
Cloud Application Performance Monitoring

Chandra Krintz, Rich Wolski, Hiranya Jayathilaka, and Wei-Tsung Lin

Computer Science Department
University of California, Santa Barbara

1. ABSTRACT
In this paper, we overview the design and implementa-

tion of a new approach to Application Performance Moni-
toring (APM) for Cloud Platforms-as-a-service (PaaS). Our
approach couples and integrates full stack performance mon-
itoring and analysis into the PaaS system itself for compre-
hensive introspection. To enable this, we employ lightweight
and intelligent sensors and agents and “pluggable” data anal-
ysis modules that facilitate service level objectives (SLOs)
for application response time, application-specific perfor-
mance anomaly detection and root cause analysis, and work-
load change point detection. We implement our APM by
combining the popular Elastic Stack with other common
PaaS services in a way that is portable so that it can be
integrated easily into public and private PaaS systems.

2. INTRODUCTION
Over the past decade Platform-as-a-Service (PaaS) has

become a popular approach used by enterprises, institutions,
and developers for deploying web-accessible applications in
the cloud [25]. The PaaS abstraction effectively hides ex-
ecution details such as physical resource allocation (CPU,
memory, disk etc), service ecosystem management, the op-
erating system, and the network configuration. PaaS clouds
also automate load balancing and resource scaling, and pro-
vide high availability and fault tolerance of PaaS compo-
nents and services. As a result, PaaS enables application
developers to focus on the programming and innovation as-
pects of their applications, without having to be concerned
about deployment and system issues.

The wide spread use of PaaS technology has intensified
the need for new techniques to monitor applications de-
ployed in a PaaS cloud. Monitoring is key for facilitating
effective auto-scaling and resource utilization, for maintain-
ing high availability, for managing multi-tenancy (multiple
applications sharing resources), and for identifying perfor-
mance bugs in both the applications and the PasS itself. To
extract sufficient operational insight in order to drive this

functionality requires that the performance data collected
be extensive and comprehensive. At the same time, collec-
tion of this data must be low-overhead and not perturb the
performance and behavior of the system significantly. Thus
the key to any successful Application Performance Monitor-
ing (APM) system must effectively navigate this tension and
its associated trade-offs.

Toward this end, we propose a new design for PaaS APMs
that can be easily integrated within most PaaS systems.
Our Cloud APM is not an external system that monitors
a PaaS cloud from the outside (which most APM systems
do today [22, 5, 7]). Rather, it integrates with the PaaS
cloud thereby leveraging and augmenting the existing com-
ponents of the PaaS cloud to provide comprehensive, full-
stack monitoring, analytics, and visualization capabilities.
We believe that this design choice is a key differentiator
over existing PaaS and cloud application monitoring sys-
tems because it enables us to take advantage of the scal-
ing, efficiency, services, fault tolerance, security, and control
features that PaaS systems currently offer, while providing
scalable, low overhead end-to-end monitoring and analysis
of cloud applications.

This paper overviews our Cloud APM architecture and de-
scribes its PaaS integration. We discuss the individual com-
ponents of our Cloud APM and how they interact. Where
appropriate, we also detail the concrete technologies (tools
and products) that we use to implement various components
of the Cloud APM, and provide our rationale and intuition
behind the use of these technologies.

2.1 Cloud APM Design and PaaS Integration
Like most system monitoring solutions, our Cloud APM

implements four primary functions: data collection, stor-
age, processing (which includes data analytics), and visu-
alization. Data collection is performed by various sensors
and agents that instrument the applications and the core
components of the PaaS cloud. Sensors in our system are
primitive in their capability to monitor a given component.
Agents in contrast are more complex and as a result are
able to intelligently adapt to changing conditions, making
dynamic decisions about what information to capture and
when and how to capture it. The implementation of sensors
and agents impact PaaS behavior and performance and thus
must be as lightweight and non-intrusive as possible while
capturing behavior and performance accurately. To achieve
this, we combine sampling (periodic, non-exhaustive mea-
surement) and intelligent placement of sensors and agents
throughout the software stack.



For storage and processing of performance data, we lever-
age the scalable, durable, and highly available distributed
services of the PaaS itself. In particular, our APM system
makes use of scalable key-value stores, caching systems, rela-
tional database systems, high performance search systems,
as well as batch and streaming analytics frameworks that
make up the service ecosystem of the PaaS. To keep our
APM portable across PaaS systems, each function defines
an application programming interface (API) through which
it interacts with the components and services of the PaaS.
To port our APM to a new PaaS, we rewrite the API oper-
ations to link to those of the PaaS.

Figure 1 illustrates our APM integration with a typical
PaaS stack. The left (dark blue) boxes depict the PaaS
architecture. Arrows indicate the flow of data and control
in response to application requests. At the lowest level of a
PaaS cloud is an infrastructure layer that consists of the nec-
essary compute, storage and networking resources that the
PaaS acquires and releases dynamically. The PaaS kernel
is a collection of managed, scalable services that implement
common functionality that most cloud applications (apps)
require for their functionality. Application developers im-
plement their innovations by composing these services. The
services of extant PaaS systems typically include data stor-
age and caching, queuing services, authentication and user
management services and many others.

Increasingly, PaaS clouds provide a managed set of APIs
(typically called a cloud software development kit (SDK))
that are used by developers to link functionality that the
PaaS provides into their applications. CloudSDKs (like other
similar PaaS proxy mechanisms) simplify, control, and load
balance access to PaaS services across applications and the
system [9, 20, 16].

Application servers execute (copies of) an application and
link the application code with and the underlying PaaS ker-
nel. The servers also isolate and sandbox application code
for secure, multi-tenant operation and to facilitate control
over and charging for service use. Load balancers (or fron-
tends) serve as the entry point to applications. They inter-
cept application requests, filter, and route them to appro-
priate application server instances for handling.

Our Cloud APM components integrate into a PaaS at
different points in the PaaS architecture. We depict APM
components in grey with their interactions denoted by the
black lines in the figure. The small grey boxes attached to
the PaaS components represent the sensors and agents we
employ to monitor components of the cloud platform (in-
cluding the application) to collect events and performance
data. Note that the APM collects data from all layers in
the PaaS stack (i.e. it performs full stack monitoring). The
rate at which measurements are taken is configurable and in
many cases adaptive (e.g. depending on the percent over-
head introduced by each agent). Moreover, our sensors and
agents batch operations and perform asynchronous commu-
nication to reduce performance perturbation and overhead.

From the frontend and load balancing layer, the APM
gathers information related to incoming application requests.
Our monitoring agents scrape HTTP server logs to extract
timestamps, source/destination addresses, response time, and
other HTTP message parameters. This information is read-
ily available for harvesting in most technologies employed
today as frontend technologies (e.g. Apache HTTPD, Ng-
inx). Additionally, our agents collect information pertaining

to active connections, invalid access attempts, and HTTP
errors.

Within the application server layer, APM sensors collect
application and runtime/container log data. Such data typ-
ically includes process level metrics indicating the resource
usage of the individual application instances. By target-
ing log files, we avoid the high overhead of application and
application server instrumentation. This can be added via
additional agents if the benefits they bring (e.g. more accu-
rate information) warrant their overhead.

Within the PaaS kernel, we instrument the entry points
of all PaaS services. We collect the caller and callee (target
operation) information, a timestamp, measured execution
time per operation invocation, and details about the request
including size and a hash of the arguments. This informa-
tion helps us distinguish different phases of PaaS execution
and to aggregate and characterize operation invocation in-
stances. We use these details to avoid instrumenting the ap-
plication for profiling purposes (enabling low overhead yet
accurate full stack monitoring).

From the cloud infrastructure, we collect information re-
lated to virtual machines, operating system containers and
processes, and the resource usage of individual physical host
machines. Most of our APM sensors at this level scrape
logs and query the Linux proc file system. We gather met-
rics about network usage, CPU and memory use, as well as
decisions about resource allocation and reclamation made
by resource management and orchestration frameworks (e.g.
Kubernetes [?], Mesos [?, ?], Yarn [?]).

Each of our sensors and agents collect information that en-
ables us to cluster related system activities and events across
the system. Given that PaaS systems commonly host web
applications and services, our APM design considers web
requests as events. Our system tags all incoming requests
with unique identifiers (a feature available to most modern
frontend technologies). We configure the system to attach
a request identifier to each HTTP request header, which is
visible to all components. We then configure the appropri-
ate APM agents to record these identifiers when recording
an event. Our data processing layer then clusters measure-
ments by request identifiers to facilitate end-to-end system
analysis for individual web requests.

Our data processing layer stores and provides scalable ac-
cess to this performance data. It also permits “plugging in”
of analysis routines that can be used to characterize appli-
cation and system behavior over time, to detect behavioral
and performance anomalies and workload changes, and to
identify opportunities for more effective resource utilization
and automatic scaling of resources, services, and applica-
tion instances. These analysis routines perform both infer-
ence and prediction and make use of statistical analysis li-
braries, batch processing services (MapReduce [?], Spark [?],
machine and deep learning systems [?, ?, ?], etc.), and
search/query systems [8, ?].

3. IMPLEMENTATION
We next outline some of the technologies and tools that

we have chosen to implement our APM architecture. After
a thorough evaluation of numerous existing system moni-
toring tools and platforms, we choose Elastic Stack [8] as
our APM foundation. Elastic Stack is an open source dis-
tributed system consisting of ElasticSearch, Logstash, and
Kibana, among other tools. We use ElasticSearch for APM



Figure 1: APM architecture.

data storage and processing. ElasticSearch supports scal-
able and highly available management of structured and
semi-structured data like that collected by our agents and
sensors, via automatic sharding and replication. Moreover,
ElasticSearch provides comprehensive data indexing, filter-
ing, aggregation, and query support, which greatly simplifies
the implementation of our high-level data processing algo-
rithms. Our APM interfaces to the ElasticSearch service
integrated within (if available) or external to the PaaS.

Logstash facilitates data extraction from a wide range of
standard log formats (e.g. Apache HTTPD access logs).
In addition, custom log formats are supported via simple
configuration. Kibana provides a powerful web-based, dash-
board with customizable data visualization. Kibana pro-
vides a wide range of charting, tabulation, and time series
support. Finally, ElasticSearch (our data storage and pro-
cessing engine) is easily integrated within popular “big data”
workflows such as Spark and MapReduce [11, 27, 28] for ad-
vanced analysis.

Our Cloud APM implementation extends and customizes
the default Elastic Stack deployment with agents and sen-
sors across a PaaS stack. In addition, we add custom data
processing and analytics components, as well as extensions
that tailor the visualization of data to the metrics under
interrogation (e.g. to make it easier to extract actionable
insights).

4. APM USE CASES
We next describe a series of concrete use cases that we

pursue with our PaaS APM. Our use cases employ the PaaS
performance data collected by our APM to provide new
PaaS features. In particular, we discuss how we use our
APM system to predict performance-based service level ob-
jectives (SLOs) for the web applications deployed in a PaaS
cloud, and how we detect performance anomalies across the
PaaS stack.

4.1 Application Response Time Prediction
Our goal with this APM use case is to to provide scalable

and accurate response time predictions that can be used
between a cloud provider and PaaS user as a per-application

SLO. To enable this, we combine static program analysis of
the hosted web applications and APM monitoring of the
PaaS cloud. Because we want to provide the prediction to
PaaS users when they are deploying the applications, we
perform this static analysis immediately prior to deploying
or running an application on the PaaS cloud (as part of the
PaaS application upload process) [13]. That is, we inject this
new analysis component into the PaaS deployment process
for cloud applications.

Our static analysis extracts, for each path through a func-
tion, the list of PaaS kernel calls (invocations and access to
PaaS services) that are made. To enable this, we employ
traditional techniques for abstract-interpretation-based loop
bounds analysis, branch prediction, and worst case execu-
tion time analysis. We do not instrument the application to
collect performance metrics at runtime (which would lead to
the introduction of significant overhead). Instead we record
these lists of calls in the APM system and monitor the ser-
vices (i.e. the targets of these calls) in the system (indepen-
dently from the application’s execution).

In particular, our system employs the performance data
from collected by the APM about PaaS kernel services. We
implement an analysis routine for the APM that extracts
a time series of operation execution times (response times)
for each of the services of interest (e.g. that are in the list
extracted from the static analysis of an application). We ap-
ply a forecasting methodology to calculate statistical bounds
on the response time of applications. These forecasted val-
ues are then used by the cloud provider as the basis for a
performance SLO [13, 14].

To make SLO predictions, we employ Queue Bounds Es-
timation from Time Series (QBETS) [23], a non-parametric
time series analysis method that we developed in prior work.
We originally designed QBETS for predicting the schedul-
ing delays of batch queue systems used in high performance
computing environments. We adapt it for use “as-a-service”
in our PaaS APM system to predict the response time of
deployed applications.

A QBETS analysis requires three inputs:

1. A time series generated by a continuous experiment,



2. The percentile for which an upper bound should be
predicted (p ∈ [1..99])

3. The upper confidence level of the prediction (c ∈ (0, 1))

QBETS uses this information to predict an upper bound
for the p-th percentile of the input time series. The predicted
value has a probability of 0.01p of being greater than or equal
to the next data point that will be added to the time series
by the continuous experiment. The upper confidence level
c serves as a conservative bound on the predictions. That
is, predictions made with an upper confidence level of c will
overestimate the true percentile with a probability of 1− c.
This confidence guarantee is necessary because QBETS does
not determine the percentiles of the time series precisely, but
only estimates them.

As an example of how this process works, assume a con-
tinuous experiment that periodically measures the response
time of a system. This results in a time series of response
time data. Suppose at time t, we run QBETS on the time
series data collected so far with p = 95 and c = 0.01. The
prediction returned by QBETS has a 95% chance of being
greater than or equal to the next response time value mea-
sured by our experiment after time t. Since c = 0.01, the
predicted value has a 99% chance of overestimating the true
95th percentile of the time series.

In our APM processing plug-in, QBETS takes the re-
sponse times for each PaaS kernel service we record in Elas-
ticSearch. Note that this data is collected continuously by
the PaaS monitoring agent, so QBETS is able to automat-
ically adapt to the changing conditions of the cloud. Given
the percentile for which an upper bound should be predicted
and the upper confidence level of the prediction, QBETS can
generate a conservative prediction.

Since an application may invoke multiple PaaS kernel ser-
vices (those in the list for each operation generated by our
static analysis at deployment time), the SLO predictor must
also to align and aggregate multiple time series together be-
fore engaging QBETS. For example, suppose an application
makes 3 PaaS kernel service invocations. The static analysis
component would detect the 3 target kernel services invoked
by the application. The SLO predictor then retrieves the
response time data pertaining to those 3 PaaS kernel ser-
vices from ElasticSearch. This information is retrieved as 3
separate time series. SLO predictor aligns the time series
data by timestamp, and aggregates them to form a single
time series where each data point is an approximation of
the total time spent by the application upon invoking PaaS
kernel services. Our analysis plug-in passes these aggregate
time series in as the input to QBETS to make application
response time predictions.

Note that our static analysis tool produces multiple se-
quences (per path) of PaaS service invocations for each ana-
lyzed application. The SLO predictor makes predictions for
each of the paths identified by the static analysis tool. Our
algorithm uses the maximum predicted value as the basis for
a response time SLO between the PaaS and the application
developer for the application under consideration.

Because PaaS service and platform behavior under load
changes over time, our predicted SLOs may become invalid
after a period of time. Our system detects SLO violations so
that they may be renegotiated by the cloud provider. When
such invalidations occur, the PaaS invokes our SLO analysis
routine in the APM to establish new SLOs.

The key assumption that makes our approach viable is
that PaaS-hosted web applications spend most of their ex-
ecution time on invoking PaaS kernel services. Previous
studies [13] have shown this to be true, with applications
spending over 90% of their execution time on PaaS kernel
service invocations.

We have integrated our Cloud APM within Google App
Engine (as an App Engine app and without monitoring be-
low the PaaS kernel) and have integrated it into the full
stack of the private open source PaaS AppScale [16]. We
use these platforms to perform extensive testing and em-
pirical evaluation of open source Java web applications that
execute over them [17, 14, 13]. We find that our system gen-
erates correct SLOs (predictions that meet or exceed their
probabilistic guarantees) in all cases. Moreover, our results
indicate that on average, the minimum duration for which
our SLOs remain valid for this PaaS is 12 days. Our results
also show that over a period of 112 days, the maximum num-
ber of times that any API consumer must renegotiate their
SLA is 6.

4.2 Performance Anomaly Detection
Our second APM use case is the detection of performance

anomalies. Numerous statistical models have been devel-
oped for detecting performance anomalies dynamically. How-
ever, most prior work focused on simple stand-alone appli-
cations. The goal of our work is to employ our PaaS APM
to provide anomaly detection for PaaS-based (distributed)
web applications.

To enable this, we implement multiple APM analysis plug-
ins called anomaly detectors. Anomaly detectors are pro-
cesses that periodically analyze the performance data for
each deployed application in the PaaS. Our system supports
multiple detector implementations, where each implementa-
tion uses a different statistical method to detect performance
anomalies. We configure detectors at the application level
making it possible for different applications to use 1 or more
different anomaly detectors. Each anomaly detector has an
execution schedule (e.g. run every 60 seconds), and a slid-
ing window of data that it processes at a time (e.g. from 10
minutes ago until now).

In addition to multiple statistical anomaly detectors, we
also implement a path anomaly detector. This detector lever-
ages the PaaS kernel call list for each request processing path
through an application – this is the same list that we employ
for our SLO use case, which we can extract via static anal-
ysis, and that we describe in the previous section. However,
in this work we use the data gathered from the PaaS kernel
instrumentation (i.e. PaaS kernel invocation data) to infer
the paths of execution for individual applications. This de-
tector computes the frequency distribution of different paths
and detects changes in this distribution over time. By doing
so the path anomaly detector identifies the occurrence of
new paths, most frequently executed paths, and significant
changes in the path frequency distribution.

When an anomaly detector finds an anomaly in appli-
cation performance, it sends an event to a collection of
anomaly handlers. The event encapsulates a unique anomaly
identifier, timestamp, application identifier and the source
detector’s sliding window that correspond to the anomaly.
Anomaly handlers are configured globally (i.e. each handler
receives events from all detectors), but they can be config-
ured to ignore certain types of events. Like for detectors,



our APM supports multiple anomaly handlers – e.g., one
for logging anomalies, one for sending alert emails, one for
updating the dashboard, etc.

Additionally, we provide two special anomaly handler im-
plementations: a workload change analyzer and a root cause
analyzer. The workload change analyzer analyzes the his-
torical workload trends of the applications to check if a par-
ticular anomaly is correlated with a recent change in the
workload. This is done via a suite of change point detection
algorithms on the workload data captured by the APM.

The root cause analyzer evaluates the historical trend of
PaaS kernel calls made by the application, and attempts
to determine the most likely components of the cloud (in
the PaaS kernel) that may have attributed to a detected
anomaly. To enable this we employ a combination of tech-
niques that include relative importance for linear regres-
sion [10] and percentile analysis [23].

Both the anomaly detectors and anomaly handlers work
with fix-sized sliding windows. They discard old data as
the sliding window moves along the time line. As such
the amount of state information these entities must keep
in memory has a strict upper bound. Doing so makes these
processes lightweight. Historical data can be persisted in
the APM for offline batch processing if needed.

5. RELATED WORK
Application Performance Monitoring has become a funda-

mental requirement for any cloud platform. To date, there
have been many monitoring frameworks designed and im-
plemented to support gathering and analyzing performance
data in order to draw insights about system behavior, per-
formance, availability, and faults [21, 24, 26, 29, 22, 5, 7].
While many support data collection, storage, analysis and
visualization to varying degrees, none of them are designed
to operate as part of a cloud platform. Their data storage
mechanisms (schema and query system), APIs and configu-
ration model are targeted at monitoring servers or applica-
tions as individual entities. They do not provide any support
for end-to-end tracing of request flows in a larger system.
Further, they are not easily extensible, they support only
basic metric calculations, and they provide no support for
correlation or root cause analysis.

Anwar et al studied the monitoring facilities currently
available in open source cloud platforms like OpenStack [1].
They showed that these frameworks use globally configured
sampling rates for collecting data, and provide poor support
for policy-based monitoring. We attempt to address these
limitations by making it possible to configure agents and de-
tectors at application level. In our system each can have its
own sampling rate and monitoring policy. This allows fine
tuning the monitoring support according to the needs of the
individual user applications. Our system can also support
changing sampling rates and monitoring policies for appli-
cations dynamically.

Dautov, Paraskasis and Stannett showed that a cloud
platform monitor can be organized as a sensor network [6].
They argue that cloud platforms are dynamic (continuous
change and evolution), distributed, have a high-volume of
applications and data, and heterogeneous. To handle this
complexity they propose instrumenting different components
of the cloud with data collecting sensors. Sensors route data
through a series of routing nodes into a central component
that is responsible for storage and analysis. We follow a

similar approach in which we instrument different layers of
the PaaS cloud with sensors that report data to a central
storage.

Corradi et al designed and implemented a integrated mon-
itoring framework for the CloudFoundry PaaS [4]. This so-
lution is organized into two modules – an availability mon-
itor, and a performance monitor. The availability monitor
uses periodic heartbeats to track the continuous operation
of deployed applications. The performance monitor uses
predefined application and database benchmarks to period-
ically evaluate application performance. While this solution
is able to detect service outages and significant performance
anomalies, it provides no support for workload change de-
tection or root cause analysis.

Magalhaes et al have designed a series of systems for
detecting performance anomalies in web applications [19].
Their work also addresses root cause analysis to some ex-
tent [18]. They use various statistical methods (correla-
tion analysis, dynamic time warping etc) to detect anoma-
lies in observed application performance. Then they look
for any correlations between detected performance anoma-
lies and workload level. If there are none, they attempt
to perform root cause analysis. However, their solution re-
quires instrumenting application code, so that backend API
calls (e.g. database calls) can be intercepted and timed.
To further enable this they also require implementing the
applications using an aspect-oriented programming (AOP)
framework. Provided that the application meets these re-
quirements, their system is able to pinpoint the bottleneck
backend API calls using a linear regression model.

We incorporate similar statistical methods into our APM
processing components, but unlike their system, our ap-
proach does not instrument application code nor does it
requires the application to be developed using a specific
framework such as AOP. Their root cause analysis method
also assumes that backend API call performance is indepen-
dent, and shows no correlations (i.e. no multicollinearity).
While this might be a reasonable assumption for classic web
application deployments, in the cloud where the underlying
platform is shared this assumption may not always hold. We
therefore improve on their root cause analysis technique by
using regression models that are resistant to multicollinear-
ity [10].

Change point analysis plays a significant role in detecting
changes in application performance and workload. This is
a well understood area of statistics and we use a number of
well known methods [15, 3, 2] in the implementation of our
APM processing plug-ins. A key differentiator of our APM
is our support multiple, concurrent statistical methods for
both anomaly detection, workload analysis and root cause
analysis thereby making it possible to compare, contrast,
and combine different techniques.

Performance anomaly detection and bottleneck identifi-
cation (PADBI) systems have been studied by a number of
researchers in the past [12]. Unfortunately, the scale, multi-
tenancy, complexity, dynamic behavior and the autonomy
of cloud platforms make PADBI ill suited for PaaS cloud
applications. By integrating monitoring and analysis within
a PaaS, we believe that our approach overcomes these chal-
lenges. It does so by taking advantage of the scalable and
fault tolerant services built into the platform and by having
full visibility into all the layers, components, and interac-
tions of the cloud platform.



6. CONCLUSIONS
As PaaS use grows in popularity, the need for technolo-

gies to monitor and analyze the performance and behavior
of deployed applications has become fundamental PaaS fea-
tures. However, most PaaS clouds available today do not
provide adequate support for lightweight, full-stack perfor-
mance data collection and analysis. Therefore, we propose
a new application platform monitoring (APM) system that
is able to take advantage of PaaS cloud features, while being
easy to integrate within them.

To provide comprehensive, full stack monitoring and an-
alytics, the APM we propose provides four major functions:
data collecting, data storage, data processing, and data vi-
sualization. We describe the organization of our APM func-
tions and identify the technologies that we use to implement
them scalably. We show how our APM can be integrated
into a PaaS system by customizing a set of API calls, and
detail two use cases for APM processing that facilitate infer-
ence and prediction. Such functionality can be used to guide
new PaaS services including response time SLOs at appli-
cation deployment time, system wide performance anomaly
and workload change point detection, and root cause anal-
ysis for application performance anomalies.

7. REFERENCES
[1] A. Anwar, A. Sailer, A. Kochut, and A. R. Butt.

Anatomy of cloud monitoring and metering: A case
study and open problems. In Asia-Pacific Workshop
on Systems, 2015.

[2] F. M. Bereznay and K. Permanente. Did something
change? using statistical techniques to interpret
service and resource metrics. In Int. CMG Conference,
pages 229–242, 2006.

[3] L.-M. L. Chung Chen. Joint estimation of model
parameters and outlier effects in time series. Journal
of the American Statistical Association, 88(421), 1993.

[4] A. Corradi, L. Foschini, S. Fraternale, D. J. Arrojo,
and M. Steinder. Monitoring applications and services
to improve the cloud foundry paas. In IEEE Symp. on
Computers and Communications, 2014.

[5] Datadog - Cloud-scale Performance Monitoring.
http://www.datadoghq.com [Accessed April 2016].

[6] R. Dautov, I. Paraskakis, and M. Stannett. Towards a
framework for monitoring cloud application platforms
as sensor networks. Cluster Computing, 17(4), 2014.

[7] Application Performance Monitoring and Management
- Dynatrace. http://www.dynatrace.com [Accessed
April 2016].

[8] Elastic Stack. https://www.elastic.co/products
[Accessed May 2016].

[9] App Engine - Run your applications on a fully
managed PaaS.
https://cloud.google.com/appengine [Accessed
March 2015].

[10] U. Groemping. Relative importance for linear
regression in r: The package relaimpo. Journal of
Statistical Software, 17(1), 2006.

[11] Hadoop and Elastic Stack.
https://www.elastic.co/products/hadoop [Accessed
May 2016].

[12] O. Ibidunmoye, F. Hernández-Rodriguez, and
E. Elmroth. Performance anomaly detection and

bottleneck identification. ACM Comput. Surv., 48(1),
2015.

[13] H. Jayathilaka, C. Krintz, and R. Wolski. Response
Time Service Level Agreements for Cloud-hosted Web
Applications. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, 2015.

[14] H. Jayathilaka, C. Krintz, and R. Wolski. Service-level
agreement durability for web service response time. In
2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), 2015.

[15] R. Killick, P. Fearnhead, and I. Eckley. Optimal
detection of changepoints with a linear computational
cost. Journal of the American Statistical Association,
107(500), 2012.

[16] C. Krintz. The appscale cloud platform: Enabling
portable, scalable web application deployment.
Internet Computing, IEEE, 17(2):72–75, March 2013.

[17] C. Krintz, H. Jayathilaka, S. Dimopoulos, A. Pucher,
R. Wolski, and T. Bultan. Cloud platform support for
api governance. In Cloud Engineering (IC2E), 2014
IEEE International Conference on, 2014.

[18] J. a. P. Magalhães and L. M. Silva. Root-cause
analysis of performance anomalies in web-based
applications. In Proceedings of the 2011 ACM
Symposium on Applied Computing, 2011.

[19] J. P. Magalhaes and L. M. Silva. Detection of
performance anomalies in web-based applications. In
Network Computing and Applications (NCA), 2010
9th IEEE International Symposium on, 2010.

[20] Microsoft windows azure.
http://www.microsoft.com/windowsazure/ [Accessed
March 2015].

[21] Nagios - The Industry Standard in IT Infrastrucure
Monitoring. http://www.nagios.com [Accessed April
2016].

[22] Application Performance Monitoring and Management
- New Relic. http://www.newrelic.com [Accessed
April 2016].

[23] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue
Bounds Estimation from Time Series. In International
Conference on Job Scheduling Strategies for Parallel
Processing, 2008.

[24] The OpenNMS Project. http://www.opennms.org
[Accessed April 2016].

[25] SearchCloudComputing, 2015. http:
//searchcloudcomputing.techtarget.com/feature/

Experts-forecast-the-2015-cloud-computing-market

[Accessed March 2015].

[26] Shinken Monitoring.
http://www.shinken-monitoring.org [Accessed
April 2016].

[27] Spark and Elastic Stack.
https://www.elastic.co/guide/en/elasticsearch/

hadoop/current/spark.html [Accessed May 2016].

[28] Streaming and Elastic Stack. http://thenewstack.io/
building-streaming-data-hub-elasticsearch-kafka-cassandra/

[Accessed May 2016].

[29] Zabbix - The Enterprise-class Open Source Network
Monitoring Solution. http://www.zabbix.com
[Accessed April 2016].


