
String Analysis for Side Channels with Segmented Oracles

Lucas Bang1, Abdulbaki Aydin1, Quoc-Sang Phan2, Corina Păsăreanu2, Tevfik Bultan1

1University of California, Santa Barbara, 2NASA Ames Research Center

ABSTRACT
A crucial problem in software security is the detection of side
channels. Information gained by observing non-functional
properties of program executions (such as execution time
or memory usage) can enable attackers to infer secret in-
formation (such as a password). We present an automated
approach based on symbolic execution, string analysis, and
model counting, for detecting and quantifying side-channels
in Java programs. In addition to computing information
leakage for a single run of a program, we also compute infor-
mation leakage for multiple runs for a type of side channels
called segmented oracles. In segmented oracles the attacker
is able to explore each segment of a secret (for example each
character of a password) independently. We present an ef-
ficient technique for segmented oracles that computes infor-
mation leakage for multiple runs using only the path con-
straints generated from a single run symbolic execution. Our
implementation uses the symbolic execution tool Symbolic
Path Finder (SPF), SMT solver Z3, and two model counting
constraint solvers LattE and ABC. Although LattE has been
used before for analyzing numeric constraints, in this paper,
we present an approach for using LattE for analyzing string
constraints. We also extend the string constraint solver ABC
for analysis of both numeric and string constraints, and we
integrate ABC in SPF, enabling quantitative symbolic string
analysis.

1. INTRODUCTION
Since computers are used in every aspect of modern life,

many software systems have access to secret information
such as financial and medical records of individuals, trade
secrets of companies and military secrets of states. Confi-
dentiality, a core computer security attribute, dictates that,
a program that manipulates secret information should not
reveal that information. This can be hard to achieve if an
attacker is able to observe different aspects of program be-
havior such as execution time and memory usage.

Side-channel attacks recover secret information from pro-
grams by observing non-functional characteristics of pro-
gram executions such as time consumed, number of mem-
ory accessed or packets transmitted over a network. In this
paper, we propose an automatic technique for side-channel
analysis. Our technique uses symbolic execution for the sys-
tematic analysis of program behaviors under different input
values. Furthermore, we use model counting [24, 3] over the
constraints collected with symbolic execution to quantify the
leakage of the detected side channels. We present special-
ized techniques for segmented oracle side channels in which

an attacker is able to explore each segment of a secret, for
example each character of a password, independently. Our
technique can answer questions such as “what is the prob-
ability of discovering a password in k runs” or “what is the
leakage (in the number of bits) after k runs” through side
channels.

The widespread use of web-based applications have re-
sulted in a greater need for analysis techniques targeted
at string manipulating programs to ensure better security.
However, classic testing approaches, such as guided black-
box and random testing are not capable of reliably detecting
malicious behaviors, simply because the domain of string in-
puts is too large. In contrast, symbolic execution can explore
multiple inputs all at once, through the systematic collec-
tion and solving of symbolic constraints. A key challenge
that we address in this work is to perform constraint solving
and model counting efficiently over a combination of string
and numeric constraints. Towards this end we investigate a
set of complementary techniques for symbolic quantitative
string analysis. We implemented these techniques in the
Symbolic PathFinder (SPF) tool [31].

Our contributions can be summarized as follows: 1) Single-
run side channel analysis using SPF that computes the in-
formation leakage in terms of Shannon entropy using prob-
abilistic symbolic execution and listeners that track the ob-
servable values such as execution time, file size or memory
usage. 2) Two types of multi-run side channel analysis for
segmented oracles based on a best-adversary model. First
approach composes the adversary model and the function
under analysis within a loop and conducts the multi-run
analysis on the composed system. However, this approach
leads to path explosion. We also present a second, more
efficient, approach for multi-run side channel analysis for
segmented oracles that only uses path constraints generated
for the single-run symbolic execution of the function. 3) We
extend SPF to enable analysis of Java programs that manip-
ulate strings using two approaches. One of them traces the
implementations of string manipulation functions and treats
strings as bounded arrays of characters that are represented
as bit-vectors, and checks satisfiability of path constraints
using the SMT solver Z3. The second approach generates
constraints in the theory of strings and uses the string con-
straint solver ABC. 4) We use two model counting constraint
solvers for computing information leakage. One of them is a
model counter for numeric constraints called LattE. It has
been used for analyzing numeric constraints in SPF before.
In this paper we extend it to analysis of string constraints
by viewing strings as arrays of characters. We also integrate

the model-counting string constraint solver ABC with SPF.
We further implement an extension to ABC that enables
model counting for numeric constraints. Using this exten-
sion of ABC we are able to do model counting for combi-
nations of numeric and string constraints. 5) We conduct
experiments on two side channel examples, demonstrating
the performance of different approaches.

2. SIDE CHANNEL ANALYSIS USING
SYMBOLIC EXECUTION

Consider a password-based authentication function. Pass-
word function has two inputs: 1) a password, which is secret,
and 2) a user input, which is public. The password function
should compare the password and the user input and return
true if the input matches the password and return false oth-
erwise. Password function should not leak any information
about the password if the input does not match.

public verifyPassword (char[] l){
for (int i = 0; i < h.length; i++) {

if (h[i] != l[i]) {
return false;

}
}
return true;

}

Figure 1: Password checking function F1.

public verifyPassword (char[] l){
matched = true;
for (int i = 0; i < h.length; i++) {

if (h[i] != l[i]) {
matched = false;

} else {
matched = matched;

}
}
return matched;

}

Figure 2: Password checking function F2.

Let us consider the two password checking functions F1

and F2 shown in Figure 1 and Figure 2. We assume that
functions F1 and F2 are executed on inputs h and l, (de-
noted as F1(h, l) and F2(h, l)) where h denotes the secret
(the password) and l denotes the public input that the func-
tion compares with the password.

The functions shown above only return true or false indi-
cating if the input (l) matches the secret (h). In order to do
side channel analysis, we also need to take other observables
(such as execution time or memory usage) into account. In
general, let us assume that function F (h, l) returns an ob-
servable value o which represents the observations of the
adversary after executing F (h, l). The observable value o
can be one of a set of observable values o ∈ O. We assume
that the set of observable values O partition the values of
the secret h to a set of equivalence classes. We also assume
that the observable values are noiseless, i.e., multiple execu-
tions of the program with the same input value will result
in the same observable value.

For the functions F1 and F2 above, let us use the execution
time as an observable. For function F1 this will result in
n + 1 observable values where n is equal to the length of
h, i.e., o ∈ {o0, o1, . . . on}, since function F1 will have a
different execution time based on the length of the common

prefix of h and l. If h and l have no common prefix, then
F1 will have the shortest execution time (let us call this
observable value o0) since the loop body will be executed
only once (assuming the password length is not zero). If h
and l have a common prefix of one character (and assuming
that password length is greater than or equal to two), then
F1 will have a longer execution time since the loop body
will be executed twice (let us call this observable value o1).
In fact, for each different length of the common prefix of
h and l, the execution time of F1 will be different. Let
observable value oi denote the execution time of F1 for the
common prefix of size i. Note that on corresponds to the
case where h and l completely match where n is the length
of the password.

Now, let us consider the observable values for F2. Note
that, the execution time of F2 is always the same, so there
is only a single observable value in terms of execution time.
Since the function F2 returns a public output (which is true
if h and l completely match, and false otherwise), we can
consider the public output as an observable. This results in
two observable values o ∈ {oF , oT } where oT corresponds to
the case where h and l completely match and oF corresponds
to the case that they do not match.

Side channel analysis can be used to answer following type
of questions: Are F1 and F2 are leaking information about
the secret, and, if so, how much? Based on the above discus-
sion, we can see that F1 is leaking information about h even
when h and l do not completely match. By observing the
execution time of F1, an adversary can deduce the length of
the common prefix of h and l.
F2 is also leaking information about h even when h and l

do not completely match: Attacker learns that h is not equal
to the value of l. However, the information leakage for F2

is pretty small compared to the information leakage by F1.
The question is can we formalize the amount of information
leakage and can we automatically compute it?

2.1 Entropy Computation Using Single Run
Symbolic Execution

Shannon entropy is a well-known information theoretic
concept for measuring the expected value of information con-
tained in a message. The observables produced by a function
F can be considered the messages that an adversary receives
by executing F . Since observables partition the secret value
h, they correspond to messages about the secret. Hence,
we can use the Shannon entropy to measure the amount of
information conveyed by each execution of function F , i.e.,
the amount of information leakage by the function F . We
can define the Shannon entropy of a function F as:

H(F) = −
∑
oi∈O

p(oi)× log2(p(oi))

where p(oi) is the probability of observing the value oi after
executing F .

In order to compute the Shannon entropy we need to com-
pute the probability of observing each observable value. We
can compute these probabilities using probabilistic symbolic
execution with model counting.

For the function F1, using symbolic execution, we can
automatically compute the path constraints that correspond
to each observable value:

• o0 : PC0 :: h[0] 6= l[0]

• o1 : PC1 :: h[0] = l[0] ∧ h[1] 6= l[1]

• o2 : PC2 :: h[0] = l[0] ∧ h[1] = l[1] ∧ h[2] 6= l[2]

• ...

• on : PCn :: h[0] = l[0] ∧ h[1] = l[1] ∧ h[2] = l[2] ∧ .. ∧
h[n− 1] = l[n− 1]

Note that, there are two causes for nondeterminism in the
behavior of F1: the value of h, and the value of l. Assuming
uniform distribution for both of these, we can compute the
probability p(oi) for each observable value oi using the above
path constraints and model counting.

Let D denote the input domain (i.e., the set of possible
values for h and l) and let |D| denote the size of the input
domain. We use |PC| to denote the number of solutions over
D that satisfy the path constraint PC. We can compute
|PC| using a model counting constraint solver [24, 3].

Assuming a uniform distribution for h and l the probabil-
ity of observing oi for each i is:

p(oi) = |PCoi |/|D|

where the probability of the input value matching the pass-
word h is p(on).

For function F2 there are only two observable values and
the corresponding path constraints are:

• oF : PCT :: ¬(h[0] = l[0]∧h[1] = l[1]∧h[2] = l[2]∧ ..∧
h[n− 1] = l[n− 1])

• oT : PCT :: h[0] = l[0] ∧ h[1] = l[1] ∧ h[2] = l[2] ∧ .. ∧
h[n− 1] = l[n− 1]

1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

1.25

Password Length

E
n
tr

o
p
y

(b
it

s)

F1

F2

Figure 3: Entropy after a single guess for functions
F1 and F2, for password length ranging from 1 to 10.

Figure 3 shows the Shannon entropy computed for F1 and
F2 as described above using probabilistic symbolic execution
and model counting. Note that as the size of the password
increases, the entropy gets very close to 0 for function F2.
So, for a reasonable sized password, F2 does not leak in-
formation. However, for F1 we observe that the informa-
tion leaked remains around 1 bit even if we keep increasing
the length of the password. Independent of the size of the
password, F1 leaks information about the first digit of the
password due to the timing side channel.

The analysis we presented above computes the amount of
information leaked by a single execution of a function. We
can also easily determine the amount of initial information
in the system by assuming that h is picked using a uniform
distribution from the domain Dh. Then the amount of in-
formation in the system initially is:

H(h) = −
∑

v∈Dh

1/|Dh| × log2(1/|Dh|) = log2(|Dh|)

An execution of the function leaks the amount of information
given by the Shannon entropy of the function H(F) and the
remaining entropy in the system is H(h)−H(F).

An interesting question to answer is the following: How
many tries would it take an adversary to figure out the pass-
word? We can try to estimate the attack sequence length
using the information leakage. When the amount of infor-
mation in the system reaches zero, then, we can conclude
that the adversary has figured out the password.

Based on the amount of initial information and the Shan-
non entropy for the function, we can try to estimate the
amount of runs it would take an adversary to determine the
secret. However, this analysis would not be accurate since
an adversary could learn from previous tries and could pick
the l values accordingly based on the earlier results. So,
except for the first run, the adversary would not pick the l
values with a uniform distribution from the domain of l. In
order to do a more precise analysis we need to model the ad-
versary behavior. We discuss how to do this for a particular
class of problems called segmented oracles in the following
section.

3. SEGMENTED ORACLES
Segmented oracle side-channels provide observations about

“segments” of the secret. For example, a segmented oracle
side-channel can provide an observable value (such as exe-
cution time) that enables an adversary to determine if the
first character of the secret value (for example a password)
matches to the public value (the input provided by the ad-
versary). In general, a segmented oracle provides a distinct
value for each matched segment (such as the matching the
first character in the password, matching the first 2 charac-
ters, the first 3 characters, etc.)

Note that for the function F1 shown in Figure 1, execution
time serves as a segmented oracle side channel. The function
terminates the execution immediately if it determines that
the first character of the secret does not match the input
and the execution time increases linearly with the number of
segments that match. I.e., by observing the execution time,
an adversary can figure out how many character of the secret
match the public input. This means that for the function
F1, execution time can be used as a segmented oracle side
channel.

Now, let us discuss the adversary model. We are assuming
that the adversary is running a function F multiple times
with different l values and is recording the corresponding
observables, while trying to figure out h. In order to simplify
our formal model, let us assume that, given h and l values,
F (h, l) returns an observable value o which represents the
observations of the adversary after executing F (h, l). In
segmented oracles the observable value o consists of a set
of values o ∈ {o0, o1, . . . on} where o0 denotes no segments
of the input (l) and secret (h) match, oi denotes i segments
of the secret match the input, and on denotes the secret
completely matches the input.

We call each execution of F a run. So, the adversary is
generating a sequence of l values to generate a run sequence.
We can formalize the adversary as a function A that takes
all the prior history as input (which is a sequence of tuples
where each tuple is a l value and the corresponding observ-
able for the execution of function F with that l value). Note
that h value is constant and does not change from one exe-
cution to the other.

We can model the whole system S = (A,F), where the
adversary A generates l values for multiple executions of the
function F in order to determine the secrete h, as follows:

procedure S = (A,F)

seq ← nil
repeat

l← A(seq)
o← F (h, l)
seq ← append(seq, 〈l, o〉)

until (o = on)

Given the system S = (A,F) we may want to compute
the probability of determining the secret after k runs, i.e.,
having |seq| = k when S terminates. Or, we may want to
compute the information leakage (i.e., the entropy) for k
runs.

One approach would be to analyze the system S with-
out restricting the adversary. However, this would take into
account behaviors such as the adversary trying the same l
value over and over again even though it does not match the
secret. When analyzing vulnerabilities of a software system,
what we have to focus on is the behavior of the best possible
adversary.

For the segmented oracles, it is possible to specify the best
adversary AB [16]. This adversary works as follows: Let
〈l1, o1〉, 〈l2, o2〉, . . . , 〈lk, ok〉 be the run history. Adversary
generates lk+1 for the k + 1st run as follows:

• If ok 6= ok−1 and ok = oi, then adversary constructs
lk+1 as follows: ∀j, 1 ≤ j < i : lk+1[j] = lk[j] (part
of l that already matched remains the same), lk+1[i] 6=
lk[i], (use a different value for the first part that did not
match in the last try) and rest of the lk+1 is randomly
generated.

• If ok = ok−1, then let m be the smallest number where
om = ok and let ok = om = oi, then the adversary con-
structs the lk+1 as follows: ∀j, 1 ≤ j < i : lk+1[j] =
lk[j] (part of l that already matched remains the same)
and ∀j,m ≤ j < k : lk+1[i] 6= lj [i] (use a different
value then the values that have already been tried for
the first part that does not match) and rest of the lk+1

is randomly generated.

Let Sk denote the execution of the system S = (AB , F)
where the function F is executed k times, i.e., |seq| = k. We
can ask the following question: What is the probability of
the adversary AB guessing the password in exactly k tries?

Note that, execution of Sk will generate observable se-
quences o1, o2, . . . , ok where for all 1 ≤ t ≤ k, ot = oi∧ot+1 =
oj ⇒ j ≥ i. I.e., since we are using the best adversary
model AB , the observable values in the sequence will be
non-decreasing. The adversary will never produce a worse
match than the one in the previous try. Another constraint
for the observable sequences is that if on appears in a se-
quence, then on is the last observable of the sequence since
S terminates when on is observed.

We can calculate the probability of determining the pass-
word in exactly k tries as the probability of generating the
observable sequences o1, o2, . . . , ol where l ≤ k, observable
values in the sequence are non-decreasing, and ol = on.

Let p(o1, o2, . . . , ok) denote the probability of Sk generat-
ing that particular observable sequence. Then we can com-

pute the entropy for Sk (i.e., the information leakage within
the first k runs) as follows:

H(Sk) = −
∑

o1,o2,...,ol∈SEQk

p(o1, o2, . . . , ol)×log2(p(o1, o2, . . . , ol))

where SEQk is the set of non-decreasing observable sequences
that can be generated by the first k iterations of S = (AB , F).
For every sequence o1, o2, . . . , ol ∈ SEQk: 1) l ≤ k, 2) the
observable values in the sequence are non-decreasing, 3) if
on appears in the sequence, then it is the last observable in
the sequence, and 4) if on does not appear in the sequence,
then l = k.

4. MULTI-RUN SIDE-CHANNEL ANALYSIS
FOR SEGMENTED ORACLES

In this section we present two approaches to multi-run
analysis of segmented oracles. The first approach is intuitive
and more general; it is applicable to any adversary model.
However, this approach requires the probabilistic symbolic
execution of an adversary model which executes the program
multiple times, and thus it suffers from the path explosion
problem. To address this problem, for the best adversary
model, we propose a more scalable approach with a novel
computation of the leakage which requires the probabilistic
symbolic execution on only one run of the program.

4.1 Multi-Run Symbolic Execution
Our first approach for multi-run side-channel analysis is

described with the following two steps. First, we create a
model of the attack scenario, explained in Section 3, where
an adversary can provide the low inputs, and execute the
program a number of time. Then, we use probabilistic sym-
bolic execution to explore all possible observations of the
model, and compute the probability for each observation.
Shannon entropy and channel capacity of the leaks are eas-
ily derived from the probabilities.

In this work, a model in our analysis is a Java bytecode
program, written as a driver for the program under test.
Since the secret h and the inputs of the adversary l1, . . . lk

are not known in advance, they are modeled by symbolic
variables in SE. Without any constraints on l1, . . . lk, this
is a model for a very naive adversary, who repeatedly tries
to guess the secret with random values, and learns nothing
from the previous attempts.

To model an adversary who gains information through
observing program executions and revises the input domain
accordingly, we use the assume-guarantee reasoning in SE
to impose the constraints on the inputs. We illustrate the
approach by implementing a particular adversary model.

4.1.1 The best adversary model
The procedure below depicts the template to implement

a driver modeling the best adversary described in section 3.

procedure S = (AB , F)
vars
s: the current segment of h being searched
b: the first time s is searched
o0, o1, . . . ok: observations of the adversary

begin
s← 1, b← 1, o0 ← 0
for all i ∈ [1..k] {

for all j ∈ [b..i) { assume (li[s] 6= lj [s]) }
oi ← F (h, li)
if (oi = |h|) { return }
if (oi > oi−1) {

for all j ∈ [i+ 1..k] {
for all n ∈ [s..oi] { assume (lj [n] = li[n]) }

}
s← oi + 1, b← i+ 1

}
}

end

Here an observation oi of the adversary indicates how
many segments in the low input matched with the secret.
The adversary is allowed to make k executions of F (h, l),
but she will stops early if all the segments are matched,
i.e. oi = |h|. The instruction assume, implemented by
the built-in API Debug.assume in SPF, is used to impose
constraints on the inputs.

The best adversary is characterized by two sets of assump-
tions. The first set of assumptions reflect the fact that,
for the segment being search s, the best adversary selects
an input different from the ones in the previous executions.
When the adversary discovers more segments of the secret,
i.e. when oi > oi−1, she keeps these segments for the inputs
of the following executions, and moves on to search for the
next segment. This is modeled by the second set of assump-
tions in the procedure.

4.1.2 Computation of leakage
In this approach, the computation of leakage does not

depend on any particular adversary model S = (A,F), i.e.
it can be applied to any model with any assumptions made
by the adversary, or even no assumptions at all.

For our analysis, we extend classical SE to keep track of
the assumptions ASM in a symbolic path. At a low level,
ASM is implemented with exactly the same data structure
as the path condition PC. When executing the instruction
assume(c), SE updates the path condition PC ← PC ∧ c,
and checks its satisfiability with a constraint solver. SE
advances to the next instruction if the updated PC is sat-
isfiable, and it backtracks otherwise. Our extension for SE
also updates ASM ← ASM ∧ c only when the updated PC
is satisfiable. Thus, there is no constraint solving overhead
for ASM .

We performs symbolic execution, with our extension, on
the model S = (A,F) to explore all possible observations.
Each observation of S is a sequence of observations of F :
−→oi = 〈o1, o2 . . . on〉 where 1 ≤ n ≤ k. For each −→oi , we also
obtain from SE the path condition PCi that leads to that
observation, and the assumptions ASMi on that path.

We denote byDh, D1, D2 . . . Dk the domains of h, l1, l2 . . . lk
respectively. The input space is then

D = Dh ×D1 ×D2 · · · ×Dk

If there is no assumptions on the low inputs, l1 can take
any value D1, and likewise for the rest l2, . . . lk. Hence, the
search space of the adversary is D, and the probability of
observing −→oi is computed by

p(−→oi) =
|PCi|
|D|

In the case the adversary has some knowledge about the
input, modeled by the assumptions, the revised domain of
−→oi is |ASMi|, and hence its probability is

p(−→oi) =
|PCi|
|ASMi|

Both |PCi| and |ASMi| are computed by model counting
tools integrated in probabilistic symbolic execution. We will
discuss in more details about these tools in later section.

4.2 Multi-Run Analysis Using Single-Run
Symbolic Execution

As shown in the previous section, we are able to compute
the probabilities of observation sequences by performing a
complete symbolic execution of a program which simulates
the adversary strategy of repeated guessing. However, per-
forming a complete symbolic execution over all iterations
of adversary behavior can become prohibitively expensive.
Therefore, we seek to avoid this expensive computation. In
this section, we describe how to compute the sequence prob-
abilities using symbolic execution and model counting from
only a single iteration of the adversary strategy, by taking
advantage of the segmented nature of observations which
reveal the secret.
Notation. Recall that the segments of the low (l) and high
(h) inputs are compared incrementally. The n segments of l
and h are denoted by l[0], . . . , l[n− 1] and h[0], . . . , h[n− 1],
respectively. We write h[i : j] for the “slice” of h from index
i to index j, and similarly for l. We let wi be the domain
size of l[i], or equivalently, the domain size of h[i], and we
write w = 〈w0, w1, . . . , wn−1〉 for the vector of these domain
sizes. We will write wi:j to denote the subvector of w of
indices i through j, and

∏
w for the product of all elements

of w.
Probability Computation. By performing a symbolic ex-
ecution of a single run of F we can determine each path
constraint PCi which corresponds to an observable oi:

oi : PCi ::

(l[i] 6= h[i]) ∧

(
i−1∧
j=0

h[j] = l[j]

)
if i < n

n−1∧
j=0

h[j] = l[j] if i = n

Due to the segmented nature of the comparison between
l and h, we can consider the size of the domain wi for each
segment, that is, the number of possible values to which
each segment can be assigned, independently. Then each
PCi determines a combinatorial restriction on the set of w.

• In the case of PCn where each h[i] = l[i], we have that
for any of the wi values for l[i], the value of h[i] is
constrained to a single value. Therefore, the product
of the domain sizes must be equal to |PCn|.

• For PCi (i < n), we have that h[j] = l[j] for j < i, and
so for any of the wi values for l[j], h[j] is constrained

to be a single value. Since, h[i] 6= l[i], for any of the
wi values for l[i], there are wi − 1 possible values for
h[i]. Finally for j > i there is no constraint on the
relationship between l[i] and h[i] and so there are wi

possible values for each of them.

The combinatorial argument above can be summarized by
the following system of equations:

{∏
w = |PCn|∏
w · (wi − 1) ·

∏
wi+1:n−1 = |PCi|

This system of equations can be solved for each wi via re-
verse substitution using the following recurrence:

wi =
|PCi|

|PCn| ·
∏

wi+1:n−1
+ 1

Once we have determined the domain sizes of the individ-
ual segments, we are in a position to compute the proba-
bility any particular observation sequence. Let p(−→o |w) be
the probability of observation sequence −→o given a vector
of segment domains w. In addition, we define w′i to be
the vector of domains constrained by PCi. That is w′i =
〈1, 1, . . . , wi− 1, wi + 1, . . . , wn〉. Then p(−→o |w) can be com-
puted recursively using the following logic:

• Base Case: if −→o = oi is a sequence of length 1, the
probability of oi is (

∏
w′i) / (

∏
w), or the number of

remaining possible inputs that are consistent with oi ::
PCi, out of the total number of inputs in the domain.

• Recursive Case: if −→o = 〈o1, o2, . . . ok〉 is a sequence
of length k we can think of it as o1 followed by a se-
quence of length k − 1. Then computing p(−→o |w) re-
duces to computing the probabilities of p(o1|w′i) and
p(〈o2, . . . , ok〉|w′i) and multiplying.

The above presented computation results in the same prob-
abilities that are computed by a full probabilistic symbolic
execution analysis of the adversary’s complete attack be-
havior. Given the probabilities, we can simply apply the
entropy formula. We have implemented both methods and
experimentally verified that they produce the same results.
However, the second method is significantly faster. We dis-
cuss this in the later section containing our experimental
results.

5. STRING CONSTRAINTS AND
MODEL COUNTING

In this section we discuss our extensions to SPF for string
analysis and model counting. Our work is motivated by the
extensive use of string manipulation in modern software ap-
plications. Some common reasons for using string manipula-
tion are: 1) creation of documents in HTML or XML format,
2) runtime code generation, 3) creation of queries for back-
end databases, 4) validation and sanitization of user input.
In order to analyze modern software systems it is necessary
to handle string constraints.

We define the set of string constraints using the gram-
mar shown in Figure 4 where C denotes the basic con-
straints, n denotes integer values, s ∈ Σ∗ denotes string

F → C | ¬F | F ∧ F | F ∨ F (1)

C → S = S (2)

| match(S, S) (3)

| contains(S, S) (4)

| begins(S, S) (5)

| ends(S, S) (6)

| I = I | I < I (7)

S → v | s (8)

| S.S | S | S | S∗
(9)

| replace(S, S, S) (10)

| substring(S, I, I) (11)

| charAt(I) (12)

| toString(I) (13)

I → v | n (14)

| I + I | I − I | I ∗ n (15)

| length(S) (16)

| indexOp(S, S) (17)

Figure 4: String Constraints

values, and v denotes string and integer variables. This con-
straint language can model complex string operations avail-
able in Java and in many modern programming languages
such as boolean matches(String), int indexOf(String, int),
String substring(int, int), String replaceAll(String, String).

5.1 Symbolic Execution with Strings
We experimented with two approaches for handling of

string operations in SPF: 1) Numeric encoding reduces string
operations to numeric constraints, 2) String encoding maps
string operations to string constraints.

All existing string solvers are limited in their capabilities
of handling mixed integer and numeric constraints. Many of
the current solutions to symbolic execution for strings sup-
port only a subset of such operations. The approaches to
model counting are even more limited. We therefore imple-
mented a numeric encoding approach in SPF that uses the
low-level Java implementations of the String classes and uses
models only for the native calls in these methods. This effec-
tively reduces all string operations to low-level numeric op-
erations over arrays of characters (representing the strings).
The low-level Java implementations of string operations can
thus be analyzed with SPF and the generated numeric con-
straints can be handled with available solvers such as Z3 [28].
Furthermore, off-the-shelf numeric model-counting proce-
dures for numeric constraints such as LattE [24] can be used.

This numeric encoding approach has the advantage that it
is robust and general (it can handle arbitrary combinations
of numeric and string constraints) but it can only analyze
symbolic strings of fixed length.

The second approach we implemented maps string oper-
ations directly to string constraints. For this approach we
built on SPF’s existing capabilities for symbolic execution
over strings [31]. SPF maintains an additional path con-
dition that encodes directly operations from Java String,
StringBuilder and StringBuffer APIs. The constraints main-
tained by SPF are built from string expressions described by
the grammar in Figure 4.

In this string encoding approach, SPF does not analyze
the implementations of the string operations. Instead it
builds string expressions based on the string operations (and

assumes the implementations are correct). For example,
when if(cmd.indexOf(’ ’)==-1) is executed with a sym-
bolic value s1 for cmd, the method indexOf is not actu-
ally executed inside SPF but rather a symbolic string ex-
pression is created which can later appear in the symbolic
string expressions and path conditions built by the analysis,
e.g. symbolic constraint s1.indexOf(’ ’)=-1 is added to
the string PC. We integrated the model-counting string con-
straint solver ABC to SPF to support this string encoding
approach.

5.1.1 Automata Based Constraint Solving
Automata Based model Counter (ABC) is an automata

based constraint solver that also supports model counting [3].
ABC was originally developed for string constraint solving.
In this paper, in order to support model counting both for
numeric and string constraints and their combinations, we
extended ABC to support numeric constraints. Below we
explain how ABC converts numeric and string constraints
to automata.

a

a, b
b

a

b

(a)

0 0 1
0,1,1

0 1
0,1

1
0

1
0

1
0

0
1

0 0 1
0,1,1

-1 0 1

(b)

Figure 5: Automata (a) for the string constraint
¬(x ∈ (ab)∗) ∧ length(x) ≥ 1 and (b) for the numeric
constraint x− y < 1.

String Constraints.
Given an automaton A, let L(A) denote the set of strings

accepted by A. Given a constraint F and a string variable
v, our goal is to construct a deterministic finite automaton
(DFA) A, such that L(A) = JF, vK where JF, vK denotes the
set of strings that make F evaluate to true when substituted
for the variable v in F .

Let us define an automata constructor function A such
that, given a string constraint F and a variable v, A(F, v) is
an automaton where L(A(F, v)) = JF, vK. Below we discuss
how to implement the automata constructor function A.

Let us first discuss Boolean operators. Given a constraint
¬F , in order to construct A(¬F, v) we can first construct
A(F, v) and use automata complement to constructA(¬F, v)
where L(A(¬F, v)) = Σ∗ − L(A(F, v)). For constraints
in the form F1 ∧ F2 and F1 ∨ F2, we can first construct
A(F1, v) and A(F2, v). Then we can construct A(F1∧F2, v)
and A(F1 ∨F2, v) using automata product, where L(A(F1 ∧
F2, v)) = L(A(F1, v))∩L(A(F2, v)) and L(A(F1 ∨ F2, v)) =
L(A(F1, v)) ∪ L(A(F2, v)).

Automata constructor A(C, v) for basic constraints C can
be implemented for each basic constraint type shown in Fig-
ure 4 as discussed in [3]. As an example, consider the string
constraint F ≡ ¬(x ∈ (ab)∗) ∧ length(x) ≥ 1 over the

alphabet Σ = {a, b}. In order to construct A(F, x), we first
construct A(x ∈ (ab)∗, x), and A(length(x) ≥ 1, x), and
then use automata complement and automata product op-
erations the obtain the resulting automaton shown in Fig-
ure 5(a).

A constraint F may have more than one variable. In that
case, we use the same algorithm describe above to construct
an automaton for each variable in F . If two variables ap-
pear in the same basic constraint, we do a projection for
each of them. In a multi-variable constraint, for each vari-
able v, we would get an over-approximation of the truth-set
A(F, v) ⊇ JF, vK. We can eliminate over-approximation by
solving the constraint iteratively. At each iteration, we ini-
tialize each A(F, v) to automaton that is obtained in the
previous iteration for the same v. We stop the iteration
when there is no more change in any A(F, v). Note that,
using multiple variables, one can specify constraints with
non-regular truth sets. For example, given the constraint
F ≡ x = y . y, JF, xK is not a regular set, so we cannot
construct an automaton precisely recognizing its truth set.
In that case, we put a bound on the number of iterations for
constraint solver and return an over-approximation of the
truth set when the bound is reached.

Numeric Constraints.
In order to handle numeric constraints in ABC, we im-

plemented the automata construction techniques for linear
arithmetic constraints on integers [5]. The approach we
use can handle arithmetic constraints that consist of lin-
ear equalities and inequalities (=, 6=, >,≥,≤, <) and logical
operations (∧,∨,¬).

Similar to string constraints, the goal is to create an au-
tomaton that accepts solutions to the given formula. How-
ever, for numeric constraints, it is necessary to keep relation-
ships between integer variables in order to preserve precision.
For example, given a numeric constraint such as 2x− y = 0,
we would like the automaton to recognize the tuples (x, y)
such that (0, 0), (1, 2), (2, 4), (3, 6), If we separate the set
of values for x and y and recognize the set 0, 1, 2, 3, . . . for x
and the set 0, 2, 4, 6, . . . for y, then we would get tuples such
as (2, 2), which are not allowed by the constraint 2x−y = 0.
To address this, we use multi-track automata which is a gen-
eralization of finite state automata. A multi-track automa-
ton accepts tuples of values by reading one symbol from each
track in each transition. I.e., given an alphabet Σ, a k-track
automaton has an alphabet Σk.

For numeric constraints, we use the alphabet Σ = {0, 1}.
The numeric automata accept tuples of integer values in
binary form, starting from the least significant digit.

We implement an automata constructor functionA for nu-
meric constraints, such that, given a numeric constraint F ,
A(F) is an automaton where L(A(F)) = JF K. Note that, for
numeric constraints, A(F) accepts tuples of integer values,
one for each variable in the constraint F . Each variable in
F is mapped to a unique track of the multi-track automaton
that we construct.

The automata constructor A for numeric constraints han-
dles the boolean operators ¬,∧,∨ the same way as the au-
tomata constructor for string constraints. Each basic nu-
meric constraint is in the form

∑n
i=1 ai · xi + a0 op 0, where

op ∈ {=, 6=, >,≥,≤, <}, ai denote integer coefficients and
xi denote integer variables. The automata construction for
basic numeric constraints relies on a basic binary adder state

machine construction [5]. The state machine starts from a
state labeled with the constant term a0. It reads the first bi-
nary digit of all the variables, computes the result of the sum
for the first digit and the carry. The next state is the state
that corresponds to the new carry. Using each digit and the
current carry, it is possible to compute the next carry which
define the transitions of the state machine. Accepting states
are determined based on the operation op. For example, if
the operation is =, then all the resulting digits should be
equal to 0 and the carry should also be 0. So the state 0 is
accepting and all transitions that result in a non-zero digit
go to the sink state. In order to handle negative values,
2’s-complement representation is used.

As an example, in Figure 5(b) we show the multi-track
automaton that accepts tuples of integer values that satisfy
the constraint x − y < 1 (the transitions are labeled with
the digit for variable x on top of the digit for variable y).

5.2 Model Counting
Model counting for numeric path conditions using Latte

has been implemented in our previous work [11]. As model
counting is expensive we perform several optimizations as
follows. First the path condition PC is partitioned into
independent components which can be solved separately:
PC = c1 ∧ c2 ∧ . . . cn, which means a variable x in a compo-
nent ci does not appear in any other components. Therefore
|PC| = Πi|ci|.

If the component ci is a set of linear integer constraints,
it is simplified and normalized further by using the Omega
library [1]. Latte [24] is then used on this normalized con-
straint to count the model of ci.

As we described above, ABC is an automata-based con-
straint solver that, give a constraint F constructs an au-
tomaton A(F) where L(A(F)) = JF K. Note that, |F | =
|L(A(F))|. So, in order to count the number of solutions
for a constraint F , we need to count the number of strings
accepted by A(F). Counting the number of accepted strings
by an automaton corresponds to counting the number of ac-
cepting paths [3]. For example, consider the automaton for
constraint F ≡ ¬(x ∈ (ab)∗) ∧ length(x) ≥ 1 shown in
Figure 5(a). In the language L(A(F)), we have zero strings
of length 0 (ε 6∈ L(A(F))), two strings of length 1 ({a, b}),
three strings of length 2 ({aa, ba, bb}), and so on.

Given an automaton A, consider its corresponding lan-
guage L(A). Let Li(A) = {w ∈ L(A) : |w| = i}, the
language of strings in L(A) with length i. Then L(A) =⋃

i≥0 Li(A). The cardinality of L(A) can be computed as

|L(A)| =
∑

i≥0 |Li(A)|.
Note that the number of strings accepted by an automaton

could be infinite in the presence of loops. In applications of
model counting (such as probabilistic symbolic execution)
a model counting query is accompanied with a bound that
limits the domain of the variable. For string variables this
is the length of the strings, whereas for numeric variables it
is the number of bits. These correspond to the length of the
accepted strings for our automata representation of string
and numeric constraints.

Computation of |L(A)| within a bound can be done by
constructing the adjacency matrix of the automaton based
on its transition relation, and then using matrix exponenti-
ation to compute the number of accepting paths. We first
add a new extra state to the automaton and connect each
accepting state to this new state with λ-transitions where λ

is a new padding symbol that is not in the alphabet of A.
The augmented DFA preserves both the language and count
information of A. From this augmented DFA we construct
the adjacency matrix T where matrix entry Ti,j corresponds
to the number of transitions from state si to state sj . Let
n+1 denote the new state that was added. We can compute
|Lm(A)| by computing the matrix Tm by matrix exponentia-
tion where |Lm(A)| = Tm

n+1,n+1. Moreover, we can compute∑
0≤i≤m |Li(A)| my modifying the matrix T to matrix by

adding a self-loop to the new state that was added. After
that modification

∑
0≤i≤m |Li(A)| = Tm

n+1,n+1.
Note that this approach works both for numeric constraint

and string constraint automata. Hence, using an automata-
based constraint solver provides a general approach to model
counting.

6. EXPERIMENTS
In order to validate the effectiveness of our methods, we

first evaluated our automata-based model counting constraint
solver ABC by comparing its counting results and running
time the those of the linear arithmetic model counter LattE.
Next we compare the efficiency of using multi-run symbolic
execution again single-run symbolic execution for comput-
ing the entropy ofter a sequence of observations. Lastly,
we have tested our side channel analysis on two well-known
examples: 1) the password checking function described in
Section 3 which is susceptible to a timing attack, and 2) a
compression function which contains a side channel based
on the size of the compressed output.

6.1 Model Counting Time Analysis
Symbolic Path Finder already contained an implementa-

tion of path constraint model counting using LattE. We inte-
grated ABC as an additional model counting path constraint
solver and compared the model counting results as well as
the running time. ABC and LattE produce identical model
counting results. To compare running time, we tested all
three as model counting methods for symbolic execution of
the password checking function. We compare the end-to-
end running time of performing symbolic execution, collect-
ing path constraints, and performing model counting on all
generated constraints in order to computing the informa-
tion leakage of a single guess by the adversary. We find that
the implementation using ABC is significantly faster than
the previously existing implementation that uses Latte. As
shown in Figure 6, for a fixed alphabet size of 4, we see that
the running time increases with the password length for both
ABC and LattE, and that the ABC Numeric implementa-
tion is significantly faster, with ABC String second fastest,
and the existing Latte implementation slowest.

However, we do not claim that ABC is faster than Latte.
ABC is implemented as a shared library in SPF allowing
for direct function calls to the model counter. On the other
hand, in order for SPF to pass constraints to Latte, they
are first preprocessed and simplified using the Omega library
and then saved to a set of files. Latte is then invoked on these
files and the model counts are parsed back into JPF. In order
to make any claims about the relative efficiency of ABC and
LattE we will need to do a comparison of the constraint
model counting capabilities directly. This is future work.

The remaining experiments were conducted using ABC
Numeric as the model counter, due to the relative execution
speed of the implementation with SPF.

0 5 10 15 20
0

2

4

6

Password Length

T
im

e
(s

)
LattE

ABC Numeric

ABC String

Figure 6: Time comparison for computing single
guess entropy using ABC and LattE.

1 2 3 4 5 6 7 8 9 10
0

20

40

Observation Sequence Length

R
u
n
n
in

g
T

im
e

(s
)

Single-run SE

Multi-run SE

Figure 7: Time comparison for multi-run SE and
single-run SE.

6.2 Single- and Multi-run Symbolic Execution
As described in Section 5, we have given two methods for

computing the entropy ofter the adversary makes k obser-
vations:

1. Perform a complete probabilistic symbolic execution
of adversary behavior for an adversary who observes a
sequence of outputs of the function F of length k, us-
ing model counting to compute the probability of any
observation sequence and applying the entropy calcu-
lation, as given in Section 5.1.

2. Perform symbolic execution for a single run of the func-
tion F , and use model counting to infer the multi-run
entropies using the method given in Section 5.2.

We tested these two methods and observed that they pro-
duces identical results. However, we should expect that per-
forming complete probabilistic symbolic execution should be
much more expensive than inferring the entropy from a sin-
gle run. We ran both analyses on the password checking
example, and indeed, we see in Figure 7 that the multi-run
analysis takes much longer, due to the exploration of many
more paths during symbolic execution.

6.3 Password Checker
We now present results on the timing side channel analysis

of the password checking function. We only present single
run analysis here, as we have just described that it is much
faster and produces the same results. We first describe re-
sults for a small example where we fix the alphabet size to 4
and the password length to 3. We suppose the the adversary
is able to make k guesses, and we compute the remaining en-
tropy and the information leakage for a range of k, as shown
in Figure 8. For a secret of length 3 with alphabet size 4,
there are 43 = 64 possible inputs for h giving of log2 64 = 6
bits for the initial entropy. We see that as the adversary

makes more guesses, the remaining entropy decreases from
6 to 0. Indeed, our analysis shows that the entropy is 0
for k ≥ 10. Symmetrically, we can see that the information
leakage increases from 0 to 6 as the adversary makes more
guesses, indicating that all information about the secret is
leaked after 10 guesses. Thus, we can conclude that the
adversary needs at most 10 guesses to fully determine the
secret.

In addition, we applied this analysis to a larger example
to demonstrate that our method scales. For a password
of length 10 and an alphabet of size 128, we incrementally
increased the guessing budget of the adversary in order to
determine that 15 guesses are required to reveal 1 bit of
information. This analysis took 135.34 seconds.

0 2 4 6 8 10
0

1

2

3

4

5

6

Observation Sequence Length

E
n
tr

o
p
y

(b
it

s)

Initial Entropy

Leakage

Remaining Entropy

Figure 8: Information leakage and remaining en-
tropy for password checking function.

6.4 Text Concatenation and Compression
The above analysis was presented in terms of a timing

side-channel attack. However, we are also able to auto-
matically analyze side channels that depend on the size of
an observable. One example such an attack is known as
“Compression Ratio Info-leak Made Easy” (CRIME). Con-
sider the sample code shown in Figure 9. The function
concatSAndCompress() accepts a low input low which is
controlled by the adversary as a parameter, concatenates it
with a secret high value high, and then uses the Lempel-Ziv
(LZ77) [39] compression algorithm on the resulting string.
We do not show the code for LZ77compress here, as it
requires approximately 60 lines of Java code.

public concatAndCompress (String low){
return LZ77compress(high.concat(low));

}

Figure 9: A function with a size-based side-channel.

The basic idea behind the attack is that if the adversary
provides a value for low such that low and high do not
have a common prefix, then there will be little compression.
However, if low and high do share a prefix, this will result
in a higher compression ratio. This is real-world vulnera-
bility that can be used to reveal secret web session tokens
to a malicious user by observing compressed network packet
size[need reference]. Such a user is able to control input
through, say, a web form, which is later concatenated with
session information and sent to the server. For instance, sup-
pose the secret value high is the text sessionkey:xb5du.
If the malicious user sets the value of low to be the text

string sessionkey:aaaaa he will observe less compression
than if sets low to be sessionkey:xb5da. In this way,
the user is able to make repeated guesses and incrementally
learn more information about prefixes of the secret. Thus,
the concatAndCompress() function acts as a segmented
oracle with a side channel on the size of the output.

We apply our analysis to concatAndCompress() and
we are able to compute the information leakage for a given
budget on the number of guesses used by the adversary.
Due to the complexity of the LZ77 algorithm, symbolic exe-
cution becomes more expensive than in the case of the pass-
word checking function, but we are still able to obtain re-
sults in a reasonable amount of time. We use the single
run symbolic execution method and we are able to deter-
mine that for a password of length 3 and alphabet size 4
that the concatAndCompress() function leaks all infor-
mation about the secret after 10 executions by the adver-
sary. The total running time of this analysis is 8.695 sec-
onds. We repeated this experiment using ABC String as
the model counter. The same experiment took 152.332 sec-
onds to complete, due to the complex nature of the string
operations contained in the LZ77 compression algorithm.

7. RELATED WORK
Side-channels attacks pose serious threats to software se-

curity and have received significant attention in previous
work [6, 20, 7, 10].

The pioneering work of Kocher [20] addresses timing at-
tacks against cryptographic systems. The work uses statisti-
cal techniques treating the attack as a signal detection prob-
lem where the signal consists of the timing variation due to
the target secret bit and “noise” results from measurement
inaccuracies and timing variations in the unknown secret
bits. Brumley and Boneh [6] further study timing attacks
against OpenSSL implementations and show how to extract
private keys using similar testing techniques over multiple
rounds of attacks on OpenSSL-based web servers running
on a machine on a local network.

CacheAudit [10] uses static analysis techniques of cache
side channels. CacheAudit takes as input a program binary
and a cache configuration, and it derives formal, quantitative
security guarantees for a comprehensive set of side-channel
adversaries, namely those based on observing cache states,
traces of hits and misses, and execution times.

Quantitative measurement of information leakage has been
an active research topic in the last four decades. Early work
in this topic [27] measured the number of tainted bits, not an
information-theoretic bound. Most previous work, e.g. [9,
4, 30, 19, 29], quantify the leakage in one run of the program
given a concrete value of low input.

Single-run analysis is addressed in [13] where bounded
model checking is used over the k-composition of a pro-
gram to determine if it can yield k different outputs. Leak-
Watch [8] estimates leakage in Java program based on sam-
pling program executions on concrete inputs.

Köpf and Basin [21] present a multi-run analysis based on
an enumeration algorithm (doubly-exponential in the num-
ber of attack steps). Mardziel et al. [26] generalizes the work
by considering probabilistic systems to account for secrets
that change over time.

In [33] a subset of these authors give a formulation of
multi-run side channel analysis using symbolic execution and
Max-SMT solving. The focus of that work is to synthesize

the worst case attack for arbitrary side channels, in the con-
text of non-adaptive attacks. In contrast here we assume
the worst case attack is known and it is adaptive, i.e. the
attacker changes the public input based on the observations
made so far. Further we give an efficient computation of
leakage tailored to side channels with segment oracles for
string manipulating programs.

In contrast to these previous work we use symbolic execu-
tion and model counting to target a particular form of side
channels namely with segmented oracles. For this class of
side channels we give an efficient computation of informa-
tion leakage that only uses the results of a single run anal-
ysis. Further none of this previous work addresses string
manipulating programs which is one of our main contribu-
tions here. We provide an implementation and comparison
of side channel analysis that uses different techniques for
string constraint solving and model counting. Our results
are useful beyond side channel analysis, e.g. for comput-
ing the reliability of string manipulating programs (under
pre-specified usage profiles) or for extending probabilistic
programming over string domains.

There has been significant amount of work on string con-
straint solving in recent years [14, 18, 15, 32, 12, 38, 22,
2, 23, 34]. None of these string constraint solvers pro-
vide model-counting functionality. SMC is the only other
model-counting string constraint solver that we are aware
of [25]. Our model counting approach is strictly more pre-
cise than the approach used in SMC. SMC cannot determine
the precise model count for some regular expression con-
straints, whereas our approach is precise for all regular ex-
pressions. More importantly, SMC cannot propagate string
values across logical connectives which reduces its precision
during model counting, whereas we can handle logical con-
nectives without losing precision. The set of constraints we
handle is also larger than the constraints that SMC can han-
dle. For example, we are able to handle complex string ma-
nipulation operations such as replace that SMC is not able to
handle. Our model-counting constraint solver, ABC, builds
on the automata-based string analysis tool Stranger [37, 35,
36], which was determined to be the best in terms of pre-
cision and efficiency in an empirical study for evaluating
string constraint solvers for symbolic execution of Java pro-
grams [17]. An earlier version of our model-counting con-
straint solver ABC was presented in [3]. In this paper 1)
we extended ABC to handle all string operations in Java, 2)
we extended ABC to handle numeric constraints and model
counting for numeric constraints, and 3) we integrated ABC
as a constraint solver and model-counter to SPF.

8. CONCLUSIONS
We presented a symbolic execution approach for side chan-

nel analysis. The approach not only detects side channels
but also quantifies the leakage of the secret information
through the side channels. This is achieved by computing
path probabilities using model counting over symbolic con-
straints. We illustrated our approach on side channels with
segmented oracles and we gave an efficient computation of
leakage over multiple attack steps. Our technique is capa-
ble of performing satisfiability checking and model counting
over complex constraints involving both string and numeric
operations. In the future we plan to extend our side-channel
analysis with segmented oracles in the presence of noisy ob-
servations.

9. REFERENCES
[1] Omega. http://www.cs.umd.edu/projects/omega/.

[2] P. A. Abdulla, M. F. Atig, Y. Chen, L. Hoĺık,
A. Rezine, P. Rümmer, and J. Stenman. String
constraints for verification. In Proceedings of the 26th
International Conference on Computer Aided
Verification (CAV), pages 150–166, 2014.

[3] A. Aydin, L. Bang, and T. Bultan. Automata-based
model counting for string constraints. In Proceedings
of the 27th International Conference on Computer
Aided Verification (CAV), pages 255–272, 2015.

[4] M. Backes, B. Kopf, and A. Rybalchenko. Automatic
Discovery and Quantification of Information Leaks. In
Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, pages 141–153,
Washington, DC, USA, 2009. IEEE Computer Society.

[5] C. Bartzis and T. Bultan. Efficient symbolic
representations for arithmetic constraints in
verification. Int. J. Found. Comput. Sci.,
14(4):605–624, 2003.

[6] D. Brumley and D. Boneh. Remote Timing Attacks
Are Practical. In Proceedings of the 12th Conference
on USENIX Security Symposium - Volume 12,
SSYM’03, pages 1–1, Berkeley, CA, USA, 2003.
USENIX Association.

[7] S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP
’10, pages 191–206, Washington, DC, USA, 2010.
IEEE Computer Society.

[8] T. Chothia, Y. Kawamoto, and C. Novakovic.
Leakwatch: Estimating information leakage from java
programs. In M. Kutylowski and J. Vaidya, editors,
Computer Security - ESORICS 2014 - 19th European
Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings,
Part II, volume 8713 of Lecture Notes in Computer
Science, pages 219–236. Springer, 2014.

[9] D. Clark, S. Hunt, and P. Malacaria. A static analysis
for quantifying information flow in a simple imperative
language. J. Comput. Secur., 15(3):321–371, Aug.
2007.

[10] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke.
Cacheaudit: A tool for the static analysis of cache side
channels. ACM Trans. Inf. Syst. Secur., 18(1):4, 2015.

[11] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability
analysis in symbolic pathfinder. In Proceedings of the
2013 International Conference on Software
Engineering, ICSE ’13, pages 622–631, Piscataway,
NJ, USA, 2013. IEEE Press.

[12] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C.
Rinard. Word equations with length constraints:
What’s decidable? In Proceedings of the 8th
International Haifa Verification Conference (HVC),
pages 209–226, 2012.

[13] J. Heusser and P. Malacaria. Quantifying information
leaks in software. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC
’10, pages 261–269, New York, NY, USA, 2010. ACM.

[14] P. Hooimeijer and W. Weimer. A decision procedure
for subset constraints over regular languages. In

Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 188–198, 2009.

[15] P. Hooimeijer and W. Weimer. Solving string
constraints lazily. In Proceedings of the 25th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 377–386, 2010.

[16] M. Joye. Basics of side-channel analysis. In
Cryptographic Engineering, chapter 13, pages 367–382.
2009.

[17] S. Kausler and E. Sherman. Evaluation of string
constraint solvers in the context of symbolic
execution. In Proceedings of the 29th ACM/IEEE
International Conference on Automated software
engineering (ASE), pages 259–270, 2014.

[18] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. Hampi: a solver for string constraints. In
Proceedings of the 18th International Symposium on
Software Testing and Analysis (ISSTA), pages
105–116, 2009.

[19] V. Klebanov, N. Manthey, and C. Muise. SAT-Based
Analysis and Quantification of Information Flow in
Programs. In Quantitative Evaluation of Systems,
volume 8054 of Lecture Notes in Computer Science,
pages 177–192. Springer Berlin Heidelberg, 2013.

[20] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’96, pages 104–113, London, UK, UK, 1996.
Springer-Verlag.

[21] B. Köpf and D. A. Basin. An information-theoretic
model for adaptive side-channel attacks. In P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, editors,
Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007,
pages 286–296. ACM, 2007.

[22] G. Li and I. Ghosh. PASS: string solving with
parameterized array and interval automaton. In
Proceedings of the 9th International Haifa Verification
Conference (HVC), pages 15–31, 2013.

[23] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and
M. Deters. A DPLL(T) theory solver for a theory of
strings and regular expressions. In Proceedings of the
26th International Conference on Computer Aided
Verification (CAV), pages 646–662, 2014.

[24] J. A. D. Loera, R. Hemmecke, J. Tauzer, and
R. Yoshida. Effective lattice point counting in rational
convex polytopes. Journal of Symbolic Computation,
38(4):1273 – 1302, 2004. Symbolic Computation in
Algebra and Geometry.

[25] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A
model counter for constraints over unbounded strings.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), page 57, 2014.

[26] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R.
Clarkson. Quantifying information flow for dynamic
secrets. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 540–555, 2014.

http://www.cs.umd.edu/projects/omega/

[27] S. McCamant and M. D. Ernst. Quantitative
information flow as network flow capacity. In
Proceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’08, pages 193–205, New York, NY, USA, 2008.
ACM.

[28] Microsoft Inc. Z3 SMT Solver.
http://z3.codeplex.com.

[29] Q.-S. Phan, P. Malacaria, C. S. Păsăreanu, and
M. d’Amorim. Quantifying Information Leaks Using
Reliability Analysis. In Proceedings of the 2014
International SPIN Symposium on Model Checking of
Software, SPIN 2014, pages 105–108, New York, NY,
USA, 2014. ACM.

[30] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S.
Păsăreanu. Symbolic Quantitative Information Flow.
SIGSOFT Softw. Eng. Notes, 37(6):1–5, Nov. 2012.

[31] C. S. Păsăreanu, W. Visser, D. Bushnell,
J. Geldenhuys, P. Mehlitz, and N. Rungta. Symbolic
PathFinder: integrating symbolic execution with
model checking for Java bytecode analysis. Automated
Software Engineering, pages 1–35, 2013.

[32] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for javascript. In Proceedings of the 31st
IEEE Symposium on Security and Privacy, 2010.

[33] (submitted under double-blind review). Multi-run
side-channel analysis using
Symbolic Execution and Max-SMT. 2016.

[34] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string
solver for vulnerability detection in web applications.
In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
1232–1243, 2014.

[35] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An
automata-based string analysis tool for php. In
Proceedings of the 16th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 154–157, 2010.

[36] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra.
Automata-based symbolic string analysis for
vulnerability detection. Formal Methods in System
Design, 44(1):44–70, 2014.

[37] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra.
Symbolic string verification: An automata-based
approach. In Proceedings of the 15th International
SPIN Workshop on Model Checking Software (SPIN),
pages 306–324, 2008.

[38] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A
z3-based string solver for web application analysis. In
Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), pages 114–124,
2013.

[39] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, May 1977.

http://z3.codeplex.com

	Introduction
	Side Channel Analysis Using Symbolic Execution
	Entropy Computation Using Single Run Symbolic Execution

	Segmented Oracles
	Multi-Run Side-Channel Analysis for Segmented Oracles
	Multi-Run Symbolic Execution
	The best adversary model
	Computation of leakage

	Multi-Run Analysis Using Single-Run Symbolic Execution

	String Constraints and Model Counting
	Symbolic Execution with Strings
	Automata Based Constraint Solving

	Model Counting

	Experiments
	Model Counting Time Analysis
	Single- and Multi-run Symbolic Execution
	Password Checker
	Text Concatenation and Compression

	Related Work
	Conclusions
	References

