from the code. The prototype includes two
stand-alone tools for implementing this “build-and-analyze”
function.

1) An Apache Maven archetype that is used to initialize a
Java web application project, and

2) A Java doclet that is used to auto-generate API speci-
fications from web APIs implemented in Java

Developers can invoke the Maven archetype from the
command-line to initialize a new Java web application project.
Our archetype sets up projects with the required AppScale
(GAE) libraries, Java JAX-RS [24] (Java API for RESTful
Web Services) libraries and a build configuration.

Once a developer creates a new project using the archetype
s/he can develop web APIs using the popular JAX-RS library.
Once code is developed, it can be built using our auto-
generated Maven build configuration, which introspects the
project source code to generate specifications for all enclosed
web APIs using the Swagger [25] API description language. It
then packages the compiled code, required libraries, generated
API specifications, and the dependency declaration file into a
single, deployable artifact.

Finally, the developer submits the generated artifact for
deployment to the cloud platform (which in our prototype
is done via AppScale developer tools). To enable this, we
modified the tools so that they send the application deployment
request to the EAGER ADC and delegate the application

9

EAGER Component Implementation Technology
Metadata Manager MySQL
API Deployment Coordinator Native Python implementation
API Discovery Portal WSO2 API Manager [26]
API Gateway WSO2 API Manager

TABLE I: Implementation Technologies used to Implement the
EAGER Prototype

deployment process to EAGER. This change required just
under 50 additional lines of code in AppScale.

B. Implementing the Prototype
Table I lists the key technologies that we use to implement

various EAGER functionalities described in Section IV as ser-
vices within AppScale itself. For example, AppScale controls
the lifecycle of the MySQL database as it would any of its
other constituent services. EAGER incorporates the WSO2
API Manager [27] for use as an API discovery mechanism
and to implement any run-time policy enforcement. In the
prototype, the API Gateway does not share policies expressed
in the policy language with the ADC (although this integration
is planned).

Also, according to the architecture of EAGER, Metadata
Manager is the most suitable location for storing all policy
files. The ADC may retrieve the policies from the Metadata
Manager through its web service interface. However, for
simplicity, our current prototype stores the policy files in
a file system, that the ADC can directly read from. In a
more sophisticated future implementation of EAGER, we will
move all policy files to the Metadata Manager where they
can be better managed, while providing easy access to other
distributed components of the cloud.

VI. EXPERIMENTAL RESULTS

In this section, we describe our empirical evaluation of
the EAGER prototype and evaluate its overhead and scaling
characteristics. To do so, we populate the EAGER database
with a set of APIs and then examine the overheads associated
with governing a set of sample applications (which execute
in AppScale) for varying degrees of policy specifications and
dependencies (shown in Table II). In the first set of results we
use randomly generated APIs so that we may vary different
parameters that may affect performance. We then follow with
a similar analysis using a large set of API specifications
“scraped” from the ProgrammableWeb [1] public API registry.

Note that all the figures included in this section present the
average values calculated over three sample runs. The error
bars cover an interval of two standard deviations centered at
the calculated sample average.

We start by presenting the time required for AppScale
application deployment without EAGER as it is this process
on which we piggyback EAGER support. These measurements
are conservative in that they are taken from a single VM
deployment of AppScale (it is designed to run at scale) so that
logging and timing information is easier to gather. AppScale

Application Description Size
(MB)

Deployment
Time (s)

guestbook-py A simple Python web applica-
tion that allows users to post
comments and view them

0.16 22.13

guestbook-java A Java clone of the guestbook-
python app

52 24.18

appinventor A popular open source web ap-
plication that enables creating
mobile apps

198 111.47

coursebuilder A popular open source web ap-
plication used to facilitate teach-
ing online courses

37 23.75

hawkeye A sample Java application used
to test AppScale

35 23.37

simple-jaxrs-
app

A sample JAXRS app that ex-
ports 2 web APIs

34 23.45

dep-jaxrs-app A sample JAXRS app that ex-
ports a web API and has one
dependency

34 23.72

dep-jaxrs-app-
v2

A sample JAXRS app that ex-
ports 2 web APIs and has one
dependency

34 23.95

TABLE II: Sample AppScale Applications

uses an Ubuntu 12.04 Linux image hosted via VirtualBox
on a 2.7 GHz x86 CPU with 4 GB of memory. Table II
lists a number of App Engine applications that we consider,
their artifact size, and their average deployment times across
three runs, on AppScale without EAGER. We also identify
the number of APIs and dependencies for each application in
the Description column. These applications represent a
wide range of programming languages, application sizes, and
business domains.

On average, deployment without EAGER takes 34.5 seconds
and this time is correlated with application artifact size. The
total time consists of network transfer time of the application
to the cloud (which in this case is via localhost networking)
and disk copy to the application servers. For actual deploy-
ments, both components are likely to increase due to network
latency, available bandwidth, contention, and large numbers of
distributed application servers.

A. Baseline EAGER Overhead by Application
Figure 2 shows the average time in seconds taken by

EAGER to validate and verify each application. We record
these results on an EAGER deployment without any policies
deployed, and without any prior metadata recorded in the
API Metadata Manager (that is, an unpopulated database of
policies). We present the values as absolute measurements
(here and henceforth) because of the significant difference
between them and deployment times on AppScale without
EAGER (100’s of milliseconds compared to 10’s of seconds).
We can alternatively observe this overhead as a percentage of
AppScale deployment time by dividing these times by those
shown in Table II.

Note that some applications do not export any web APIs;
for these EAGER overhead is negligibly small (approximately
0.1s). This result indicates that EAGER does not impact
deployment time of applications that do not require API
governance. For applications that do export web APIs, the

10

Fig. 2: Average EAGER absolute overhead in seconds by application. Each data point averages three executions, the error bars
are two standard deviations, and the units are seconds.

recorded overhead measurements include the time to retrieve
old API specifications from the Metadata Manager, the time
to compare the new API specifications with the old ones, the
time to update the API specifications and other metadata in the
Metadata Manager, and the time to publish the updated APIs
to the cloud. The worst case observed overhead for governed
APIs (simple-jaxrs-app in the Figure 2) is 2.8%.

B. Impact of Number of APIs and Dependencies

Figure 3 shows that EAGER overhead grows linearly with
the number of APIs exported by an application. This scaling
occurs because the current prototype implementation iterates
through the APIs in the application sequentially and records
the API metadata in the Metadata Manager. Then EAGER pub-
lishes each API to the ADP and API Gateway. This sequencing
individual EAGER events, each of which generates a separate
web service call, represents an optimization opportunity via
parallelization in future implementations.

At present we expect most applications deployed in cloud
to have a small to moderate number of APIs (10 or fewer).
With this API density EAGER’s current scaling is adequate.
Even in the unlikely case that a single application exports as
many as 100 APIs, the average total time for EAGER is under
20 seconds.

Next, we analyze EAGER overhead as the number of
dependencies declared in an application grows. For this exper-
iment, we first populate the EAGER Metadata Manager with
metadata for 100 randomly generated APIs. 2 Then we deploy
an application on EAGER which exports a single API and
declares artificial dependencies on the set of fictitious APIs
that are already stored in the Metadata Manager. We vary
the number of declared dependencies and observe the EAGER
overhead.

2To generate random APIs we use the API specification autogeneration
tool chain to generate fictitious APIs with randomly varying numbers of
parameters.

Fig. 3: Average EAGER overhead vs. number of APIs exported
by the application. Each data point averages three executions,
the error bars are two standard deviations, and the units are
seconds.

Fig. 4: Average EAGER Overhead vs. number of dependencies
declared in the application. Each data point averages three
executions, the error bars are two standard deviations, and the
units are seconds.

11

Fig. 5: Average EAGER overhead vs. number of policies. Each
data point averages three executions, the error bars are two
standard deviations, and the units are seconds. Note that some
of the error bars for guestbook-py are smaller than the graph
features at this scale and are thus obscured.

Figure 4 shows the results of these experiments. EAGER
overhead does not appear to be significantly influenced by the
number of dependencies declared in an application. In this
case, the EAGER implementation processes all dependency-
related information via batch operations. As a result, the
number of web service calls and database queries that originate
due to varying number of dependencies is fairly constant.

C. Impact of Number of Policies
So far we have conducted all our experiments without any

active governance policies in the system. In this section, we
report how EAGER overhead is impacted by the number of
policies.

The overhead of policy validation is largely dependent on
the actual policy content (implemented as Python code). Since
users may include any Python code (as long as it falls in the
accepted subset) in a policy file, evaluating a given policy can
take an arbitrary amount of time. Therefore, in this experiment,
our goal is to evaluate the overhead incurred by simply having
many policy files to execute. We keep the content of the
policies small and trivial. We create a policy file that runs
following assertions:

1) Application name must start with an upper case letter
2) Application must be owned by a specific user
3) All API names must start with upper case letters

We create many copies of this initial policy file to vary the
number of policies deployed. Then we evaluate the over-
head of policy validation on two of our sample applications
(guestbook-py and simple-jaxrs-app).

Figure 5 shows how the number of active policies impact
EAGER overhead. Interestingly, even large numbers of policies
do not impact EAGER overhead significantly. It is only when
the active policy count approaches 1000 that we can see a small
increase in the overhead. Even then, the increase in deployment
time is under 0.1 seconds.

Fig. 6: Average EAGER overhead vs. number of APIs in
Metadata Manager. Each data point averages three executions,
the error bars are two standard deviations, and the units are
seconds. Note that some of the error bars for guestbook-py
are smaller than the graph features at this scale and are thus
obscured.

This result due to the fact that EAGER loads policy content
into memory at system startup (or when a new policy is
deployed), and executes them from memory each time an
application is deployed. Since policy files are typically small
(at most a few kilobytes), this is a viable option. The overhead
of validating the simple-jaxrs-app is higher than that of the
guestbook-py because, simple-jaxrs-app exports web APIs.
This means the third assertion in the policy set is executed
for this app and not for guestbook-py.

Our results indicate that EAGER scales well to hundreds of
policies. That is, there is no significant overhead associated
with simply having a large number of policy files. However,
as mentioned earlier, the content of a policy may influence the
overhead of policy validation and will be specific to the policy
and application EAGER analyzes.

D. Scalability
Next, we evaluate how EAGER scales when a large num-

ber of APIs are deployed in the cloud. In this experiment,
we populate the EAGER Metadata Manager with a varying
number of random APIs. We then attempt to deploy various
sample applications. We also create random dependencies
among the APIs recorded in the Metadata Manager to make
the experimental setting more realistic.

Figure 6 shows that the deployment overhead of the
guestbook-py application is not impacted by the growth of
metadata in the cloud. Recall that guestbook-py does not export
any APIs nor does it declare any dependencies. Therefore
the deployment process of the guestbook-py application has
minimal interactions with the Metadata Manager. Based on
this result we conclude that applications that do not export
web APIs are not significantly affected by the accumulation
of metadata in EAGER.

Both simple-jaxrs-app and dep-jaxrs-app are affected by
the volume of data stored in Metadata Manager. Since these
applications export web APIs that must be recorded and

12

Fig. 7: Average EAGER overhead over three experiments when
deploying on ProgrammableWeb Dataset. The the error bars
are two standard deviations and the units are seconds.

validated by the Metadata Manager, the growth of metadata
has an increasingly higher impact on them. The degradation
of performance as a function of the number of APIs in the
Metadata Manager database is due to the slowing of query per-
formance of the RDBMS engine (MySQL) as the database size
grows. Note that the simple-jaxrs-app is affected more by this
performance drop, because it exports two APIs compared to the
single API exported by dep-jaxrs-app. However, the growth in
overhead is linear to the number of APIs deployed in the cloud
(presumably indicating linear scaling factor in the installation
of MySQL that EAGER used in these experiments). Also, even
after deploying 10000 APIs, the overhead on simple-jaxrs-app
is only been increased by about 0.5 seconds.

Another interesting characteristic in Figure 6 is the increase
in overhead variance as the number of APIs in the cloud grows.
We believe this is due to the increasing variability of database
query performance and the data transfer performance as the
size of the database increases.

In summary, the current EAGER prototype scales well to
1000’s of APIs. If further scalability is required, we can
employ parallelization and database query optimization.

E. Experimental Results with a Real-World Dataset
Finally, we explore how EAGER operates with a real-world

dataset with API metadata and dependency information. For
this, we crawl the ProgrammableWeb registry and extract
metadata regarding all registered APIs and mash-ups. At the
time of the experiment, we collected 11095 APIs and 7227
mash-ups (each mash-up depends on one or more APIs).

We autogenerated API specifications for each and then
populated the EAGER Metadata Manager with these specifica-
tions. We then used the mashup-API dependency information
detected by EAGER to register dependencies among the APIs
in EAGER. This resulted in a total dependency graph of 18322
APIs with 33615 dependencies. We then deploy a subset of our
applications and measure EAGER overhead.

Figure 7 shows the results for three applications. The
guestbook-py app (without any web APIs) is not significantly

Fig. 8: EAGER Overhead When Deploying on Pro-
grammableWeb Dataset with Dependencies. The suffix value
indicates the number of dependencies; the prefix indicates if
these dependencies are randomized (or not) upon redeploy-
ment. Each data point averages three executions, the error bars
that are two standard deviations, and the units are seconds.

impacted by the large dependency database. Applications that
export web APIs show a slightly higher deployment overhead
due to the database scaling properties previously discussed.
However, the highest overhead observed is under 2 seconds
for simple-jaxrs-app, which is an acceptably small percentage
of the 23.45 second deployment time (as shown in Table II).

The applications in this experiment do not declare depen-
dencies on any of the APIs in the ProgrammableWeb dataset.
The dep-jaxrs-app does declare a dependency, but that is on an
API exported by simple-jaxrs-app. To see how the deployment
time is impacted when applications become dependent on other
APIs registered in EAGER, we deploy a test application that
declares random fictitious dependencies on APIs from the
ProgrammableWeb corpus registered in EAGER. We consider
10, 20, and 50 declared dependencies and deploy each appli-
cation three times. We present the results in Figure 8. For the
“random” datasets, we run a deployment script that randomly
modifies the declared dependencies at each redeployment. For
the “fixed” datasets the declared dependencies remains the
same across redeployments.

Interestingly, dependency count does not have a significant
impact on the overhead. The largest overhead observed is under
1.2 seconds for 50 randomly varied dependencies. In addition,
when the dependency declaration is fixed, the overhead is
slightly smaller. This is because our prototype caches the edges
of its internally generated dependency tree, which expedites
redeployments.

In summary, EAGER adds a very small overhead to the
application deployment process, and this overhead increases
linearly with the number of APIs exported by the applications
and the number of APIs deployed in the cloud. Interestingly,
the number of deployed policies and declared dependencies
have little impact on the EAGER governance overhead. Finally,
our results indicate that EAGER scales well to 1000’s of APIs
and adds no more than 2 seconds with over 18, 000 “real-
world” deployed APIs in its database.

13

VII. RELATED WORK

Our research builds upon advances in the areas of SOA
governance and service management. Guan et al introduced
FASWSM [28] a web service management framework for
application servers. FASWSM uses an adaptation technique
that wraps web services in a way so they can be managed by
the underlying application server platform. Wu et al introduced
DART-Man [29] a web service management system based on
semantic web concepts. Zhu and Wang proposed a model that
uses Hadoop and HBase to store web service metadata and
process them to implement a variety of management func-
tions [30]. Our work is different from these past approaches
in that EAGER targets policy enforcement and we focus on
doing so by extending extant cloud platforms (e.g. PaaS) to
provide an integrated and scalable governance solution.

Lin et al proposed a service management system for clouds
that monitors all service interactions via special “hooks” that
are connected to the cloud-hosted services [31]. These hooks
monitor and record service invocations, and also provide an
interface so that the individual service artifacts can be managed
remotely. However, this system only supports run-time service
management and provides no support for deployment-time
policy checking and enforcement. Kikuchi and Aoki [32]
proposed a technique based on model checking to evaluate
the operational vulnerabilities and fault propagation patterns
in cloud services. However, this system provides no active
monitoring or enforcement functionality. Sun et al proposed
a reference architecture for monitoring and managing cloud
services [33]. This too lacks deployment-time governance,
policy validation support, and the ability to intercept and
act upon API calls which limits its use as a comprehensive
governance solution for clouds.

Other researchers have shown that policies can be used to
perform a wide range of governance tasks for SOA such as ac-
cess control [34], [35], fault diagnosis [36], customization [37],
composition [38], [39] and management [40], [41], [42]. We
build upon the foundation of these past efforts and use policies
to govern RESTful web APIs deployed in cloud settings. Our
work is also different in that it defines an executable policy
language (implemented as a subset of Python in the EAGER
prototype) which is capable of capturing a wide range of
governance requirements.

Peng, Lui and Chen showed that the major concerns associ-
ated with SOA governance involve retaining the high reliability
of services, recording how many services are available on the
platform to serve, and making sure all the available services
are operating within an acceptable service level [43]. EAGER
attempts to satisfy similar requirements for modern RESTful
web APIs deployed in cloud environments. However, EA-
GER’s Metadata Manager and ADP record and keep track of
all deployed APIs in a simple, extensible, and comprehensive
manner. Moreover, EAGER’s policy validation, dependency
management, and API change management features “fail fast”
to detect violations immediately making diagnosis and remedi-
ation less complex, and prevent the system from ever entering
a non-compliant state.

API management has been a popular topic in the industry

over the last few years, resulting in many commercial and open
source API management solutions [27], [7], [8], [44]. These
products facilitate API lifecycle management, traffic shaping,
access control, monitoring and a variety of other important
API-related functionality. However, these tools do not support
deep integration with cloud environments in which many web
applications and APIs are deployed today. EAGER is also
different in that it combined deployment time and run-time
enforcement. Previous systems either work exclusively at run-
time or do not include an enforcement capability (i.e. they are
advisory).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we describe EAGER, a model and a software
architecture that facilitates API governance as a cloud-native
feature. EAGER supports comprehensive policy enforcement,
dependency management, and a variety of other deployment-
time API governance features. It promotes many software
development and maintenance best practices including version-
ing, code reuse, and retaining API backwards compatibility.
EAGER also includes a language based on Python that enables
creating, debugging, and maintaining API policies in a simple
and intuitive manner. EAGER can be integrated into cloud plat-
forms that are used to host APIs to automate governance tasks
that otherwise require custom code or developer intervention.

Our empirical results (gathered using a prototype of EAGER
developed for AppScale) show that EAGER adds negligibly
small overhead to the cloud application deployment process,
and the overhead grows linearly with the number of APIs
deployed. We also show that EAGER scales well to handle
tens of thousands of APIs and hundreds of policies.

Hiranya Jayathilaka is a PhD student in the
Computer Science Department at UC Santa Bar-
bara (UCSB). His research interests include dis-
tributed systems and web/cloud services. Prior to
joining UCSB, Hiranya was a Senior Technical
Lead at WSO2 Inc. and received a BS degree
in Engineering from the Univ. of Moratuwa, Sri
Lanka.

Dr. Chandra Krintz is a Professor in the Com-
puter Science Department at UCSB. Her research
interests include cloud platforms and program-
ming systems, and she is the progenitor of the
open source cloud platform-as-a-service, App-
Scale. She holds MS and PhD degrees from UC
San Diego.

Dr. Rich Wolski is a Professor in the Computer
Science Department at UCSB. His research in-
terests include cloud infrastructures and scientific
computing, and he is the progenitor of the open
source cloud infrastructure-as-a-service, Eucalyp-
tus. He holds MS and PhD degrees from UC
Davis.

This work is funded in part by NSF (CNS-0905237 and CNS-
1218808) and NIH (1R01EB014877-01).

14

REFERENCES

[1] “ProgrammableWeb – http://www.programmableweb.com.”
[2] “ProgrammableWeb Blog – http://blog.programmableweb.com/2013/04/

30/9000-apis-mobile-gets-serious/.”
[3] “IEEE Xplore Search Gateway – http://ieeexplore.ieee.org/gateway/.”
[4] “Berkeley API Central – https://developer.berkeley.edu.”
[5] “Agency Application Programming Interfaces – http://www.whitehouse.

gov/digitalgov/apis.”
[6] “Free and Enterprise API Management Platform and Infrastructure by

3scale – http://www.3scale.net.”
[7] “Enterprise API Management and API Strategy – http://apigee.com/

about/.”
[8] “Enterprise API Management - Layer 7 Technologies – http://www.

layer7tech.com.”
[9] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri,

T. Boubez, and U. Yalcinalp, “Web services policy framework
(wspolicy),” September 2007. [Online]. Available: http://www.w3.org/
TR/ws-policy

[10] “SOA Governance Technical Standard – http://www.opengroup.org/soa/
source-book/gov/intro.htm.”

[11] C. Krintz, “The AppScale Cloud Platform: Enabling Portable, Scalable
Web Application Deployment,” IEEE Internet Computing, vol. Mar/Apr,
2013.

[12] F. Belqasmi, R. Glitho, and C. Fu, “Restful web services for service
provisioning in next-generation networks: a survey,” Communications
Magazine, IEEE, vol. 49, no. 12, pp. 66–73, December 2011.

[13] M. N. Haines and M. A. Rothenberger, “How a service-oriented
architecture may change the software development process,” Commun.
ACM, vol. 53, no. 8, pp. 135–140, Aug. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1787234.1787269

[14] G. Lawton, “Developing software online with platform-as-a-service
technology,” Computer, vol. 41, no. 6, pp. 13–15, June 2008.

[15] “Platform as a Service - Pivotal CF,” http://www.gopivotal.com/
platform-as-a-service/pivotal-cf.

[16] “OpenShift by RedHat,” https://www.openshift.com.
[17] H. Jayathilaka, C. Krintz, and R. Wolski, “Towards automatically

estimating porting effort between web service apis,” in To Appear:
Services Computing, 2014. SCC 2014. IEEE International Conference
on. IEEE, 2014.

[18] “Web Application Description Language,” http://www.w3.org/
Submission/wadl/, 2013, [Online; accessed 27-September-2013].

[19] “Swagger: A simple, open standard for describing REST APIs with
JSON,” https://developers.helloreverb.com/swagger/, [Online; accessed
05-August-2013].

[20] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969. [Online].
Available: http://doi.acm.org/10.1145/363235.363259

[21] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés,
and R. Van de Walle, “Functional descriptions as the bridge between
hypermedia APIs and the Semantic Web,” in International Workshop
on RESTful Design, 2012.

[22] T. Steiner and J. Algermissen, “Fulfilling the hypermedia constraint
via http options, the http vocabulary in rdf, and link headers,” in
Proceedings of the Second International Workshop on RESTful Design,
ser. WS-REST ’11. New York, NY, USA: ACM, 2011, pp. 11–14.
[Online]. Available: http://doi.acm.org/10.1145/1967428.1967433

[23] “Apache Synapse,” https://synapse.apache.org/, [Online; accessed 25-
March-2014].

[24] “JSR311 - The Java API for RESTful Web Services – https://jcp.org/
aboutJava/communityprocess/final/jsr311/.”

[25] “Swagger - A simple, open standard for describing REST APIs with
JSON – https://helloreverb.com/developers/swagger.”

[26] “WSO2 API Manager,” http://wso2.com/products/api-manager/, 2013,
[Online; accessed 27-September-2013].

[27] “WSO2 API Manager – http://wso2.com/products/api-manager/.”
[28] H. Guan, B. Jin, J. Wei, W. Xu, and N. Chen, “A framework for applica-

tion server based web services management,” in Software Engineering
Conference, 2005. APSEC ’05. 12th Asia-Pacific, Dec 2005, pp. 8 pp.–.

[29] J. Wu and Z. Wu, “Dart-man: a management platform for web services
based on semantic web technologies,” in Computer Supported Coop-
erative Work in Design, 2005. Proceedings of the Ninth International
Conference on, vol. 2, May 2005, pp. 1199–1204 Vol. 2.

[30] X. Zhu and B. Wang, “Web service management based on hadoop,”
in Service Systems and Service Management (ICSSSM), 2011 8th
International Conference on, June 2011, pp. 1–6.

[31] C.-F. Lin, R.-S. Wu, S.-M. Yuan, and C.-T. Tsai, “A web services status
monitoring technology for distributed system management in the cloud,”
in Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2010 International Conference on, Oct 2010, pp. 502–505.

[32] S. Kikuchi and T. Aoki, “Evaluation of operational vulnerability in
cloud service management using model checking,” in Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International Symposium
on, March 2013, pp. 37–48.

[33] Y. Sun, Z. Xiao, D. Bao, and J. Zhao, “An architecture model of
management and monitoring on cloud services resources,” in Advanced
Computer Theory and Engineering (ICACTE), vol. 3, Aug 2010, pp.
V3–207–V3–211.

[34] R. Bhatti, D. Sanz, E. Bertino, and A. Ghafoor, “A policy-based
authorization framework for web services: Integrating xgtrbac and
ws-policy,” in Web Services, 2007. ICWS 2007. IEEE International
Conference on, July 2007, pp. 447–454.

[35] S.-C. Chou and J.-Y. Jhu, “Access control policy embedded composition
algorithm for web services,” in Advanced Information Management and
Service (IMS), 2010 6th International Conference on, Nov 2010, pp.
54–59.

[36] L. Li, K. Xiaohui, L. Yuanling, X. Fei, Z. Tao, and C. YiMin, “Policy-
based fault diagnosis technology for web service,” in Instrumentation,
Measurement, Computer, Communication and Control, 2011 First In-
ternational Conference on, Oct 2011, pp. 827–831.

[37] H. Liang, W. Sun, X. Zhang, and Z. Jiang, “A policy framework for
collaborative web service customization,” in Service-Oriented System
Engineering, 2006. SOSE ’06. Second IEEE International Workshop,
Oct 2006, pp. 197–204.

[38] A. Erradi, P. Maheshwari, and S. Padmanabhuni, “Towards a policy-
driven framework for adaptive web services composition,” in Next
Generation Web Services Practices, 2005. NWeSP 2005. International
Conference on, Aug 2005, pp. 6 pp.–.

[39] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-driven middleware
for self-adaptation of web services compositions,” in International
Conference on Middleware, 2006.

[40] B. Suleiman and V. Tosic, “Integration of uml modeling and policy-
driven management of web service systems,” in ICSE Workshop on
Principles of Engineering Service Oriented Systems, 2009.

[41] M. Thirumaran, D. Ponnurangam, K. Rajakumari, and G. Nandhini,
“Evaluation model for web service change management based on busi-
ness policy enforcement,” in Cloud and Services Computing (ISCOS),
2012 International Symposium on, Dec 2012, pp. 63–69.

[42] F. Zhang, J. Gao, and B.-S. Liao, “Policy-driven model for autonomic
management of web services using mas,” in Machine Learning and
Cybernetics, 2006 International Conference on, Aug 2006, pp. 34–39.

[43] K.-Y. Peng, S.-C. Lui, and M.-T. Chen, “A study of design and
implementation on soa governance: A service oriented monitoring and
alarming perspective,” in Service-Oriented System Engineering, 2008.
SOSE ’08. IEEE International Symposium on, Dec 2008, pp. 215–220.

[44] “Mashery – http://www.mashery.com.”

