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Abstract
Cloud computing is a successful model for hosting web-
facing applications that are accessed by their users as ser-
vices. While clouds currently offer Service Level Agree-
ments (SLAs) containing guarantees of availability, they do
not make performance guarantees for deployed applications.

In this work we present Cerebro – a system for estab-
lishing statistical guarantees of application response time in
cloud settings. Cerebro combines off-line static analysis of
application control structure with on-line cloud performance
monitoring and statistical forecasting to predict bounds on
the response time of web-facing application programming
interfaces (APIs). Because Cerebro does not require applica-
tion instrumentation or per-application cloud benchmarking,
it does not impose any runtime overhead, and is suitable for
use at cloud scales. Also, because the bounds are statistical,
they are appropriate for use as the basis for SLAs between
cloud-hosted applications and their users.

We investigate the correctness of Cerebro predictions, the
tightness of their bounds, and the duration over which the
bounds persist in both Google App Engine and AppScale
(public and private cloud platforms respectively). We also
detail the effectiveness of our SLA prediction methodology
compared to other performance bound estimation methods
based on simple statistical analysis.

Keywords Cloud computing, Web APIs, SLA

1. Introduction
Web services, service oriented architectures, and cloud plat-
forms have revolutionized the way developers engineer and
deploy software. Using the web service model, developers
create new applications by “mashing up” content and func-
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tionality from existing services exposed via web-accessible
application programming interfaces (web APIs). This ap-
proach both expedites and simplifies implementation since
developers can leverage the software engineering and main-
tenance efforts of others. Moreover, platform-as-a-service
(PaaS) clouds for hosting web applications have emerged as
a key technology for managing applications at scale in both
public (managed) and private settings.

Consequently, web APIs are rapidly proliferating. At the
time of this writing, ProgrammableWeb [35] indexes over
13,000 publicly available web APIs. These APIs increas-
ingly employ the REST (Representational State Transfer)
architectural style [13], and target both commercial (e.g. ad-
vertising, shopping, travel, etc.) and non-commercial (e.g.
IEEE [22], UC Berkeley [5], US White House [44]) applica-
tion domains.

Despite the many benefits, reusing existing services also
has its costs. In particular, new applications become depen-
dent on the services they compose. These dependencies im-
pact correctness, performance, and availability of the com-
posite applications – for which the “top level” developer is
often held accountable. Compounding the situation, the un-
derlying services can and do change over time while their
APIs remain stable, unbeknownst to the developers that pro-
grammatically access them. Unfortunately, there is a dearth
of tools that help developers reason about these dependen-
cies throughout an application’s lifecycle (i.e. development,
deployment, and runtime). Without such tools, programmers
must resort to extensive, continuous, and costly, testing and
profiling to understand the performance impact on their ap-
plications that results from the increasingly complex collec-
tion of services that they depend on.

To address this issue, we present Cerebro, a new approach
that predicts bounds on the response time performance of
web APIs exported by applications that are hosted in a PaaS
cloud. The goal of Cerebro is to allow a PaaS administrator
to determine what response time service level agreement
(SLA) can be fulfilled by each web API operation exported
by the applications hosted in the PaaS.

SLAs typically specify a minimum service level, and a
probability (usually large) that the minimum service level
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will be maintained. Cerebro uses a combination of static
analysis of the hosted web APIs, and runtime monitoring of
the PaaS cloud (not the web APIs themselves) to determine
what minimum response time guarantee can be made with
a target probability specified by a PaaS administrator. These
calculated SLAs enable developers to reason about the per-
formance of the applications that consume the cloud-hosted
web APIs.

Currently, cloud computing systems such as Amazon
Web Services (AWS) [3] and Google App Engine (GAE) [15]
offer reliability SLAs specifying the fraction of availability
over a fixed time period for their services that users can ex-
pect, when they contract to use a service. However, they do
not provide SLAs guaranteeing minimum levels of perfor-
mance. In contrast, Cerebro predictions make it possible to
determine response time SLAs with probabilities specified
by the cloud provider in a way that is scalable.

Cerebro is designed to improve the use of both public
and private PaaS clouds which have emerged as popular ap-
plication hosting venues [38]. For example, there are over
four million active GAE applications that can execute on
Google’s public cloud or over AppScale, an open source,
private cloud version of App Engine. A PaaS cloud provides
developers with a collection of commonly used, scalable ser-
vices, that the platform exports via APIs defined within a
software development kit (cloud SDK). These services are
fully managed and covered under the availability SLAs of
the cloud platform. For example, services in GAE and App-
Scale cloud SDK include a distributed NoSQL datastore,
task management, and data caching, among others.

Cerebro generates response time SLAs for API calls ex-
ported by a web application developed using the services
available within the PaaS. For brevity, in this work we will
use the term web API to refer to a web-accessible API ex-
ported by an application hosted on a PaaS platform. Further,
we will use the term cloud SDK to refer to the APIs that are
maintained as part of the PaaS and available to all hosted ap-
plications. This enables us to differentiate the internal APIs
of the PaaS from the APIs exported by the deployed appli-
cations. For example, an application hosted in Google App
Engine might export one or more web APIs to its users while
leveraging the internal cloud SDK for the Google datastore
that is available as part of the Google App Engine PaaS.

Cerebro uses static analysis to identify the cloud SDK
invocations that dominate the response time of web APIs.
Independently, Cerebro also maintains a running history of
cloud SDK response time performance. It uses QBETS [33]
– a forecasting methodology we have developed in prior
work for predicting bounds on “ill behaved” univariate time
series – to predict response time bounds on each cloud SDK
invocation made by the application. It combines these pre-
dictions dynamically for each static program path through
a web API operation, and returns the “worst-case” upper
bound on the time necessary to complete the operation.

Because service implementations and platform behavior
under load change over time, Cerebro’s predictions necessar-
ily have a lifetime. That is, the predicted SLAs may become
invalid after some time. As part of this paper, we develop
a model for detecting such SLA invalidations. We use this
model to investigate the effective lifetime of Cerebro predic-
tions. When such changes occur, Cerebro can be reinvoked
to establish new SLAs for any deployed web API.

We have implemented Cerebro for both the Google App
Engine public PaaS, and the AppScale private PaaS. Given
its modular design and this experience, we believe that Cere-
bro can be easily integrated into any PaaS system. We use
our prototype implementation to evaluate the accuracy of
Cerebro as well as the tightness of the bounds it predicts (i.e.
the difference between the predictions and the actual API
execution times). To this end, we carry out a range of exper-
iments using App Engine applications that are available as
open source.

We also detail the duration over which these predictions
hold in both GAE and AppScale. We find that Cerebro gen-
erates correct SLAs (predictions that meet or exceed their
probabilistic guarantees), and that these SLAs are valid over
time periods ranging from 1.4 hours to more than 24 hours.
We also find that the high variability of performance in pub-
lic PaaS clouds due to their multi-tenancy and massive scale
requires that Cerebro be more conservative in its predictions
to achieve the desired level of correctness. In comparison,
Cerebro is able to make much tighter SLA predictions for
web APIs hosted in private, single tenant clouds.

Because Cerebro provides this analysis statically it im-
poses no run-time overhead on the applications themselves.
It requires no run-time instrumentation of application code,
and it does not require any performance testing of the web
APIs. Furthermore, because the PaaS is scalable and SDK
monitoring data is shared across all Cerebro executions, the
continuous monitoring of the cloud SDK generates no dis-
cernible load on the cloud platform. Thus we believe Cere-
bro is suitable for highly scalable cloud settings.

Finally, we have developed Cerebro for use with EA-
GER (Enforced API Governance Engine for REST) [23]
– an API governance system for PaaS clouds. EAGER at-
tempts to enforce governance policies at the deployment-
time of cloud applications. These governance policies are
specified by cloud administrators to ensure the reliable op-
eration of the cloud and the deployed applications. PaaS
platforms include an application deployment phase during
which the platform provisions resources for the application,
installs the application components, and configures them to
use the cloud SDKs. EAGER injects a policy checking and
enforcement step into this deployment workflow so that only
applications that are compliant with respect to site-specific
policies are successfully deployed. Cerebro allows PaaS ad-
ministrators to define EAGER policies that allow an appli-
cation to be deployed only when its web APIs meet a pre-
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determined (or pre-negotiated) SLA target, and to be notified
by the platform when such SLAs require renegotiation.

We structure the rest of this paper as follows. We first
characterize the domain of PaaS-hosted web APIs for GAE
and AppScale in Section 2. We then present the design of
Cerebro in Section 3 and overview our software architecture
and prototype implementation. Next, we present our empir-
ical evaluation of Cerebro in Section 4. Finally, we discuss
related work (Section 5) and conclude (Section 6).

2. Domain Characteristics and Assumptions
The goal of our work is to analyze a web API statically,
and from this analysis without deploying or running the web
API, accurately predict an upper bound on its response time.
With such a prediction, developers and cloud administrators
can provide performance SLAs to the API consumers (hu-
man or programmatic), to help them reason about the per-
formance implications of using APIs – something that is not
possible today. For general purpose applications, such worst-
case execution time analysis has been shown by numerous
researchers to be challenging to achieve for all but simple
programs or specific application domains.

To overcome these challenges, we take inspiration from
the latter and exploit the application domain of PaaS-hosted
web APIs to achieve our goal. In this paper, we focus on
the popular Google App Engine (GAE) public PaaS and
AppScale private PaaS, which support the same applications,
development and deployment model, and platform services.

The first characteristic of PaaS systems that we exploit to
facilitate our analysis is their predefined programming inter-
faces through which they export various platform services.
Herein we refer to these programming interfaces as the cloud
software development kit or the cloud SDK. We refer to the
individual member interfaces of the cloud SDK as cloud
SDK interfaces, and to their constituent operations as cloud
SDK operations. These interfaces export scalable function-
ality that is commonly used to implement web APIs: key-
value datastores, databases, data caching, task and user man-
agement, security and authentication, etc. The App Engine
and AppScale cloud SDK is detailed in https://cloud.

google.com/appengine/docs/java/javadoc/.
Figure 1 illustrates the PaaS development and deploy-

ment model. Developers implement their application code as
a combination of calls to the cloud SDK and their own code.
The service implementations for the cloud SDK are highly
scalable, highly available (have SLAs associated with them),
and automatically managed by the platform. Developers then
upload their applications to the cloud for deployment. Once
deployed, the applications and any web APIs exported by
them can be accessed via HTTP/S requests by external or
co-located clients.

Typically, PaaS-hosted web APIs perform one or more
cloud SDK calls. The reason for this is two-fold. First, cloud
SDKs provide web APIs with much of the functionality that
they require. Second, PaaS clouds “sandbox” web APIs to

Figure 1. PaaS-hosted Web APIs: (a) An external client
making requests to the API; (b) A PaaS-hosted web API
invoking another in the same cloud.

enforce quotas, to enable billing, and to restrict certain func-
tionality that can lead to security holes, platform instabil-
ity, or scaling issues [16]. For example, GAE and AppScale
cloud platforms restrict the application code from accessing
the local file system, accessing shared memory, using certain
libraries, and arbitrarily spawning threads. Therefore devel-
opers must use the provided cloud SDK operations to im-
plement program logic equivalent to the restricted features.
For example, the datastore interface can be used to read and
write persistent data instead of using the local file system,
and the memcache interface can be used in lieu of global
shared memory.

Furthermore, the only way for a web API to execute is
in response to an HTTP/S request or as a background task.
Therefore, execution of all web API operations start and end
at well defined program points, and we are able to infer this
structure from common software patterns. Also, concurrency
is restricted by capping the number of threads and requir-
ing that a thread cannot outlive the request that creates it.
Finally, PaaS clouds enforce quotas and limits on service
(cloud SDK) use [16, 17, 28]. App Engine, for example,
requires that all web API requests complete under 60 sec-
onds. Otherwise they are terminated by the platform. Such
enforcement places a strict upper bound on the execution of
a web API operation.

To understand the specific characteristics of PaaS-hosted
web APIs, and the potential of this restricted domain to fa-
cilitate efficient static analysis and response time prediction,
we next summarize results from static analysis (using the
Soot framework [43]) of 35 real world App Engine web
APIs. These web APIs are open source, written in Java, and
run over Google App Engine or AppScale without modifica-
tion. We plan to make these applications publicly available
upon publication.
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Figure 2. CDF of the number of static paths through meth-
ods in the surveyed web APIs.

Our analysis detected a total of 1458 Java methods in the
analyzed codes. Figure 2 shows the cumulative distribution
of static program paths in these methods. Approximately
97% of the methods considered in the analysis have 10
or fewer static program paths through them. 99% of the
methods have 36 or fewer paths. However, the CDF is heavy
tailed, and grows to 34992. We truncate the graph at 100
paths for clarity. As such, only a very small number of
methods each contains a large number of paths. Fortunately,
over 65% of the methods have exactly 1 path (i.e. there are
no branches).

Next, we consider the looping behavior of web APIs.
1286 of the methods (88%) considered in the study do not
have any loops. 172 methods (12%) contain loops. We be-
lieve that this characteristic is due to the fact that the PaaS
SDK and the platform restrictions like quotas and response
time limits discourage looping.

Approximately 29% of all the loops in the analyzed pro-
grams do not contain any cloud SDK invocations. A major-
ity of the loops (61%) however, are used to iterate over a
dataset that is returned from the datastore cloud SDK inter-
face of App Engine (i.e iterating on the result set returned by
a datastore query). We refer to this particular type of loops
as iterative datastore reads.

Table 1 lists the number of times each cloud SDK inter-
face is called across all paths and methods in the analyzed
programs. The Datastore API is the most commonly used
interface. This is because data management is fundamental
to most web APIs and the PaaS disallows using the local
filesystem to do so, for scalability and portability reasons.

Next, we explore the number of cloud SDK calls made
along different paths of execution in the web APIs. For this
study we consider all paths of execution through the meth-
ods (64780 total paths). Figure 3 shows the cumulative dis-
tribution of the number of SDK calls within paths. Approx-
imately 98% of the paths have 1 cloud SDK call or fewer.
The probability of finding an execution path with more than
5 cloud SDK calls is smaller than 1%.

Table 1. Static cloud SDK calls in surveyed web APIs
Cloud SDK Interface No. of Invocations

blobstore 7
channel 1

datastore 735
files 4

images 3
memcache 12

search 6
taskqueue 24

tools 2
urlfetch 8

users 44
xmpp 3

Figure 3. CDF of cloud SDK call counts in paths of execu-
tion.

Finally, our experience with App Engine web APIs indi-
cates that a significant portion of the total time of a method
(web API operation) is spent in cloud SDK calls. Confirming
this hypothesis requires careful instrumentation (i.e. difficult
to automate) of the web API codes. We performed such a test
by hand on two representative applications and found that
the time spent in code other than cloud SDK calls accounts
for 0-6% of the total time (0-3ms for a 30-50ms web API
operation).

This study of various characteristics typical of PaaS-
hosted web APIs indicates that there may be opportunities
to exploit the specific aspects of this application domain to
simplify analysis and to facilitate performance prediction. In
particular, operations in these applications are short, have a
small number of paths to analyze, implement few loops, and
invoke a small number of cloud SDK calls. Moreover, most
of the time spent executing these operations results from
cloud SDK invocations. In the next section, we describe
our design and implementation of Cerebro that takes advan-
tage of these characteristics and assumptions. We then use
a Cerebro prototype to experimentally evaluate its efficacy
for estimating the worst-case response time for applications
from this domain.
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3. Cerebro
Given the restricted application domain of PaaS-hosted web
APIs, we believe that it is possible to design a system that
predicts response time SLAs for them using only static in-
formation from the web API code itself. To enable this, we
design Cerebro with three primary components:

• A static analysis tool that extracts sequences of cloud
SDK operations for each path through a method (web
API operation),

• A monitoring agent that runs in the target PaaS, and
efficiently monitors the performance of the underlying
cloud SDK operations, and

• An SLA predictor that uses the outputs of these two
components to accurately predict an upper bound on the
response time of the web API.

We overview each of these components in the subsections
that follow, and then discuss the Cerebro workflow with an
example.

3.1 Static Analysis
This component analyzes the source code of the web API
(or some intermediate representation of it) and extracts a se-
quence of cloud SDK operations. We implement our analysis
for Java bytecode programs using the Soot framework [43].
Currently, our prototype analyzer considers the following
Java codes as exposed web APIs.

• classes that extend the javax.servlet.HttpServlet class (i.e.
Java servlet implementations)

• classes that contain JAX-RS @Path annotations, and
• any other classes explicitly specified by the developer in

a special configuration file.

Cerebro performs a simple construction and interproce-
dural static analysis of control flow graph (CFG) [1, 2, 29,
30] for each web API operation. The algorithm extracts all
cloud SDK operations along each path through the methods.
Cerebro analyzes other functions that the method calls, re-
cursively. Cerebro caches cloud SDK details for each func-
tion once analyzed so that it can be reused efficiently for
other call sites to the same function. Cerebro does not ana-
lyze third-party library calls, if any (which in our experience
typically do not contain cloud SDK calls). Cerebro encodes
each cloud SDK call sequence for each path in a lookup ta-
ble. We identify cloud SDK calls by their Java package name
(e.g. com.google.appengine.apis).

To handle loops, we first extract them from the CFG and
annotate all cloud SDK invocations that occur within them.
We annotate each such SDK invocation with an estimate on
the number of times the loop is likely to execute in the worst
case. We estimate loop bounds using a loop bound prediction
algorithm based on abstract interpretation [8].

As shown in the previous section, loops in these programs
are rare and, when they do occur, they are used to iterate over
a dataset returned from a database. For such data-dependent
loops, we estimate the bounds if specified in the cloud SDK
call (e.g. the maximum number of entities to return [18]). If
our analysis is unable to estimate the bounds for these loops,
Cerebro prompts the developer for an estimate of the likely
dataset size and/or loop bounds.

3.2 PaaS Monitoring Agent
Cerebro monitors and records the response time of individ-
ual cloud SDK operations within a running PaaS system.
Such support can be implemented as a PaaS-native feature
or as a PaaS application (web API); we use the latter in
our prototype. The monitoring agent runs in the background
with, but separate from, other PaaS-hosted web APIs. The
agent invokes cloud SDK operations periodically on syn-
thetic datasets and records timestamped response times in
the PaaS datastore for each cloud SDK operation. Finally,
the agent periodically reclaims old measurement data to
eliminate unnecessary storage. The Cerebro monitoring and
reclamation rates are configurable, and monitoring bench-
marks can be added and customized easily to capture com-
mon PaaS-hosted web API coding patterns.

In our prototype, the agent monitors the datastore and
memcache SDK interfaces every 60 seconds. In addition, it
benchmarks loop iteration over datastore entities to capture
the performance of iterative datastore reads for datastore
result set sizes of 10, 100, and 1000. We limit ourselves to
these values because the PaaS requires that all operations
complete (respond) within 60 seconds – so the data sizes
returned are typically small.

3.3 Making SLA Predictions
To make SLA predictions, Cerebro uses Queue Bounds Es-
timation from Time Series (QBETS) [33], a non-parametric
time series analysis method that we developed in prior work.
We originally designed QBETS for predicting the schedul-
ing delays for the batch queue systems used in high perfor-
mance computing environments but it has proved effective
in other settings where forecasts from arbitrary times series
are needed [7, 32, 46]. In particular, it is both non-parametric
and it automatically adapts to changes in the underlying time
series dynamics making it useful in settings where forecasts
are required from arbitrary data with widely varying charac-
teristics.

A QBETS analysis requires three inputs:

1. A time series of data generated by a continuous experi-
ment.

2. The percentile for which an upper bound should be pre-
dicted (p ∈ [1..99]).

3. The upper confidence level of the prediction (c ∈ (0,1)).
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QBETS uses this information to predict an upper bound
for the pth percentile of the time series. It does so by treat-
ing each observation in the time series as a Bernoulli trial
with probability 0.01p of success. Let q = 0.01p. If there
are n observations, the probability of there being exactly k
successes is described by a Binomial distribution (assuming
observation independence) having parameters n and q. If Q
is the pth percentile of the distribution from which the obser-
vations have been drawn, the equation

1−
k

∑
j=0

(
n
j

)
· (1−q) j ·qn− j (1)

gives the probability that more than k observations are
greater than Q. As a result, the kth largest value in a sorted
list of n observations gives an upper c confidence bound on
Q when k is the smallest integer value for which Equation 1
is larger than c.

More succinctly, QBETS sorts observations in a history
of observations, and computes the value of k that constitutes
an index into this sorted list that is the upper c confidence
bound on the pth percentile. The methodology assumes that
the time series of observations is ergodic so that, in the long
run, the confidence bounds are accurate.

QBETS also attempts to detect change points in the time
series of observations so that it can apply this inference
technique to only the most recent segment of the series that
appears to be stationary. To do so, it compares percentile
bounds predictions with observations throughout the series
and determines where the series is likely to have undergone
a change. It then discards observations from the series prior
to this change point and continues. As a result, when QBETS
starts, it must “learn” the series by scanning it in time series
order to determine the change points. We report Cerebro
learning time in our empirical evaluation in Subsection 4.4.

Note that c is an upper confidence level on pth percentile
which makes the QBETS bound estimates conservative.
That is, the value returned by QBETS as a bound predic-
tion is larger than the true pth percentile with probability
1− c under the assumptions of the QBETS model. In this
study, we use the 95th percentile and c = 0.01.

Note that the algorithm itself can be implemented effi-
ciently so that it is suitable for on-line use. Details of this
implementation as well as a fuller accounting of the statisti-
cal properties and assumptions are available in [7, 31–33].

QBETS requires a sufficiently large number of data
points in the input time series before it can make an ac-
curate prediction. Specifically, the largest value in a sorted
list of n observations is greater than the pth percentile with
confidence c when n >= log(c)/log(0.01p).

For example, predicting the 95th percentile of the API
execution time, with an upper confidence of 0.01 requires
at least 90 observations. We use this information to control
reclamation of monitoring data by PaaS agent.

Figure 4. Cerebro architecture and component interactions.

3.4 Example Cerebro Workflow
Figure 4 illustrates how the Cerebro components interact
with each other during the prediction making process. Cere-
bro can be invoked when a web API is deployed to a PaaS
cloud or at any time during the development process to give
developers insight into the worst-case response time of their
applications.

Upon invoking Cerebro with a web API code, Cerebro
performs its static analysis on all operations in the API. For
each analyzed operation it produces a list of annotated cloud
SDK invocation sequences – one sequence per program path.
Cerebro then prunes this list to eliminate duplicates. Dupli-
cates occur when a web API operation has multiple program
paths with the same sequence of cloud SDK invocations.
Next, for each pruned list Cerebro performs the following
operations:

1. Retrieve (possibly compressed) benchmarking data from
the monitoring agent for all SDK operations in each se-
quence. The agent returns ordered time series data (one
time series per cloud SDK operation).

2. Align retrieved time series across operations in time, and
sum the aligned values to form a single joint time series
of the summed values for the sequence of cloud SDK
operations.

3. Run QBETS on the joint time series with the desired p
and c values to predict an upper bound.

Cerebro uses largest predicted value (across path sequences)
as its SLA prediction for a web API operation. This process
(SLA prediction) can be implemented as a co-located service
in the PaaS cloud or as a standalone utility. We do the latter
in our prototype.

As an example, suppose that the static analysis results in
the cloud SDK invocation sequence < op1,op2,op3 > for
some operation in a web API. Assume that the monitoring
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agent has collected the following time series for the three
SDK operations:

• op1: [t0 : 5, t1 : 4, t2 : 6, ...., tn : 5]
• op2: [t0 : 22, t1 : 20, t2 : 21, ...., tn : 21]
• op3: [t0 : 7, t1 : 7, t2 : 8, ...., tn : 7]

Here tm is the time at which the mth measurement is taken.
Cerebro aligns the three time series according to timestamps,
and sums the values to obtain the following joint time series:
[t0 : 34, t1 : 31, t2 : 35, ...., tn : 33]

If any operation is tagged as being inside a loop, where
the loop bounds have been estimated, Cerebro multiplies
the time series data corresponding to that operation by the
loop bound estimate before aggregating. In cases where the
operation is inside a data-dependent loop, we request the
time series data from the monitoring agent for its iterative
datastore read benchmark for a number of entities that is
equal to or larger than the annotation and include it in the
joint time series.

Cerebro passes the final joint time series for each se-
quence of operations to QBETS, which returns the worst-
case upper bound response time it predicts. If the QBETS
predicted value is Q milliseconds, Cerebro forms the SLA as
“the web API will respond in under Q milliseconds, p% of
the time”. When the web API has multiple operations, Cere-
bro estimates multiple SLAs for the API. If a single value
is needed for the entire API regardless of operation, Cerebro
returns the largest predicted value as the final SLA (i.e. the
worst-case SLA for the API).

4. Experimental Results
To empirically evaluate Cerebro, we conduct experiments
using five open source, Google App Engine applications.

StudentInfo RESTful (JAX-RS) application for managing
students of a class (adding, removing, and listing student
information).

ServerHealth Monitors, computes, and reports statistics for
server uptime for a given web URL.

SocialMapper A simple social networking application with
APIs for adding users and comments.

StockTrader A stock trading application that provides APIs
for adding users, registering companies, buying and sell-
ing stocks among users.

Rooms A hotel booking application with APIs for register-
ing hotels and querying available rooms.

These web APIs use the datastore cloud SDK interface
extensively. The Rooms web API also uses the memcache
interface. We focus on these two interfaces exclusively in
this study. We execute these applications in the Google App
Engine public cloud (SDK v1.9.17) and in an AppScale
(v2.0) private cloud. We instrument the programs to collect
execution time statistics for verification purposes only (the

instrumentation data is not used to predict the SLAs). The
AppScale private cloud used for testing was hosted using
four “m3.2xlarge” virtual machines running on a private
Eucalyptus [34] cloud.

We first report the time required for Cerebro to perform
its analysis and SLA prediction. Across web APIs, Cerebro
takes 10.00 seconds on average, with a maximum time of
14.25 seconds for StudentInfo application. These times in-
clude the time taken by the static analyzer to analyze all the
web API operations and the time taken by QBETS to make
predictions. For these results, the length of the time series
collected by PaaS monitoring agent is 1528 data points (25.5
hours of monitoring data). Since the QBETS analysis time
depends on the length of the input time series, we also mea-
sured the time for 2 weeks of monitoring data (19322 data
points) to provide some insight into the overhead of SLA
prediction. Even in this case, Cerebro requires only 574.05
seconds (9.6 minutes) on average.

4.1 Correctness of Predictions
We first evaluate the correctness of Cerebro predictions. A
set of predictions is correct if the fraction of measured re-
sponse time values that fall below the Cerebro prediction is
greater than or equal to the SLA target probability. For ex-
ample, if the SLA probability is 0.95 (i.e. p = 95 in QBETS)
for a specific web API, then the Cerebro predictions are cor-
rect if at least 95% of the response times measured for the
web API are smaller than their corresponding Cerebro pre-
dictions.

We benchmark each web API for a period of 15 to 20
hours. During this time we run a remote HTTP client that
makes requests to the web APIs once every minute. The ap-
plication instrumentation measures and records the response
time of the API operation for each request (i.e. within the
application). Concurrently and within the same PaaS sys-
tem, we execute the Cerebro PaaS monitoring agent which
is an independently hosted application within the cloud that
benchmarks each SDK operation once every minute.

Cerebro predicts the web API execution times using only
the cloud SDK benchmarking data collected by Cerebro’s
PaaS monitoring agent. We configure Cerebro to predict an
upper bound for the 95th percentile of the web API response
time, with an upper confidence of 0.01.

QBETS generates a prediction for every value in the input
time series (one per minute). Cerebro reports the last one as
the SLA prediction to the user or PaaS administrator in pro-
duction. However, having per-minute predictions enables us
to compare these predictions against actual web API execu-
tion times measured during the same time period to eval-
uate Cerebro correctness. More specifically, we associate
with each measurement the prediction from the prediction
time series that most nearly precedes it in time. The correct-
ness fraction is computed from a sample of 1000 prediction-
measurement pairs.
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Figure 5. Cerebro correctness percentage in Google App
Engine and AppScale cloud platforms.

Figure 5 shows the final results of this experiment. Each
of the columns in Figure 5 corresponds to a single web API
operation in one of the sample applications. The columns are
labeled in the form of ApplicationName#OperationName, a
convention we will continue to use in the rest of the paper.

Since we are using Cerebro to predict the 95th percentile
of the API response times, Cerebro’s predictions are correct
when at least 95% of the measured response times are less
than their corresponding predicted upper bounds. According
to Figure 5, Cerebro achieves this goal for all the applica-
tions in both cloud environments.

The web API operations illustrated in Figure 5 cover a
wide spectrum of scenarios that may be encountered in real
world. StudentInfo#getStudent and StudentInfo#addStudent
are by far the simplest operations in the mix. They invoke
a single cloud SDK operation each, and perform a simple
datastore read and a simple datastore write respectively. As
per our survey results, these alone cover a significant por-
tion of the web APIs developed for the App Engine and
AppScale cloud platforms (1 path through the code, and
1 cloud SDK call). The StudentInfo#deleteStudent opera-
tion makes two cloud SDK operations in sequence, whereas
StudentInfo#getAllStudents performs an iterative datastore
read. In our experiment with StudentInfo#getAllStudents,
we had the datastore preloaded with 1000 student records,
and Cerebro was configured to use a maximum entity count
of 1000 when making predictions.

ServerHealth#info invokes the same cloud SDK opera-
tion three times in sequence. Both StockTrader#buy and
StockTrader#sell have multiple paths through the applica-
tion (due to branching), thus causing Cerebro to make mul-
tiple sequences of predictions – one sequence per path. The
results shown in Figure 5 are for the longest paths which
consist of seven cloud SDK invocations each. According to
our survey, 99.8% of the execution paths found in Google
App Engine applications have seven or fewer cloud SDK
calls in them. Therefore we believe that the StockTrader web
API represents an important upper bound case.

Figure 6. Average difference between predictions and ac-
tual response times in Google App Engine and AppScale.
The y-axis is in log scale.

Rooms#getRoomByName invokes two different cloud
SDK interfaces, namely datastore and memcache. Rooms#get-
AllRooms is another operation that consists of an iterative
datastore read. In this case, we had the datastore preloaded
with 10 entities, and Cerebro was configured to use a maxi-
mum entity count of 10.

4.2 Tightness of Predictions
In this section we discuss the tightness of the predictions
generated by Cerebro. Tightness is a measure of how closely
the predictions bound the actual response times of the web
APIs. Note that it is possible to perfectly achieve the correct-
ness goal by simply predicting overly large values for web
API response times. For example, if Cerebro were to pre-
dict a response time of several years for exactly 95% of the
web API invocations and zero for the others, it would likely
achieve a correctness percentage of 95%. From a practical
perspective, however, such an extreme upper bound is not
useful as the basis for an SLA.

Figure 6 depicts the average difference between predicted
response time bounds and actual response times for our sam-
ple web APIs when running in the App Engine and AppScale
clouds. These results were obtained considering a sequence
of 1000 consecutive predictions (of 95th percentile) and the
averages are computed only for correct predictions (i.e. ones
above their corresponding measurements).

According to Figure 6, Cerebro generates fairly tight SLA
predictions for most web API operations considered in the
experiments. In fact, 14 out of the 20 cases illustrated in
the figure show average difference values less than 65ms.
In a few cases, however, the bounds differ from the average
measurement substantially:
• StudentInfo#getAllStudents on both cloud platforms
• ServerHealth#info, SocialMapper#addComment, Stock-

Trader#buy and StockTrader#sell on App Engine
Figure 7 shows the empirical cumulative distribution

function (CDF) of measured execution times for the Stu-
dentInfo#getAllStudents on Google App Engine (one of the
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Figure 7. CDF of measured executions times of the Stu-
dentInfo#getAllStudents operation on App Engine.

extreme cases). This distribution was obtained by consider-
ing the application’s instrumentation results gathered within
a window of 1000 minutes. The average of this sample is
3431.79ms, and the 95th percentile from the CDF is 4739ms.
Thus, taken as a distribution, the “spread” between the aver-
age and the 95th percentile is more than 1300ms.

From this, it becomes evident that StudentInfo#getAll-
Students records very high execution times frequently. In
order to incorporate such high outliers, Cerebro must be
conservative and predict large values for the 95th percentile.
This is a required feature to ensure that 95% or more API
invocations have execution times under the predicted SLA.
But as a consequence, the average distance between the
measurements and the predictions increases significantly.

We omit a similar analysis of the other cases in the in-
terest of brevity but summarize the tightness results as in-
dicating that Cerebro achieves a bound that is “tight” with
respect to the percentiles observed by sampling the series
for long periods.

Another interesting observation we can make regarding
the tightness of predictions is that the predictions made in the
AppScale cloud platform are significantly tighter than the
ones made in Google App Engine (Figure 6). For nine out
of the ten operations tested, Cerebro has generated tighter
predictions in the AppScale environment. This is because
web API performance on AppScale is far more stable and
predictable thus resulting in fewer measurements that occur
far from the average.

The reason why AppScale’s performance is more stable
over time is because it is deployed on a set of closely con-
trolled and monitored cluster of virtual machines (VMs) that
use a private Infrastructure-as-a-Service (IaaS) cloud to im-
plement isolation. In particular, the VMs assigned to App-
Scale do not share nodes with “noisy neighbors” in our test
environment. In contrast, Google App Engine does not ex-
pose the performance characteristics of its multi-tenancy.
While it operates at vastly greater scale, our test applications
also exhibit wider variance of web API response time when
using it. Cerebro, however, is able to predict a correct and

tight SLAs for applications running in either platform: the
lower variance private AppScale PaaS, and the extreme scale
but more varying Google App Engine PaaS.

4.3 Duration of Prediction Validity
To be of practical value to PaaS administration, the dura-
tion over which a Cerebro prediction remains valid must be
long enough to allow appropriate remedial action when load
conditions change, and the SLA is in danger of being vio-
lated. In particular, SLAs must remain correct for at least the
time necessary to allow human responses to changing condi-
tions such as the commitment of more resources to web APIs
that are in violation or alerts to support staff that customers
may be calling to claim SLA breach. Ideally, each prediction
should persist as correct for several hours or more to match
staff response time to potential SLA violations.

However, determining when a Cerebro-predicted SLA
becomes invalid is potentially complex. For example, given
the definition of correctness described in Subsection 4.1, it
is possible to report an SLA violation when the running tab-
ulation of correctness percentage falls below the target prob-
ability (when expressed as a percentage). However, if this
metric is used, and Cerebro is correct for many consecutive
measurements, a sudden change in conditions that causes
the response time to persist at a higher level will not im-
mediately trigger a violation. For example, Cerebro might
be correct for several consecutive months and then incorrect
for several consecutive weeks before the overall correctness
percentage drops below 95% and a violation is detected. If
the SLA is measured over a year, such time scales may be
acceptable but we believe that PaaS administrators would
consider such a long period of time where the SLAs were
continuously in violation unacceptable. Thus we propose a
more conservative approach to measuring the duration over
which a prediction remains valid than simply measuring the
time until the correctness percentage drops below the SLA-
specified value.

Suppose at time t Cerebro predicts value Q as the p-th
percentile of some API’s execution time. If Q is a correct
and tight prediction, the probability of API’s next measured
response time being greater than Q is 1− (0.01p). If the
time series consists of independent measurements then the
probability of seeing n consecutive values greater than Q
(due to random chance) is (1−0.01p)n. For example, using
the 95th percentile, the probability of seeing 3 values in a
row larger than the actual percentile (purely due to random
chance) is (0.05)3 = 0.00012 or about 1 in 8333.

This calculation is conservative with respect to autocor-
relation. That is, if the time series is stationary but auto-
correlated, then the number of consecutive values above the
95th percentile that correspond to a probability of 0.00012
is larger than 3. For example, in previous work [33] using
an artificially generated AR(1) series, we observed that 5
consecutive values above the 95th percentile occurred with
probability 0.00012 when the first autocorrelation was 0.5,

9



Table 2. Prediction validity period distributions of differ-
ent operations in App Engine. Validity durations were com-
puted by observing 3 consecutive SLA violations. 5th and
95th columns represent the 5th and 95th percentiles of the
distributions respectively. All values are in hours.

Operation 5th Average 95th

StudentInfo#getStudent 7.15 70.72 134.43
StudentInfo#deleteStudent 2.55 37.97 94.37
StudentInfo#addStudent 1.45 26.8 64.78

ServerHealth#info 1.41 39.22 117.71
Rooms#getRoomByName 7.24 70.47 133.36
Rooms#getRoomsInCity 2.08 30.12 82.58

Table 3. Prediction validity period distributions of differ-
ent operations in AppScale. Validity periods were computed
by observing 3 consecutive SLA violations. 5th and 95th

columns represent the 5th and 95th percentiles of the dis-
tributions respectively. All values are in hours.

Operation 5th Average 95th

StudentInfo#getStudent 6.1 60.67 115.24
StudentInfo#deleteStudent 6.08 60.21 114.32
StudentInfo#addStudent 6.1 60.67 115.24

ServerHealth#info 6.29 54.53 108.14
Rooms#getRoomByName 6.07 59.18 112.28
Rooms#getRoomsInCity 1.95 33.77 84.63

and 14 when the first autocorrelation was 0.85. QBETS uses
a look-up table of these values to determine the number of
consecutive measurements above Q that constitute a “rare
event” indicating a possible change in conditions.

Each time Cerebro makes a new prediction, it computes
the current autocorrelation and uses the QBETS rare-event
look-up table to determine n: the number of consecutive
values that constitute a rare event. We measure the time
from when Cerebro makes the prediction until we observe
n consecutive measurement values above that prediction as
being the time duration over which the prediction is valid.
We refer to this duration as the validity duration. Tables 2
and 3 present these durations for Cerebro predictions in
Google App Engine and AppScale respectively.

From Table 2 the average validity duration for all 6 op-
erations considered in App Engine is longer than 24 hours.
The lowest average value observed is 26.8 hours, and that
is for the StudentInfo#addStudent operation. If we just con-
sider the 5th percentiles of the distributions, they are also
longer than 1 hour. The smallest 5th percentile value of 1.41
hours is given by the ServerHealth#info operation. This re-
sult implies that, based on our conservative model for de-
tecting SLA violations, Cerebro predictions made on Google

App Engine would be valid for at least 1.41 hours or more,
at least 95% of the time.

By comparing the distributions for different operations
we can conclude that API operations that perform a sin-
gle basic datastore or memcache read tend to have longer
validity durations. In other words, those cloud SDK op-
erations have fairly stable performance characteristics in
Google App Engine. This is reflected in the 5th percentiles
of StudentInfo#getStudent and Rooms#getRoomByName.
Alternatively operations that execute writes, iterative reads
or long sequences of cloud SDK operations have shorter
prediction validity durations.

For AppScale, the smallest average validity period of
33.77 hours is observed from the Rooms#getRoomsInCity
operation. All other operations tested in AppScale have av-
erage prediction validity periods greater than 54 hours. The
lowest 5th percentile value in the distributions, which is
1.95 hours, is also shown by Rooms#getRoomsInCity. This
means, the SLAs predicted for AppScale would hold correct
for at least 1.95 hours or more, at least 95% of the time.
The relatively smaller validity period values computed for
the Rooms#getRoomsInCity operation indicates that the per-
formance of iterative datastore reads is subject to some vari-
ability in AppScale.

4.4 Effectiveness of QBETS
In order to gauge the effectiveness of QBETS, we compare it
to a “naı̈ve” approach that simply uses the running empirical
percentile tabulation of a given joint time series as a predic-
tion. This simple predictor retains a sorted list of previous
observations and predicts the p-th percentile to be the value
that is larger than p% of the values in the observation his-
tory. Whenever a new observation is available, it is added to
the history and each prediction uses the full history.

Figure 8 shows the correctness measurements for the sim-
ple predictor using the same cloud SDK monitoring data
and application benchmarking data that was used in Sub-
section 4.1. That is, we keep the rest of Cerebro unchanged,
swap QBETS out for the simple predictor, and run the same
set of experiments using the logged observations. Thus the
results in Figure 8 are directly comparable to Figure 5 where
Cerebro uses QBETS as a forecaster.

For the simple predictor, Figure 8 shows lower correct-
ness percentages compared to Figure 5 for QBETS (i.e. the
simple predictor is less conservative). However, in several
cases the simple predictor falls well short of the target cor-
rectness of 95% necessary for the SLA. That is, it is unable
to furnish a prediction correctness that can be used as the
basis of an SLA in all of the test cases.

To illustrate why the simple predictor fails to meet the
desired correctness level, Figure 9 shows the time series of
observations, simple predictor forecasts, and QBETS fore-
casts for the Rooms#getRoomsInCity operation on Google
App Engine (the case in Figure 8 that shows lowest correct-
ness percentage).
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Figure 8. Cerebro correctness percentage resulting from the
simple predictor (without QBETS).

Figure 9. Comparison of predicted and actual response
times of Rooms#getRoomsInCity on Google App Engine.

In this experiment, there are a significant number of
response time measurements that violate the SLA given
by simple predictor (i.e. are larger than the predicted per-
centile), but are below the corresponding QBETS predic-
tion made for the same observation. Notice also that while
QBETS is more conservative (its predictions are generally
larger than those made by the simple predictor), in this case
the predictions are typically only 10% larger. That is, while
the simple predictor shows the 95th percentile to be ap-
proximately 40ms, the QBETS predictions vary between
42ms and 48ms, except at the beginning where QBETS is
“learning” the series. This difference in prediction, how-
ever, results in a large difference in correctness percentage.
For QBETS, the correctness percentage is 97.4% (Figure 5)
compared to 75.5% for the simple predictor (Figure 8).

5. Related Work
Our research leverages a number of mature research areas
in computer science and mathematics. These areas include
static program analysis, cloud computing, time series analy-
sis, and SOA governance.

The problem of predicting execution time SLAs of web
APIs is similar to worst-case execution time (WCET) anal-
ysis [12, 14, 30, 37, 45]. The objective of WCET analysis

is to determine the maximum execution time of a software
component in a given hardware platform. It is typically dis-
cussed in the context of real-time systems, where the de-
velopers should be able to document and enforce precise
hard real-time constraints on the execution time of programs.
In order to save time, manpower and hardware resources,
WCET analysis solutions are generally designed favoring
static analysis methods over software testing. We share sim-
ilar concerns with regard to cloud platforms, and strive to
eliminate software testing in the favor of static analysis.

Ermedahl et al designed and implemented SWEET [12],
a WCET analysis tool that make use of program slicing [37],
abstract interpretation [10] and invariant analysis [30] to de-
termine the loop bounds and worst-case execution time of a
program. Program slicing helps to reduce the amount of code
and program states that need to be analyzed by SWEET. This
is similar to our idea of extracting just the cloud SDK invo-
cations form a given web API code. SWEET uses abstract
interpretation in interval and congruence domains to identify
the set of values that can be assigned to key control variables
of a program. These sets are then used to calculate exact loop
bounds for most data-independent loops in the code. Invari-
ant analysis is used to detect variables that do not change
during the course of a loop iteration, and remove them from
the analysis thus further simplifying the loop bound estima-
tion. Lokuceijewski et al propose a similar WCET analysis
using program slicing and abstract interpretation [25]. They
additionally use a technique called polytope models to speed
up the analysis.

The corpus of research that covers the use of static analy-
sis methods to estimate the execution time of software appli-
cations is extensive. Gulwani, Jain and Koskinen used two
techniques named control-flow refinement and progress in-
variants to estimate the bounds for procedures with nested
and multi-path loops [19]. Gulwani, Mehra and Chilimbi
proposed SPEED [20], a system that computes symbolic
bounds for programs. This system makes use of user-defined
quantitative functions to predict the bounds for loops iterat-
ing over data structures like lists, trees and vectors. Our idea
of using user-defined values to bound data-dependent loops
(e.g. iterative datastore reads) is partly inspired by this con-
cept. Bygde [8] proposed a set of algorithms for predicting
data-independent loops using abstract interpretation and el-
ement counting (a technique that was partly used in [12]).
Cerebro incorporates minor variations of these algorithms
successfully due to their simplicity.

Cerebro makes use of and is similar to many of the execu-
tion time analysis systems discussed above. However, there
are also several key differences. For instance, Cerebro is fo-
cused on solving the execution time prediction problem for
PaaS-hosted web APIs. As we show in our characterization
survey, such applications have a set of unique properties, that
can be used to greatly simplify static analysis. Also, Cerebro
is designed to only work with web API codes. This makes
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designing a solution much more simpler but less general. To
handle the highly variable and evolving nature of cloud plat-
forms, Cerebro combines static analysis with runtime moni-
toring of cloud platforms at the level of SDK operations. No
other system provides such a hybrid approach to the best of
our knowledge. Finally, we use time series analysis [33] to
predict API execution time upper bounds with specific con-
fidence levels.

SLA management on service-oriented systems and cloud
systems has been throughly researched over the years. How-
ever, a lot of the existing work has focused on issues such
as SLA monitoring [6, 27, 36, 42], SLA negotiation [26, 47,
48], and SLA modeling [9, 39, 40]. Some work has looked
at incorporating a given SLA to the design of a system, and
then monitoring it at the runtime to ensure SLA compliant
behavior [21]. Our research takes a different approach from
such works, whereby it attempts to predict the performance
SLAs for a given web API. To the best of our knowledge,
Cerebro is the first system to predict performance SLAs for
web APIs developed for PaaS clouds.

A work that is similar to ours has been proposed by
Ardagna, Damiani and Sagbo in [4]. The authors develop
a system for early estimation of service performance based
on simulations. Given a STS model (Symbolic Transitions
System) of a service, their system is able to generate a simu-
lation script, which can be used to assess the performance of
the service. STS models are a type of finite state automata.
Further, they use probabilistic distributions with fixed pa-
rameters to represent the delays incurred by various opera-
tions in the service. Cerebro is easier to use than this system
because we do not require API developers to construct any
models of the web APIs. Also, instead of using probabilistic
distributions with fixed parameters, Cerebro uses actual his-
torical performance metrics of cloud SDK operations. This
enables Cerebro to generate more accurate results, that re-
flect the dynamic nature of the cloud platform.

There has also been prior work in the area of predicting
SLA violations [11, 24, 41]. These systems take an existing
SLA and historical performance data of a service, and pre-
dict when the service might violate the given SLA in the fu-
ture. Cerebro’s notion of prediction validity period has some
relation to this line of research. However, Cerebro’s main
goal is to make SLA predictions for web APIs before they
are deployed and executed. We believe that some of these
existing SLA violation predictors can complement our work
by providing API developers and cloud administrators in-
sights on when a Cerebro-predicted SLA will be violated.

6. Conclusions and Future Work
Web services and service oriented architecture encourage
developers to create new applications by composing existing
services via their web APIs. But such integration of services
makes it difficult to reason about the performance and other
non-functional properties of composite applications. To fa-

cilitate such reasoning, web APIs should be exported for use
by applications with strong performance guarantees (SLAs).

To this end, we propose Cerebro, a system that predicts
response time bounds for web APIs deployed in PaaS clouds.
We choose PaaS clouds as the target environment of our re-
search due to their rapidly growing popularity as a technol-
ogy for hosting scalable web APIs, and their SDK-based, re-
stricted application development model, which makes it eas-
ier to analyze PaaS applications statically.

Cerebro uses static analysis to extract the sequence of
cloud SDK calls made by a given web API code combined
with historical performance measurements of cloud SDK
calls to predict the response time of the web API. It employs
QBETS, a non-parametric time series analysis and forecast-
ing method, to analyze cloud SDK performance data, and
predict bounds on response time that can be used as sta-
tistical “guarantees” with associated guarantee probabilities.
Cerebro is intended for use both during development and de-
ployment phases of a web API, and precludes the need for
continuous performance testing of the API code. Further, it
does not interfere with the run-time operation (i.e. it requires
no application instrumentation at runtime) which makes it
scalable.

We have implemented a prototype of Cerebro for Google
App Engine public PaaS and AppScale private PaaS and
evaluate it using a set of representative and open source
web applications developed by others. Our findings indicate
that the prototype can determine response time levels that
correspond to specific target SLAs. These predictions are
also durable, with average validity times varying between
one and three days.

In the current design, Cerebro’s cloud SDK monitoring
agent only monitors a predefined set of cloud SDK opera-
tions. In our future work we wish to explore the possibil-
ity of making this component more dynamic, so that it au-
tomatically learns what operations to benchmark from the
web APIs deployed in the cloud. We also plan to investi-
gate further how to better handle data-dependent loops (it-
erative datastore reads) for different workloads. Further, we
plan to integrate Cerebro with EAGER, our API governance
system and policy engine for PaaS clouds, so that PaaS ad-
ministrators can enforce SLA-related policies on web APIs
at deployment-time.
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