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Abstract Despite the potential of Design-by-Contract (DbC) for increasing the
reliability and robustness of software, it has to date experienced only limited
use. One reason for this, is that each DbC solution targets a single language (or
language run-time) and thus employs different syntax and implementations for
specifying contracts for each. Given that modern applications increasingly employ
multiple components, each written in multiple programming languages, writing
contracts imposes significant burden on programmers.

To reduce this overhead and to encourage greater use of DbC as part of both
testing and production systems, we present a new DbC framework called Super-
Contra that implements and enforces lightweight contracts across different pro-
gramming systems, as-a-service. SuperContra is unique in that developers employ
a familiar, high-level language to write contracts regardless of the programming
language used to implement the component under test. Moreover, contract evalua-
tion occurs as-a-service, as opposed to at each client, simplifying clients and facili-
tating multi-client contract auditing. We evaluate SuperContra using widely used,
open-source software and compare its performance against existing DbC frame-
works. Our results show that SuperContra performs on par with non-service-based
DbC approaches and in some cases similarly to code running without contracts.

Keywords software reliability, DbC, behavioral software contracts, cross-
language contracts, cross-runtime contracts, lightweight contracts, contracts as a
service

1 Introduction

The level of complexity in modern software systems has significantly increased.
A single software system often includes a large number of cooperating compo-
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nents, developed with multiple programming languages. This system is, usually,
the outcome of the collaborative work of several engineers who utilize different
programming frameworks, according to their preferences. In this context, it is in-
creasingly important to detect bugs early in order to increase software reliability
and robustness.

A mature software development methodology that aims to increase software
reliability by eliminating bugs and improving exception handling is Design by
Contract1 (DbC) (Meyer 1992). DbC specifies the intended behavior of a software
component or a web service as an interface contract between a client and a supplier.
At the heart of a DbC contract are assertions. Assertions are expressed on the
code as pre- and post-conditions of methods and class invariants; their violation
indicates bugs in the client or the service provider code.

With assertions being part of the code, the onus is on developers to write
the contracts. Since web-based systems expose their functionality through multi-
ple application programming interfaces (APIs) to support several, multi-language
client programs, developers must learn multiple DbC specification languages and
be familiar with the variety of supported features to make use of DbC for web
services. For example in existing DbC frameworks, assertions can be written as
stylized comments, as in JML (Burdy et al 2005; Leavens et al 2006), or they can
be embedded in the code as in Spec# (Barnett et al 2005). The various specifi-
cation languages can be dependent on a programming language (ex JML depends
on Java), or may independent of the source language (Spec#, CodeContracts).
Learning and understanding different DbC technologies to apply them to modern,
multi-language applications and software systems places a burden on programmers
and to date has played a key role in the limited adoption of DbC.

To address this problem, we have developed SuperContra. A cross-language,
cross-runtime DbC-as-a-service framework, that performs lightweight contract eval-
uations at runtime with minimal performance overhead. Lightweight contracts are
predicates without method calls and object accesses. The effectiveness of using
lightweight contracts to detect bugs has been previously recognized (Hatcliff et al
2012; Barnett and Schulte 2003; Briand et al 2003). Restricting the range of con-
tract evaluations to lightweight checks, allows us to implement SuperContra as a
service and to use a unified specification language independent of the underlying
programming language. A service approach, not only enables the cross-language
and runtime evaluation of contracts, but also comes with the additional benefits
of increased re-usability of the contracts, ease of use, and loose-coupling between
services and clients, service components, and components and contract enforce-
ment. Developers can build clients for their systems in different programming
languages without having to rewrite the contracts for each and every client. Such
an approach reduces programming effort and the possibility for inconsistencies and
errors in the contracts themselves. By providing decoupling clients from contract
evaluation, each can evolve independently and contract evaluation can support
new features (e.g. multi-client auditing) and contracts (e.g. for access control),
and amortize the overhead of contract checking across large populations of clients.

The SuperContra design includes a dependency injection mechanism, a run-
time interceptor, a reusable contract evaluator, and a cross-language communi-
cator. The dependency injection mechanism, identifies the annotated contracts

1 Trademark by Eiffel Software in the United States
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and injects the interceptor code. The interceptor, forms the contracts from the
annotations and delegates their validation to the evaluator. The contract evalu-
ator, evaluates the contracts and returns the result to the interceptor. Finally,
the communicator allows for the seamless communication between the interceptor
and the evaluator across programming languages, by transforming, serializing and
transferring the contracts and the corresponding outcomes.

To implement SuperContra, we leverage on existing open-source frameworks.
The interceptor is based on the DBC Guice2 DbC framework for Java that ex-
presses pre-conditions, post-conditions and invariants as Java annotations and
integrates Google Guice3 to identify the contracts and inject evaluation code at
runtime. The contract evaluator, is a modified version of the PyContract’s4 DbC
framework for Python and evaluates the contracts that are expressed in a Python-
like specification language. Finally the communicator parses the contracts, resolves
incompatibilities between data types and uses Apache Thrift5, as the RPC frame-
work, to enable cross-language communication between the interceptor and the
evaluator.

We evaluate the performance of SuperContra using three different experimen-
tal configurations using contracts that we apply widely used open-source systems
(Synapse6, HBase7). We compare the performance of SuperContra with that of ex-
isting DbC frameworks (Cofoja8 and DBC Guice) and unmodified code (the same
programs without contracts). We also employ community benchmarking and per-
formance evaluation tools (Yahoo! Cloud Serving Benchmark9, HBase Performance
Evaluation Tool10 and Apache JMeter11). Our results show that SuperContra per-
forms similarly to non-service-based DbC approaches and in many cases similarly
to code running without contracts.

In summary, the contributions of this paper are twofold:
– We present the design and implementation of a new approach to lightweight

contract specification and enforcement within a framework called SuperCon-
tra. SuperContra decouples contract evaluation from client-side execution, and
gives developers a single, familiar, yet universal language (a simple subset of
Python) that they use to write (and reuse) contracts across components im-
plemented in different programming languages.

– We empirically evaluate SuperContra using a wide range of configurations,
software technologies, and precondition/postconditions. We compare Super-
Contra against traditional (client-integrated, single language/runtime) tech-
nologies and evaluate its overhead.
The remainder of this paper is organized as follows: Section 2 illustrates the

design of SuperContra and Section 3 describes SuperContra’s implementation. Sec-
tion 4 discusses our experimental setup and presents the performance evaluation

2 https://code.google.com/p/dbcguice/
3 https://code.google.com/p/google-guice/
4 http://andreacensi.github.io/contracts/
5 http://thrift.apache.org/
6 http://synapse.apache.org/
7 http://hbase.apache.org/
8 https://code.google.com/p/cofoja/
9 https://github.com/brianfrankcooper/YCSB/

10 http://wiki.apache.org/hadoop/Hbase/PerformanceEvaluation/
11 http://jmeter.apache.org/
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results. Section 5 discusses SuperContra’s possible extensions and limitations of
our approach. After reviewing related work in Section 6, Section 7 concludes.

2 SuperContra

Fig. 1: The SuperContra system design

The SuperContra framework (Figure 1) is a client-server architecture and in-
cludes a dependency injector, a run-time interceptor, a contract evaluator and a
cross-language communicator. In the heart of SuperContra is the contract eval-
uator, a centralized service that accepts a unified specification language and is
responsible for evaluating the contracts and send the answers back to the clients.
These clients can execute via different runtime environments and include a depen-
dency injector and a runtime interceptor. The injector component identifies the
contracts all the way up to the class hierarchy and injects the interceptor code that
simply delegates the contract evaluation to the central evaluation engine. Finally,
the communicator, is responsible for the communication between the interceptor
and the evaluator across different run-time environments and consists of a client
and a server component.

Contracts are expressed with a simple, common specification language indepen-
dent of the programming language used. For each of the supported programming
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languages though, there is an injector and an interceptor written in this particular
language that identify the contracts on the code, intercept the program execution
at runtime and send the contracts for evaluation to the common contract evalua-
tion service. The evaluator can be written in a different programming language or
even running on a different runtime environment than other components. The sys-
tem caches contract evaluations on the interceptor and on the contract evaluator
to improve performance.

2.1 Specification Language

SuperContra specification language is a strict subset of the language used on the
PyContracts framework. The types that SuperContra supports can be seen in
listing 1. Listing 2 has two simple examples illustrating the usage of the wildcards
* and #, used to match with any type or no type respectively.

Listing 1: Types supported by SuperContra

str, list, float, int, long, bool, bytearray, None

Listing 2: Wild-cards usage examples

@Precondition("{‘discount’: ‘*’}") //the discount can be of any type
@Precondition("{‘discount’: ‘#’}") //always returns error

PyContracts also provides built-in expressions specific to lists, tuples, sequences,
dictionaries, arrays and maps. To examine the possibility of providing this useful
feature also in SuperContra, we added support of the list type in the current
implementation. Therefore, we can take advantage of the built-in expressions of
PyContracts to specify constraints on list elements. Some examples of these list
specific expressions are shown in listing 3.

Listing 3: List specific expressions

list[x] //Examines if a list has x elements length
list(int) //Argument is a list of integers
list[x](int) //Argument is a list of x integers
list[x](int, >y) //Argument is a list of x integers greater than y
list[>=x](int, >y) //Argument is a list of at least x integers great than y

//Example usage of list[x] in a contract
@Precondition("{‘l’: ‘list[2](int, >0)’}")

public boolean listExample(List<Integer> l)

SuperContra supports all the built-in functions of Python that accept as an
argument one of the supported types mentioned above, or the object type. Some
built-in functions very specific to the python environment are not displayed in the
listing 4. For example, function id(object) returns an integer that is guaranteed to
be unique for the object during its lifetime. Though, there is nothing prohibiting
a developer to use this function inside a lambda expression of a contract in Su-
perContra, its usefulness in the context of contracts is questionable and thus we
omit this and similar functions from our listings.
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Listing 4 contains a list with the supported built-in functions while Listing 5
provides specific examples to illustrate their usage.

Listing 4: Built-in Python function supported by SuperContra

abs(x), bin(x), bool([x]), chr(i), cmp(x,y), complex([real[, imag]])
divmod(a, b), float(x), format(value[, format_spec]), hash(object), hex(x)
isinstance(object, classinfo), int(x), len(x), long(x), max(x,y), min(x,y)
oct(x), ord(c), pow(x,y), range(x), repr(object), slice(start, stop[, step])
str(object), type(object), unichr(i), unicode(object), xrange(start,stop[, step])

Listing 5: Built-in Python functions usage examples

@Precondition("{‘name’: ‘lambda name: isinstance(name, str) and len(name)>4’}")
public boolean addPerson(String name, int age)

@Precondition("{‘distance’: ‘lambda distance: abs(distance) < 5’}")
public boolean neighborhood(int distance)

@Precondition("{‘arg’: ‘lambda arg: isinstance(float(arg), float) and
bool(float(arg) > 0)’}")

public boolean example(String arg)

We next provide examples of how we use the language to express boundary
conditions checks (Listing 6), non-nullness checks (Listing 7) as well as postcondi-
tions (Listing 8). In the last listing we see the use of lambda expressions to define
type checks, a particularly useful feature for weakly typed languages, like Python.

Listing 6: Preconditions for numeric variables boundaries check

@Precondition("{‘currentPrice’: ‘>0’, ‘discount’: ‘>=0’, ‘bonusCount’:
‘>=0’, ‘bonusNo’: ‘>=0’}")

public Double calculateDiscountPrice(double currentPrice, int discount,
int bonusCount, int bonusNo)

Listing 7: Using lambda expressions for non-nullness checks

@Precondition("{‘row’: ‘lambda row: row is not None’, ‘family’: ‘lambda
family: family is not None’}")

public long incrementColumnValue(final byte [] row, final byte []
family,final byte [] qualifier, final long amount, final boolean
writeToWAL)

Listing 8: Post-condition check

@Postcondition("{‘returns’: ‘lambda price: price>0’}")
public Double calculateDiscountPrice(double currentPrice, int discount,

int bonusCount, int bonusNo)

Listing 9: Type-checking for weakly typed languages

@Precondition("{‘name’: ‘lambda name: isinstance(name, str) and
len(name)>4’, ‘age’: ‘int,>10’}")

@Postcondition("{‘returns’: ‘bool’}")
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2.2 Lightweight Contracts

SuperContra supports the evaluation of lightweight contracts. Light-weight con-
tracts are any expression that does not contain method calls or object references.
By focusing on lightweight contracts, we preclude the need for the server side to
implement the object model of the client. Moreover, types are converted to the
closer type supported by the server’s contract evaluation framework (Currently
PyContracts), similarly to other cross-language frameworks like Apache Thrift.
Nevertheless, light-weight contracts as type, boundary and nullness checks can
be extremely effective in detecting the plethora of system bugs encountered in
practice (Hatcliff et al 2012; Barnett and Schulte 2003; Briand et al 2003).

3 Implementation

The current implementation of the SuperContra framework (Figure 1) exempli-
fies our cross-language and cross-runtime approach using Java and Python. The
client side of SuperContra is implemented in Java, consisting of an injector, an
interceptor and, the client piece of the communicator and the server side is imple-
mented in Python consisting of a contract evaluator and the server piece of the
communicator.

3.1 SuperContra Injector

The SuperContra injector, in the current implementation of the SuperContra client
side, is the Google Guice injection mechanism, assigned with the task to identify
the classes with contract annotations and inject the code of the SuperContra in-
terceptor.

3.2 SuperContra Interceptor

The SuperContra interceptor is a modified version of the DBC Guice framework
for Java. DBC Guice, makes use of the Java annotations to define preconditions,
postconditions and invariants. It integrates with the Google Guice injection mech-
anism in order to intercept the function calls, containing such annotations, and to
inject a contract evaluator implementation at runtime. The default module pro-
vided for contract evaluation is based on the BeanShell12 scripting language. We
have used the default evaluation module of DBC Guice as a reference for compar-
ison reasons (see section 4) and built our own evaluation module for SuperContra.
We leveraged on a modified version of the DBC Guice interceptor, added caching
and developed the necessary functionality that parses the contracts and the argu-
ment values of the method invocation and sends them for validation through the
communicator client (see section 3.4).

12 http://www.beanshell.org/
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3.3 SuperContra Evaluator

The SuperContra evaluator is responsible for evaluating the contracts and return-
ing a positive result or throwing an exception if there is a contract violation. To
accomplish this, it checks the cache for available evaluation results of the same
contract and argument values and directly returns the answer if such an entry ex-
ists. Otherwise, it parses the request, verifies that it does not contain any invalid
type and creates a new contract. This contract should be in a format accepted by
the contract evaluation engine, which in our current implementation, is a slightly
modified version of the PyContracts DbC framework.

3.4 SuperContra communicator

The SuperContra communicator in the current implementation is Apache Thrift.
Consequently, the communicator client and server correspond to a Thrift client
and server respectively. Apache Thrift is a lightweight, language-independent soft-
ware stack with an associated code generation mechanism that allows developers
to build RPC clients and servers by just defining the data types and service in-
terfaces in a simple definition file. Given this file as an input, code is generated
to build clients and servers that communicate seamlessly across programming lan-
guages. Thrift provides clean abstractions for data transport, data serialization,
and application level processing and it supports a variety of languages including
C++, Java, Python, PHP and Ruby.

Thrift comes with a plethora of protocol and transport layer choices as well
as with different types of supported servers. Nevertheless, not all the choices are
available for all the supported languages. For our current setup that uses Java for
the Thrift client and Python for the Thrift server, and after experimenting with
the available options, we end up using the TBinaryProtocol for the protocol layer
with the TBinaryProtocolAcceleratedFactory on the server side and the TSocket
option for the transport layer with the TBufferedTransportFactory on the server
side. Finally, we used the TThreadPoolServer and the TForkingServer for our
threaded and forking SuperContra versions respectively. The Thrift version we
used is 0.9.0.

As we can see in Figure 1, the communicator is responsible for transferring the
contract evaluation requests and responses between the SuperContra interceptor
and the contract evaluator. It converts the arguments of the method to be evalu-
ated from strings to the corresponding python values and creates a contract in an
appropriate format, accepted by the contract evaluation engine.

4 System Evaluation

In this section we describe our experimental setup and present the results of our
performance evaluation. We first explain the methodology we followed to evaluate
SuperContra, describe our testbed, the assertions added on the code and the DbC
frameworks we used for comparison reasons and then present and explain the
extended results we retrieved.
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Fig. 2: Experimental setups for the SuperContra evaluation. The setup on the left
consists of a contracted version of Apache Synapse and uses JMeter as the traffic
generator (Section 4.1.1). The setups on the right both use contracted versions of
HBase and generate transactions with the Performance Evaluation Tool of HBase
(Section 4.1.2) and YCSB (Section 4.1.3)

4.1 Experimental Setup

We evaluate the performance and scalability of our approach by using the 3 ex-
perimental configurations depicted in Figure 2. With the first setup, we evaluate
the performance of our system by adding contract checks to a mediation sample
of the Apache Synapse Enterprise Service Bus and using Apache JMeter to gen-
erate traffic. In the next two configurations, we run performance evaluations on
Apache HBase, which we instrument with contract checks on the part of the API
that is called by our evaluation procedures. The instrumentation of the methods
and classes with contracts is implemented through suitable wrappers, leaving the
original API unaffected and ensuring that any other operation of HBase that use
parts of the code we modified does not influence the performance results. Using
the second configuration, we run the performance tests using a modified version
of the HBase Performance Evaluation Tool and on the third we use benchmarks
provided by YCSB (Cooper et al 2010).

For each configuration, we compare the performance of SuperContra against
the unmodified version of the code, ie without contract assertions and also against
two open source contract frameworks for Java, namely DBC Guice and Cofoja. We
have evaluated two different implementations of SuperContra, one that is using
Thrift’s thread pool server and one using Thrift’s forking server. Though, since the
difference in their performance is insignificant, we present only the performance
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results obtained with the forking server that performed overall equal or slightly
better. Overall, the performance evaluation tests employ four different contract
configurations.
– Without Contracts, the original code running without contract assertions
– DBC Guice, an open source project that implements DbC for Java using Google

Guice
– Cofoja, Contracts for Java or Cofoja is a popular DbC framework made by a

team of Google engineers
– SuperContra, the SuperContra framework

The following three subsections provide additional information regarding the
architecture and the code instrumentation for each experimental setting.

4.1.1 Synapse/ JMeter

Apache Synapse is a free, open source, lightweight Enterprise Service Bus (ESB)
and mediation engine that comes with a plethora of working samples, that are
general comprised of a sample configuration, an Axis2-based Web Service to which
Synapse sends messages and an Axis2-based service client which sends requests
to Synapse. Apache JMeter is a load testing tool that we use to generate HTTP
requests (replacing the role of the Axis2 client) and to gather the results.

With this experimental setup we want to investigate the performance and scal-
ability of our system on a networked environment with the different testing partic-
ipants isolated. Thus, the client (JMeter), the Synapse mediation engine running
the instrumented code and the Axis2 Server are located on different machines. We
use Synapse with one of the provided configurations13 and we modify the Dis-
countCodeMediator class by adding contracts on the method that calculates the
discounts on the input price. To evaluate the performance under different contract
load we create 3 different versions of this method by adding contract precondi-
tions to one argument, to every argument of the call (4 arguments in total), and
by combining preconditions on every argument and a postcondition to check the
validity of the returned result. According to this scenario, JMeter generates the
HTTP requests and sends them to the Axis2 server. The server then, generates the
results but before sending them back to the client, passes them to the mediator
who is responsible to perform the contract checks and calculate the discounted
price that is eventually returned to the client. We used Synapse version 2.1.0 and
JMeter version 2.9 to perform the experiments.

4.1.2 HBase/ Performance Evaluation Tool

The HBase PerformanceEvaluation class is part of the HBase distribution code
and provides a number of different tests for the HBase API, like sequential and
random reads and writes, scans etc.

For this set of experiments we wanted to add contracts on one of the basic
HBase API calls and compare against the original code of HBase to demonstrate
the effectiveness of our approach under a simple scenario that does not require
the addition of contracts in every function call of the complicated HBase flow.
A suitable HBase API operation for this reason, was the incrementColumnValue

13 http://synapse.apache.org/userguide/samples/sample380.html
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operation, which checks whether the row and the family provided by the caller is
not null and throws an exception otherwise. We created three modified versions of
this method by replacing the conditional checks with contracts written with DBC
Guice, Cofoja and SuperContra. Since, the PerformanceEvaluation class of HBase
does not provide tests for increments, we extended the tests provided by the tool
to also support sequential increment tests and added four different commands to
the tool in order to call the original version and also the 3 modified contracted
versions of incrementColumnValue. For our experiments we used HBase 0.94.6.1
in standalone mode.

4.1.3 HBase/ YCSB

YCSB, Yahoo! Cloud Serving Benchmark, is a framework and common set of
workloads that a developer can use to evaluate and compare the performance of
different key-value store systems, like BigTable, Azure, DynamoDB, HBase etc.

With this set of experiments we wanted to facilitate evaluation using YCSB
workloads. We used 3 of the core YCSB workloads, the update-heavy (50/50
Read/Update), read-heavy (95/5 Read/Update) and read-only workload. For each
workload, we modified all the HBase methods affected by the call to the HBase
read or write, by adding contract checks to their arguments. After the modifica-
tions, every read API call invokes 5 different methods with contract checks on
5 arguments in total and every write API call invokes 3 different methods with
contract checks on 7 arguments in total. We also modified the hbase-binding of
YCSB to redirect the calls to the instrumented versions of the methods. We used
YCSB version 0.1.4.

4.2 Results

The results gathered from all our experimental setups show that SuperContra
outperforms the performance of DBC Guice and achieves similar performance with
the unmodified HBase code (that runs without contracts checks) and the Cofoja
framework.

With Cofoja, contracts are compiled into separate contract files and a Java
agent re-writes the original code during the class loading time achieving signif-
icantly better performance compared to DBC Guice and slightly better perfor-
mance than SuperContra. DBC Guice, uses BeanShell as the scripting language to
define the contracts. BeanShell, is dynamically interpreted Java, plus a scripting
language and a flexible environment in a single package. Since it is an interpreter,
execution is significantly slower compared to compiled Java code.

On the other hand, SuperContra performs slightly worse than Cofoja when we
evaluate multiple preconditions and postconditions because the contracts are not
only checked but also created at runtime. Each time a method with a contract
annotation is encountered at runtime by Google-Guice, the necessary code is in-
jected in order to create a contract according to the specified precondition, then
send to the SuperContra evaluation engine through Thrift, evaluated by the Py-
Contracts engine and finally an answer is send back to the method that triggered
the contract.
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4.2.1 Synapse/ JMeter

We first present the results for the Synapse/JMeter configuration in Figure 3. In
these experiments, we create three versions of the Synapse discount service: One
that performs a precondition check on one of the discount function arguments
(Fig. 3a), one with precondition checks in every argument (Fig. 3b) and one that
has preconditions in every argument and a postcondition assertion on the returned
result (Fig. 3c). JMeter sends 10000 requests to Synapse, which in turn forwards
the requests to the Axis2 server. The response message created by the Axis2 server
is passed through the class mediator, to the instrumented with contracts Java class
that calculates the discount.

In the case of only one precondition check (Figure 3a), the time needed to
evaluate the contracts is so small that there is almost no performance difference
between the different frameworks tested. When the contract checks are heavier
though (Figures 3b and 3c), SuperContra performs better than DBC Guice and
very close to the optimal performance of the code running without contracts. When
using 10 or more threads on the client the performance of SuperContra has almost
no difference with the code running with Cofoja and the unmodified code.

4.2.2 HBase Performance Evaluation Tool

Figure 4a shows the total time required for an HBase Increment to increase the
values of one column in 10.000 different rows. SuperContra outperforms the per-
formance of DBC Guice and achieves similar performance with the unmodified
HBase code and the Cofoja framework.

Caching Results. In many cases (e.g HBase batch calls), the same operation with
the same contract and values is repeated. To reduce the overhead when this occurs,
we have implemented a cache mechanism on both sides of our architecture, i.e.
on the contract evaluator side and on the client side, that is accessed before the
contract is sent to the server for evaluation and before the evaluation is performed.
When there is a single client with multiple threads that access the same evaluation
server the caching mechanism on both sides is redundant. However, for multiple
clients, server side caching can be effective. Figure 4b shows that caching improves
performance by up to 22% for HBase row increments.

4.2.3 HBase/ YCSB

Figure 5 presents the results for the experimental setting described on section 4.1.3
that uses three YCSB workloads. In all cases SuperContra outperforms DBC Guice
and scales well, adding a small overhead compared to the results of Cofoja and
the code without contracts. The graph in Figure 5a is for the read-only workload,
the graph in 5b is for the read-heavy workload, and the graph in 5c is for the
update-heavy workload.

The update-heavy results show DBC Guice time reducing significantly with-
out the same thing happening for SuperContra. One reason for this reduction is
that the update latency of HBase is smaller compared to the read latency, be-
cause updates are buffered into memory (Cooper et al 2010). For this reason the
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(b) Heavy Preconditions
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(c) Heavy Preconditions+Postcondition

Fig. 3: Synapse/ JMeter: Total execution time for 10k operations for one precon-
dition check (Fig. 3a), multiple precondition checks ((Fig. 3b) and the combination
of multiple precondition checks plus a postcondition (Fig. 3c). The graphs contain
4 different curves representing the results from the original code running without
contracts, the code using SuperContra, the code using the DBC Guice framework
and finally the code using Cofoja as the DbC framework. In all cases SuperContra
performs better than DBC Guice and similarly to the code running with Cofoja
and the unmodified code without contract checks
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(a) 10k Increments on Different Rows
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Fig. 4: Total execution time of 10k HBase Increments on different rows (Figure 4a)
and on the same row (Figure 4b). SuperContra performance is better than DBC
Guice and similar to the code running with Cofoja contracts and the unmodified
code without contracts. With cache enabled on contract evaluator we can have up
to 22% performance gain in the best case (all increments on the same row)

performance of the update-heavy workload (Figure 5c) is expected to be better
compared to the read-heavy workload (Figure 5b). This holds for the DBC Guice
framework but not for SuperContra.

To investigate this anomaly, we ran additional experiments with the same
number of contract checks both for reads and updates (only one contract check on
each case) and we plot the system’s latency as the number of threads increases, in
Figure 6. With only one contract check, the read latency is, as expected, higher
than the update latency for both DBC Guice and SuperContra. When evaluat-
ing all the contracts (Figure 7), with five or more threads, the update latency of
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(a) Read-Only Workload
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(b) Read-Heavy Workload
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(c) Update-Heavy Workload

Fig. 5: HBase/ YCSB: Total execution time for 5k operations for the read-only
(Fig. 5a), read-heavy (Fig. 5b) and update-heavy (Fig. 5c) workloads of YCSB
run on HBase
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Fig. 6: One contract evaluation: Update latency (solid lines) versus Read latency
(dashed lines) as the number of threads increases. Only one contract per read
and one per update is evaluated. The number of contracts evaluated for reads and
updates is the same. Read latency is higher than the update latency for both DBC
Guice and SuperContra

SuperContra becomes higher than the read latency. This means that in this case
the SuperContra evaluator capacity becomes a bottleneck and thus it cannot ob-
tain further performance gain on the update-heavy scenario. For the experiments
running without contracts and for Cofoja their is also around 10% performance
improvement.
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(a) DBC Guice
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Fig. 7: All contracts evaluation: Update latency (solid lines) versus Read latency
(dashed lines) as the number of threads increases. The number of contract evalua-
tions for reads and updates is different (see section 4.1.3). DBC Guice has greater
read latencies than update latencies as in the case of one contract check (Figure 6a).
Thus, it can obtain significant performance gains when running the update-heavy
workload. One the other hand, SuperContra’s update latencies are greater than
the read latencies both for the read-heavy and the update-heavy scenarios. So,
there is no performance gain observed on Figure 5 between the read-heavy and
update-heavy workloads but a slight decrease in performance

5 Discussion

SuperContra is a service that supports lightweight contracts. This design decision
restricts the range of contract validations that can be performed with SuperCon-
tra versus JML and Spec#. However, such language-dependent systems often fail
to support all the language features (Hatcliff et al 2012) which limit their effec-
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tiveness. In addition, a programmer that wants to develop multiple clients using
different programming languages that consume the same service, is forced to learn
different DbC frameworks to do so with these language-dependent approaches.
SuperContra is not precludes these issues.

Lightweight contracts have been previously recognized to be an effective mech-
anism for detecting programming errors (Hatcliff et al 2012; Barnett and Schulte
2003; Briand et al 2003). Hatcliff and Leavens (Hatcliff et al 2012) argue that
lightweight annotations like those employed by SuperContra can effectively be
used to identify and isolate bugs. Moreover, Barnett states that ”the bulk of spec-
ifications are expected to be simple” (Barnett and Schulte 2003) which means that
SuperContra can be useful in most practical scenarios. The simplicity of writing
contracts with SuperContra reduces the barrier to entry of using DbC.

Apart from improving code robustness, offering the evaluation of contracts as
a service has other benefits:
Ease of use. The contracts can be written in one common specification language

independent of the programming language used and can be evaluated across
languages and runtime environments. Developers do not need to be familiar
with the different features, syntax and semantics supported on the variety of
DbC frameworks that exist for each programming language;

Contract re-usability. The exposed interfaces of a service that support clients in
different languages do not differ significantly. Thus, since the specification lan-
guage is independent of the underlying programming language, the same con-
tract assertions can be used for all the clients regardless of the programming
language they are developed in. Moreover, the service provider can now in-
clude contracts as part of his interface documentation in order to reduce the
programming effort needed to develop the clients for his service;

Loose coupling. The contract evaluator engine can evolve in order to support more
features without the need to recompile any of the clients or change the previous
contracts, as long as the old features are still supported; and

Amenability to use on resource-constrained devices. The evaluation of contracts
in resource-constraint devices such as mobile phones would require more time,
CPU and battery consumption. Off-loading the evaluation process to an exter-
nal service that could potentially run in the cloud, makes feasible the addition
of contracts on code running on mobile devices, both for profiling and debug-
ging purposes.
Finally, a centralized service like SuperContra could have some alternative

applications, including:
Data aggregation. Having a central contract evaluator for all the clients that use

a service, allows to piggyback on the contract evaluation, the aggregation and
processing of the evaluated values. Thus, the gathered data can be used to
enhance profiling, analytics and service management. For example, increased
contract violations for a particular method could indicate an error or unclarity
on the published documentation provided for this method; and

Dynamic contract variables. SuperContra can be used for the evaluation of con-
tracts, against values that are controlled and dynamically updated by a central
authority. To illustrate this, lets think of the scenario that a service provider
offers SuperContra as a DbC framework to his clients to help them evaluate the
conformance of their code with the service. Since, SuperContra runs on his own
premises, he could register specific variable names and be able to dynamically
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modify them at will, or automatically, according to some global system values
that he monitors. In this case, sufficient documentation should be provided to
the developer to let them know about the dynamic variables they can use.

6 Related Work

The idea of DbC has been extensively applied on the implementation level with
numerous behavioral interface specification languages as an outcome (Hatcliff et al
2012) for sequential (Meyer 1992; Burdy et al 2005; Barnett et al 2005; Fähndrich
et al 2010; Barnett and Schulte 2001) and concurrent (Dahlweid et al 2009; Araujo
et al 2008; Nienaltowski et al 2006) programs. There are programming languages
like Eiffel (Meyer 1988) or Spec# (Barnett et al 2005) that are natively equipped
with contracts and DbC frameworks that are an extension to an existing pro-
gramming language such as JML (Burdy et al 2005) and Cofoja (Minh 2010),
while other frameworks are dependent on the programming language they sup-
port. Contracts can be checked at compilation time (Flanagan et al 2002; Barnett
et al 2005; Xu et al 2009), at runtime (Minh 2010; Cheon and Leavens 2002) or
both (Burdy et al 2005). SuperContra, in its current implementation supports a
basic python-like type system, and evaluates contracts at runtime.

To avoid the hassle of learning a new specification language for each differ-
ent DbC tool, Fahndrich et al (Fähndrich et al 2010) suggest the embedding of
contracts into the programming language, and prove their approach by providing
.Net libraries for C#, Visual Basic, F# and C++ (Fahndrich et al 2012). Despite
having a unified approach for .Net supported languages, the specification syntax
for the different programming languages still differs and cannot be written just
once and used multiple times for clients implemented in multiple programming
languages. In another work, Barnett et al present ASML as the language to write
specifications for all the .Net supported languages. Having the same starting point,
reducing the hassle of writing contracts with many different specification languages
and tools, SuperContra not only is language agnostic, but can also support the
evaluation of contracts for programming languages with different runtime environ-
ments. We illustrate our approach by evaluating contracts written for Java code
using a contract evaluator written in Python.

Recognizing the complexity of current DbC frameworks and the runtime over-
head they introduce, Dimoulas et al propose option contracts, allowing service
producers to tag contracts as an option and giving service consumers the ability
to chose whether to exercise the option or accept it, taking the responsibility if
things go wrong (Dimoulas et al 2013). Referring to the complexity of manually
writing contracts as the main reason for the lack of adoption of DbC, Qi and Yi
suggest change contracts, where they express as a contract the intended behavior
of software changes (Qi et al 2012; Yi et al 2013). SuperContra shares the same
motivation with the aforementioned research, but addresses the problem in a dif-
ferent way. To decrease the runtime overhead and to minimize the programming
effort needed to write the contracts, SuperContra restricts its evaluation space on
light weight contracts and uses a common specification language across run-times
to enable easier writing of contracts and increase their reusability.
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7 Conclusions

This paper presents the design, implementation and evaluation of SuperContra.
SuperContra is a DbC as-a-service framework that evaluates lightweight contracts
across programming languages and runtime environments. We evaluate SuperCon-
tra using popular, open-source, production software and compare its performance
against existing DbC frameworks with the use of well-known benchmarks and
tools. Our results show that SuperContra performs similarly to or outperforms
extant approaches (single language/runtime) to DbC and in some cases performs
similarly to native code without contracts. We also observe a significant reduction
in programming effort for the specification of contracts across components writ-
ten in different programming languages making SuperContra lightweight, effective,
and easy-to-uses solution for improving software reliability.
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