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Abstract. Recently, symbolic program analysis techniques have been
extended to quantitative and probabilistic program analyses using model
counting constraint solvers. Given a constraint and a bound, a model
counting constraint solver returns the number of solutions for the given
constraint within the given bound. In this paper, we present a parameter-
ized model counting constraint solver for string and numeric constraints.
Given a constraint over strings and integers, we first generate automata
that accept all solutions to the given constraint. We limit the numeric
constraints to linear integer arithmetic, and for non-regular string con-
straints we over-approximate the solution set. Counting the number of
accepting paths in the generated automata solves the model counting
problem. Our approach is parameterized in the sense that, we do not
assume a finite domain size during automata construction, resulting in
a potentially infinite set of solutions, and our model counting approach
works for arbitrarily large bounds. We demonstrate the effectiveness of
our approach on a large set of string and numeric constraints extracted
from software applications.

1 Introduction

Quantitative program analysis arises in many contexts such as probabilistic anal-
ysis [9,12], reliability analysis [10] and quantitative information flow [3,6,22,23,
26]. Developing efficient model counting constraint solvers that can handle com-
plex and diverse set of constraints generated during program analyses is one
of the key problems in quantitative program analysis. A model counting con-
straint solver returns the number of solutions for a given constraint within a
given bound [2,5, 20].

In this paper, we present a model counting constraint solver that can handle
both numeric and string constraints. Given a constraint, we construct automata
that accept the solutions to the constraint. For numeric constraints, we focus
on linear integer arithmetic constraints, and the constructed automata accept
a binary encoding of the numbers that satisfy the given numeric constraint.
Our approach can handle interactions between numeric and string constraints
that arise due to operations such as length, which returns the numeric value of
the length of a string, and which can be used together with a numeric variable



in a constraint. In order to handle relational constraints, we use multi-track
automata that accept tuples of values. Since some string constraints can result
in non-regular sets, our automata construction approach over-approximates the
solution set in such cases. Hence, our model counting constraint solver provides
a sound upper-bound for the the number of solutions for a given constraint.

Our automata-based constraint solving approach reduces the model counting
problem to path counting. To count the number of values that satisfy the given
constraint within a given domain bound on the string and numeric variables, we
count the number of accepting paths in the automata within the path length
bound that corresponds to the given domain bound. We use techniques from
algebraic graph theory to solve the path counting problem for automata.

We implemented the techniques we present in this paper as part of a tool
called Automata Based model Counter (ABC) and we experimented on a large
set of constraints generated from symbolic execution of Java and JavaScript pro-
grams. We compared our approach with two model counting constraint solvers,
one for numeric constraints called LattE [5] and another one for string constraints
called SMC [20]. For numeric constraints our tool is as precise as LattE and as
fast. For string constraints our tool is faster than SMC and as precise for small
constraints, and it is slower than SMC but more precise for larger constraints.
Finally, our tool can handle constraints that contain combination of string and
numeric variables that neither LattE nor SMC can handle.

Related Work: There has been significant amount of work on string constraint
solving in recent years [1, 11, 13, 14, 16–18, 25, 28, 33]; however none of these
solvers provide model-counting functionality. Due to the importance of model
counting in quantitative program analyses, model counting constraints solvers
are gaining increasing attention. SMC is the only other model-counting string
constraint solver that we are aware of [20]. Our approach to model counting
is strictly more precise than SMC. SMC cannot propagate string values across
logical connectives which reduces its precision during model counting, whereas
we can handle logical connectives without losing precision. We can also handle
complex string operations such as replace that SMC cannot handle.

LattE [5] is a model counting constraint solver for counting the number of
integer solutions to a formula over linear integer arithmetic. LattE uses the
polynomial-time Barvinok algorithm [8] for integer lattice point enumeration.
LattE is not able to handle string constraints, so ABC is more expressive than
LattE.

While linear algebraic methods for counting paths in a graph are well es-
tablished, this paper is the first to implement those methods for the purpose
of parameterized model counting for relational string and integer constraints.
There has been earlier work on integer constraint model counting by counting
paths in numeric DFA [21], but this earlier approach can only count models when
there are finitely many models. An earlier version of ABC was presented in [2]
and was integrated with Symbolic PathFinder (SPF) and applied to side-channel
analysis in [6]. These earlier results do not handle combined numeric and string
constraints and do not count tuples of solutions for relational constraints.



ϕ −→ ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | (ϕ) | ϕZ | ϕS | > | ⊥
ϕZ−→ β = β | β < β | β > β

ϕS−→ γ = γ | γ < γ | γ > γ | match(γ, ρ) | contains(γ, γ) | begins(γ, γ) | ends(γ, γ)

β −→ vi | n | β + β | β − β | β × n | (β)
| length(γ) | toint(γ) | indexof(γ, γ) | lastindexof(γ, γ)

γ −→ vs | ρ | γ.γ | (γ) | reverse(γ) | tostring(β) | charat(γ, β) | substring(γ, β, β)
| replacefirst(γ, γ, γ) | replacelast(γ, γ, γ) | replaceall(γ, γ, γ)

ρ −→ ε | s | ρ.ρ | ρ|ρ | ρ∗ | (ρ)

Fig. 1. Constraint language grammar

In this paper, we extend these earlier results on model counting with the
following contributions: 1) an extended constraint language that is more expres-
sive than constraint languages supported by earlier model counting constraint
solvers (Section 2), 2) handling of relational string constraints using multi-track
automata (Section 3), 3) handling of mixed string and integer constraints using
multiple automata (Section 3.3), 4) a technique for extracting length constraints
from binary automata (Section 3.3), 5) model counting for tuples of variables
(Section 4), 6) heuristics for constraint manipulation that significantly improve
the precision and the performance (Section 5), and 7) an extensive experimental
evaluation (Section 6).

2 Constraint Language

We present a core string constraint language for representing string and numeric
constraints that are generated during program analysis. We define our constraint
language using the grammar shown in Fig. 1, where ϕ denotes a formula, β
denotes an integer term, γ denotes a string term, ρ denotes a constant regular
expression, vi denotes an integer variable, vs denotes a string variable, > and ⊥
denote constants true and false, and n denotes an integer constant. We assume
Σ denotes the set of all characters (i.e., the alphabet for strings), ε denotes the
empty string, and s ∈ Σ∗ denotes a string value. A character is a string that has
length one. The string operations “.”, “|”, “∗” correspond to regular expression
operations concatenation, alternation, and Kleene closure, respectively. < and
> operations on string terms correspond to lexicographical string comparisons.

A mixed term refers to 1) an integer term that contains string terms as
parameters or 2) a string term that contains integer terms as parameters. A
mixed constraint refers to a formula that contains one or more mixed terms.

Let |s| denote the length of string s; i.e., length(s) = |s|. The semantics of
some of the string operations are shown in Table 1, where t, v, u are string values,
i, j are integer values and p is a regular expression where L(p) denotes the set of
strings that match p. We designed this core language to be rich enough to capture
common constraints from modern languages such as Java and PHP. String



Table 1. Example string operation definitions

match(v, p)⇔ v ∈ L(p) contains(v, t)⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2
begins(v, t)⇔ ∃s ∈ Σ∗ : v = ts ends(v, t)⇔ ∃s ∈ Σ∗ : v = st

(indexof(v, t) = 0⇔ t = ε) ∧ (indexof(v, t) = −1⇔ ¬contains(v, t)) ∧
(indexof(v, t) = n⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2 ∧ ¬contains(s1, t) ∧ n = |s1|)

charat(v, i) = t⇔ ∃s0, s1, . . . , sn ∈ Σ : v = s0s1 . . . sn ∧ 0 ≤ i ≤ n ∧ t = si
substring(v, i, j) = t⇔ ∃s1, s2 ∈ Σ∗ : v = s1ts2 ∧ |s1| = i ∧ 0 ≤ i ≤ |v| ∧ |t| = j − i

(replacefirst(v, t, u) = v ⇔ ∀s1, s2 ∈ Σ∗ : ¬match(v, s1ts2)) ∧
(replacefirst(v, t, u) = s⇔ ∃m, s1, s2 ∈ Σ∗ : v = s1ms2 ∧match(m, t) ∧ (s1 = ε ∨

(∀s3 ∈ Σ∗, s4 ∈ Σ+ : s1 = s3s4 ∧ ¬match(s3, t) ∧ ¬match(s4m, t))) ∧
(s2 = ε ∨ (∀s5 ∈ Σ+, s6 ∈ Σ∗ : s2 = s5s6 ∧ ¬match(ms5, t))) ∧ s = s1us2))

operations that are not directly available in our constraint language may be
implemented using existing ones. For instance, one can define a generic left trim
as ltrim(v, p) = s⇔ ((¬begins(v, p)∧s = v)∨(begins(v, p)∧s = replacefirst(v, p, ε))) .

3 Automata-based Constraint Solving

We use automata-based constraint solving, where the truth set of a formula ϕ
is represented as the language of a multi-track deterministic finite automaton
(DFA). Given a formula ϕ, our goal is to construct an automaton A, such that
L(A) = JϕK, i.e., for any (x1, . . . , xn) ∈ JϕK, there exists w ∈ L(A) such that
w1 = x1, . . . , wn = xn (where wi denotes the ith track of w) and vice versa.
Given a formula, such an automaton may not exist since some string constraints
can have non-regular truth sets [32]. Our constraint solver is sound in the sense
that it provides an over-approximation of the solution set (JϕK ⊆ L(A)) when
the solution set can not be represented precisely.

Let ω be a formula or a term or a multi- track DFA, V(ω) denotes the set
of free variables in ω. We define the operation π on automata such that given
an automaton A and a target variable set V , π(A, V ) applies the automata
projection operation for ∀v ∈ V(A) \ V , and it applies the automata extend
operation for ∀v ∈ V \ V(A) to get a final automaton where V(A) = V . Given
an automaton A as a solution to a formula ϕ where L(A) = JϕK and V(A) =
{v1, . . . , vn}, and V = {v1, . . . , vn−1}, the result of π(A, V ), where we project
onto all variables but vn, is an automaton such that L(π(A, V )) = J∃vn.ϕK. Note
that projecting away a variable may result in a non deterministic automaton;
the implementation of π operation applies a determinization step after each
projection to get a deterministic automaton. Similarly, given an automaton A as
a solution to a formula ϕ where L(A) = JϕK and V(A) = {v1, . . . , vn−1}, and V =
{v1, . . . , vn}, the result of π(A, V ), where we extend the alphabet as Σn−1 → Σn,
is an automaton such that L(π(A, V )) = {(x1, . . . , xn) | (x1, . . . , xn−1) ∈ JϕK}.

The automata constructor function A(ϕ) (Algorithm 1) returns an automa-
ton such that JϕK ⊆ L(A(ϕ)). Given a formula ϕ, function A recursively con-
structs automata for sub-formulae of ϕ by using a post order traversal of the



Algorithm 1 Automata constructor: A(ϕ)

1: if ϕ ≡ ϕ1 ∧ ϕ2 then return Refine(ϕ, π(A(ϕ1),V(ϕ)) ∩ π(A(ϕ2),V(ϕ)))
2: else if ϕ ≡ ϕ1 ∨ ϕ2 then return π(A(ϕ1),V(ϕ)) ∪ π(A(ϕ2),V(ϕ))
3: else if ϕ ≡ ϕS or ϕ ≡ ¬ϕS then return AS(ϕ,A) . V(A) = V(ϕS) ∧ L(A) = Σ∗

4: else if ϕ ≡ ϕZ or ϕ ≡ ¬ϕZ then return AZ(ϕ,A) . V(A) = V(ϕZ) ∧ L(A) = Σ∗

5: else if ϕ ≡ ¬ϕ then return A(ToNegNormForm(ϕ)) . push negation inwards
6: end if

syntax tree of the formula. A calls the AS and AZ functions for constructing
automata for string and numeric constraints, respectively. AS and AZ take an
automaton characterizing the set of values for the variables appearing the in the
formula as input. Initially, all variables are unconstrained. The result of intersec-
tion operation is refined using the Refine function for two reasons: 1) to increase
the precision by propagating the constraints that cannot be solved precisely, and
2) to propagate the effects of the mixed constraints between integer variables and
string variables. We discuss algorithms of AS, AZ, and Refine functions in the
following sections.

3.1 String Constraint Solving

String automata constructor function AS (Algorithm 2) constructs an aligned
multi-track DFA [29] for string constraints in our language given a string formula
ϕS and an automaton A as initial values for the free variables in the formula.
First, it constructs automata for the terms appearing in the formula using Aterm

function. Next, an automaton is constructed for the string operation (sop) based
on the operation semantics. Our string constraint language allows complex string
formulae for which we may not be able to construct a precise multi-track DFA
that captures the exact solution set. In such cases, we over approximate the
solution set in order to guarantee soundness. Negations of string constraints are
treated as a special operation to avoid under-approximation. Asop generates an
over approximated solution set for the negated string constraints if it cannot
be constructed precisely. Table 2 presents example automata constructions for
Asop and Asop functions given the automata constructed for the parameters. Au-

Algorithm 2 String automata constructor: AS(ϕ,A)

1: if ϕ ≡ γ1 sop γ2 then . sop ∈ {=, <,>,match, contains, begins, ends}.
2: A← Asop(Aterm(γ1, A),Aterm(γ2, A)) . e.g., see Table 2.
3: else if ϕ ≡ ¬(γ1 sop γ2) then
4: A← Asop(Aterm(γ1),Aterm(γ2)) . e.g., see Table 2.
5: end if
6: if V(A) 6= V(ϕ) then . transform automaton to represent variables in V(ϕ).
7: A← π(Aterm′(π(A, {vγ1}), γ1),V(ϕ)) ∩ π(Aterm′(π(A, {vγ2}), γ2),V(ϕ))
8: end if
9: return A



Table 2. Example automata constructions of Asop and Asop

A=(γ1, γ2): returns A where L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 = s2}.
A<(γ1, γ2): returns A where L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 < s2}.
Amatch(γ, ρ): returns A where L(A) = {s | s ∈ L(Aγ) ∧ s ∈ L(Aρ)}.
Abegins(γ1, γ2): returns A where L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ ∃t ∈
Σ∗ : s1 = s2t}
Acontains(γ1, γ2): returns A where L(A) = {(s1, s2) | s1 ∈ L(Aγ1) ∧ s2 ∈ L(A2) ∧ s1 ∈
Σ∗L(Aγ2)Σ∗ ∧ s2 ∈ L(suffixes(prefixes(A1)))}.
Acontains(γ1, γ2): returns A where L(A) = {(s1, s2) | ∃t1 ∈ L(Aγ1), t2 ∈ L(Aγ2) : s1 ∈
L(Aγ1) ∧ s2 ∈ L(Aγ2) ∧ s1 /∈ Σ∗t2Σ∗ ∧ s2 /∈ L(suffixes(prefixes(t1)))}.

tomaton construction for ¬contains(γ1, γ2) uses suffixes and prefixes functions.
Given an automaton A (or a string s), suffixes(A) returns an automaton that
accepts all suffixes of the all strings in L(A). Similarly, given an automaton A,
prefixes(A) returns an automaton that accepts all prefixes of the all strings in
L(A). Asop and Asop both generate an automaton where one or more tracks
correspond to a string expression (represented with an auxiliary variable, e.g.,
vγ), but not a free string variable. In that case, we further process the generated
automaton using π and Aterm′ to make sure that there is a track generated for
each free variable in the input formula (line 7 in Algorithm 2).

We now discuss how Aterm (Algorithm 3) generates automata for the terms in
a string formula. Aterm recursively constructs an automaton for any sub term in
a term (top). Recursion returns when there is a base term (a literal or a variable).
A string formula may contain integer terms. We use length automata [2] for the
integer terms used in string terms. ToStrEncoding function at line 6 transforms
a binary encoded integer automaton to a length automaton. We discuss the de-
tails of ToStrEncoding in Section 3.3. Table 3 shows example term automata
constructions given the automata constructed for the parameters. Given a sub-
ject automaton A1 and a search automaton A2, substrmatch(A1, A2) returns a
set of state pairs (Qs, Qe) as the start and end the states of the matching sub
strings of accepting strings. These pairs can be found via automata intersection
with matching symbols inserted (proposed for replacement in [30]).

So far we described how we construct automata for string operations (sop).
However, the tracks of the constructed automata may correspond to string terms.

Algorithm 3 Term automata constructor: Aterm(τ,A)

1: if τ ≡ top(γ1, . . . , γn, βn+1, . . . , βm) then . top ∈ {length, . . . , replaceall}.
2: return Atop(Aterm(γ1), . . . ,Atern(βm)) . e.g., see Table 3.
3: else if τ ≡ ρ then return Atop(ρ) . returns A where L(A) = {s | s ∈ L(ρ)}.
4: else if τ ≡ n then return Atop(n) . returns A where L(A) = {s | |s| = n}.
5: else if τ ≡ vs then return π(A, {vs}
6: else if τ ≡ vi then return ToStrEncoding(π(A, {vs})
7: end if



Table 3. Example automata constructions of Atop and Atop′

Alength(γ): returns A where L(A) = {s | ∃t ∈ L(Aγ) : |s| = |t|}.
Acharat(γ, β): returns A where L(A) = {s | ∃t ∈ Σ∗, qinit, qe, qn ∈ QAγ : qn =
δAγ (qe, s) ∧ δ∗Aγ (qn, t) ∈ FAγ ∧ (qinit, qe) ∈ substrmatch(Aγ , Aβ)}.
Aindexof(γ1, γ2): returns A where L(A) = {s | ∃t ∈ Σ∗, qinit, qe ∈ QAγ1 : |s| = |t| ∧ qe =
δ∗Aγ1 (qinit, t) ∧ (qinit, qe) ∈ substrmatch(Aγ1 , Aγ2)}.
Asubstring(γ, β, β): returns A where L(A) = {s | qinit, qe, qn ∈ QAγ : qn = δ∗Aγ (qe, s) ∧
(qinit, qe) ∈ substrmatch(Aγ , Aβ1) ∧ (qe, qn) ∈ substrmatch(Aγ , Aβ2)}.
Acharat′(Acharat, γ, Aβ): returns Aγ where L(Aγ) = {s | s ∈ L(Aβ)L(Acharat)Σ

∗}.
Acharat′(Acharat, β, Aγ): returns Aβ where Aβ = indexof(Aγ , Acharat).

For example, ϕS ≡ charat(v, 1) = "a" constructs an equality automaton with
2-tracks where the first track corresponds to charat term and the second track
corresponds to the string literal term ("a"). Aterm′ accepts the automaton gen-
erated for a term and the term itself, and returns an automaton where its tracks
correspond to variables ({v}) in the term. Line 2 in Algorithm 4 recursively
computes an automaton for the sub terms. In our example, let Avγ be the au-
tomaton generated for the term charat. First, Atop′ generates an automaton for
sub term γ1 ≡ v using Avγ and Aterm(β1) and the semantics of the charat op-
eration (e.g., see Table 3). Next, we intersect the result of the Atop′ with the
automaton Aterm(γ1) to restrict it with the set of possible values for the term.
Note that, Aterm can return a cached result that is computed in the previous
steps in Algorithm 2. Once the automaton is computed, the recursive step is
taken and finally the updated automaton (line 5) for the variable is returned
(A1). For the sub term β1 ≡ 1, Aterm′ generates the automaton A2 that accepts
the language Σ∗ and V(A2) = ∅. Finally, line 3 returns an automaton A where
V(A) = {v}. An automaton for the right hand side of the formula is generated
in the same way as shown in Algorithm 2.

3.2 Integer Constraint Solving

Integer automata constructor function AZ (Algorithm 5) handles arithmetic for-
mulae that consist of linear equalities, disequalities, and inequalities (ϕZ). An

Algorithm 4 Variable automata constructor: Aterm′(τ,A)

1: if τ ≡ top(γ1, . . . , γn, βn+1, . . . , βm) then
2: A1 ← Aterm′(γ1,Atop′(A, γ1,Aterm(γ2), . . . ,Aterm(βm)) ∩ Aterm(γ1))), . . . ,
Am ← Aterm′(βm,Atop′(A, βm,Aterm(γ1), . . . ,Aterm(βm−1)) ∩ Aterm(βm)))

3: return π(A1,V(τ)) ∩ . . . ∩ π(Am,V(τ))
4: else if τ ≡ n or τ ≡ ρ then return Atop′(τ) . returns a DFA A s.t. L(A) = Σ∗.
5: else if τ ≡ vs then return A
6: else if τ ≡ vi then return ToBinEncoding(A) . see Section 3.3.
7: end if



Algorithm 5 Integer automata constructor: AZ(ϕ,A)

1: if ϕ ≡ iop(β1 . . . , βn then . where iop ∈ {=, 6=, >,≥,≤, <}
2: Aiop ← Aiop(β1, . . . , βn) . construction based on the techniques in [7].
3: end if
4: for each mixed term β ∈ ϕ do . iterate over mixed terms
5: Aiop ← Aiop ∩ ToBinEncoding(Aterm(β,A))
6: Aiop ← π(Aiop,V(ϕ)) ∩ π(Aterm′(β,ToStrEncoding(π(Aiop, {vβ}))),V(ϕ))
7: end for
8: return Aiop

arithmetic formula is first converted into the form
∑n
i=1 ai · xi + a0 iop 0 where

ai denotes integer coefficients and xi denotes integer variables. Then, the au-
tomata construction techniques that rely on a basic binary adder state machine
construction is used to construct an automaton for the arithmetic formula [7].

We track relationship between the integer variables and the string variables
if the formula is a mixed constraint (line 4). For any mixed term, an auxiliary
variable introduced by Aterm is used to track the values of the mixed term
corresponding to satisfying assignments of the string variables in the mixed term.
Given that, the generated integer automaton first refined further (line 5) and
then extended with string variables that appear in mixed terms (line 6).

3.3 Automata Refinement

To improve the precision, Refine function (Algorithm 6) updates the automata
iteratively on every intersection by solving the constraints that may cause over-
approximations. There are mainly two cases we consider: 1) string formulae that
may have over-approximations due to complexity of the operations and/or mixed
terms involved in the formulae 2) integer formulae that contains mixed terms.
Refine algorithm calls automata constructor functions AS and AZ given the cor-
responding formulae and the latest automata computed for the formulae. During
automata construction ToStrEncoding function is used to convert binary inte-
ger automata to length automata to refine string solutions and ToBinEncoding
function is used to convert length of string automata to binary integer automata
to refine integer solutions. We adopt algorithms proposed in [31] but further pro-
pose BinToSemSet function (Algorithm 7) to construct semilinear sets (instead
of finding lower and upper bounds [31]) of binary integer automata.

Given an automaton A and a bit-width bound i on recursion (initially i = 1),
BinToSemSet(A, i) recursively constructs a semilinear set S, s.t., L(A) = JSK if
L(A) is a semilinear set; L(A) ⊆ JSK, otherwise. At recursive steps, once a linear
set S is found from a given automaton A, we add the set S to the result of
the next recursive call where we pass a new automaton A \ A(S) such that
L(A \ A(S)) = L(A) \ JSK and the new bit-width bound is reset to 1. In that
recursive step, the algorithm tries to find a linear set that forms from a minimal
pair of accepting values in L(A). The procedure conducts an exhaustive search
by enumerating all potential pairs in the set of accepting values that have their



Algorithm 6 Refine(ϕ,A)

1: for each sub formula ϕS with possible over-approximation ∈ ϕ do
2: A← A ∩ π(AS(ϕS, π(A,V(ϕS))),V(ϕ))
3: end for
4: for each sub formula ϕZ with possible over-approximation ∈ ϕ do
5: A← A ∩ π(AZ(ϕZ, π(A,V(ϕZ))),V(ϕ))
6: end for
7: return A

Algorithm 7 BinToSemSet(A, i)

1: if L(A) is a finite set then return S, where JSK = {n | n ∈ L(A)}
2: else if i > 2×|A| then return S, where JSK = {n | (n < 2i ∧n ∈ L(A))∨n > 2i}
3: else
4: N ← GetValues(A, i)
5: while N 6= ∅ do a← RemoveMin(N), N ′ ← N
6: while N ′ 6= ∅ do b← RemoveMin(N ′)
7: construct S where JSK = {n | a+ (b− a)× k, k ≥ 0}
8: return S ∪ BinToSemSet(A \ A(S), 1) if JSK ⊆ L(A)
9: end while

10: end while
11: return BinToSemSet(A, i+ 1)
12: end if

bit-width bounded by i. GetValues(A, i) returns the set {n | n < 2i, n ∈ L(A)}.
If we cannot find a linear set given the bit-width bound i, we increase i by one
and recurse the procedure. If the recursion returns at line 1, as a final result we
return a semilinar set S where JSK = L(A). If the recursion returns because that
bit-width bound is greater than a threshold, we return a semilinear set that over
approximates L(A). The threshold is set as 2 × |A| to ensure that before the
termination at least two numbers of any linear set in L(A) have been checked.

4 Model Counting

Here we describe how to perform parameterized model counting by making use
of the automata which result from our constraint solving procedure. A model for
any formula ϕ is an assignment of values to all variables such that ϕ evaluates
to true. The model counting problem is to count the number of models for a
formula ϕ, which we denote #ϕ. A formula can have infinitely many models.
However, we can count the number of models within an infinite space of solutions
restricted to a finite range for the free variables. Hence, we perform parameterized
model counting for string and integer constraints, in which #ϕ is a function over
parameters bS , which bounds the length of string solutions, and bZ, which bounds
the bit-length representation of integer solutions. We write #ϕ(bS , bZ) for the
parameterized model counting function.



The constraint solving procedure produces a final DFA, A, that contains
multi-track sub-automata AS and AZ which accept an over-approximation of
the tuples of string and integer solutions to ϕ. The separation of string and in-
teger automata may lose some relational information between string and integer
variables, but we can multiply the model counts for each automaton in order
to give a sound upper bound on the number of models for tuples of integer and
string variables. Note that if we are interested in computing only string models,
#ϕ(bS ,∞), or only integer models, #ϕ(∞, bZ), there is no loss of precision in
the model counting procedure. Any loss of precision for strings comes from the
over-approximations of non-regular constraints in the solving phase, and for pure
integer constraints, the model counting procedure is precise.

We rely on the observation that counting the number of strings of length k in
a regular language, L, is equivalent to counting the number of accepting paths
of length k in the DFA that accepts L. That is, by using a DFA representation,
we reduce the parameterized model counting problem to counting the number
of paths of a given length in a graph.

Given a string automaton AS , we denote the number of string tuples of
length k accepted by AS as #fAS (k). Computation of #fAS (k) can be done
by constructing the transfer matrix of the automaton based on its transition
relation [24,27]. Let AS be a DFA with n states. The transfer matrix T of A is a
matrix where Ti,j is the number of transitions from state i to state j. The number
of paths of length k that start in state i and end in state j is given by (T k)i,j .
Then the number of strings of length k accepted by A can be computed using
matrix multiplication. We compute uT kv, where u is the row vector such that
ui = 1 if and only if i is the start state and 0 otherwise, and v is the column vector
where vi = 1 if and only if i is an accepting state and 0 otherwise. Note that for
relational string constraints, the transition alphabet is over tuples of characters
and the method described here will count the number of tuples of solutions of a
given length. Our counting method is parameterized in the following sense: after
a constraint is solved, we can count the number of solutions of any desired size
k by computing uT kv without re-solving the constraint.

The method described above computes #fAS (k), the number of string solu-
tions of length exactly k. It is also of interest to compute #FAS (k), the number
of solutions within a given bound. This is accomplished easily by using a com-
mon “trick” that is often used to simplify graph algorithms. We add an artificial
accepting state sn+1 to AS , resulting in a new DFA A′S , with λ-transitions from
each accepting state to sn+1, and a λ-cycle on sn+1. Then one can see that
#FAS (k) = #FA′

S
(k + 1), and so we apply the transfer matrix method on A′S .

The method for counting strings of a given length allows us to perform model
counting for linear constraints as well. However, we must interpret the bound
k in a slightly different manner. A solution DFA AZ for a set of integer tuples
encodes the solutions as bit-strings. Thus, paths of length k in an integer au-
tomata correspond to bit string of length k. Since we are using a 2’s complement
representation with leading sign bits, bit strings of exactly length k correspond
to integers in the range [−2k−1, 2k−1). Thus, the transfer matrix method allows



ϕ ∧ ϕ→ ϕ ϕ ∨ ϕ→ ϕ ϕ ∨ > → >
ϕ ∧ > → ϕ ϕ ∨ ⊥ → ϕ ϕ ∧ ⊥ → ⊥

|ε| → 0
0× β → 0 β − 0→ β β = β → > i 6= j → >
1× β → β −(−β)→ β β 6= β → ⊥ |vs1 .vs2 | → |vs1 |+ |vs2 |
β + 0→ β ¬(¬β)→ β i = j → ⊥

t.γ1 = t.γ2 → γ1 = γ2
γ.ε→ γ γ = γ → > t.γ1 6= v.γ2 → > γ1.t = γ2.t→ γ1 = γ2
ε.γ → γ γ 6= γ → ⊥ t.γ1 = v.γ2 → ⊥ ends(γ2.γ1, γ1)→ >
t1.t2 → t1t2 t = v → ⊥ γ1.t 6= γ2.v → > begins(γ1.γ2, γ1)→ >
γ ∈ t→ γ = t t 6= v → > γ1.t = γ2.v → ⊥ contains(γ2.γ1.γ3, γ1)→ >

Fig. 2. Term reduction rules

us to perform model counting over integer domains parameterized by intervals of
this form by computing #fAZ(k). To count models for arbitrary intervals (a, b),
we intersect AZ with the DFA representing a ≤ xi ≤ b for any variable xi, and
then count paths in the resulting DFA.

The methods described above allow us to compute #FAS (k) and #fAZ(k)
independently. Now, we can compute #ϕ(bS , bZ) = #FAS (bS) ·#fAZ(bZ).

The transfer matrix method relies on computing uT kv and so we seek to
implement an efficient method for computing this product. The time and space
complexity trade-offs between various methods of computing uT kv for counting
are well-studied [24, 27] and beyond the scope of this paper. However, we note
that one may compute T k using matrix-matrix multiplication with successive
squaring, or one may perform left-to-right vector-matrix multiplication. While
successive squaring has a better worst-case time complexity bound, we found
that due to typically high sparsity of DFA transfer matrices, it is both faster
and less memory intensive to use repeated vector-matrix multiplication.

5 Constraint Simplification Heuristics

In this section we present a set of heuristics for improving both the precision
and the efficiency of of our constraint solver.

Term Re-Write Rules: All terms are first reduced with respect to a re-
write system based on a set of rules (Fig. 2). These rules include both term
normalization rules and tautological simplifications of atomic constraints. Here,
i, j are distinct integer constants, t, v are distinct string constants and γ1, γ2, γ3
are (not necessarily distinct) string terms.

Dependency Analysis: To reduce the amount of work required to solve
a constraint, we note that not all variables of a constraint need be counted
together. We define the constraint graph of a formula ϕ to be the graph defined
on the set of variables of ϕ where an edge exists between any two variables if they
appear in the same clause of ϕ. This constraint graph can be decomposed into
a finite set of connected components. A connected component C is a maximal
subgraph such that if u, v ∈ C then there exists a path between u and v in C.



γ1.contains(γ2)→ |γ1| ≥ |γ2| ¬γ.contains(t)→ ¬γ.begins(t) ¬γ.ends(t)→ γ 6= t
γ1.begins(γ2)→ |γ1| ≥ |γ2| γ1.γ2 = γ3.γ4 → |γ1|+ |γ2| = |γ3|+ |γ4|
γ1.ends(γ2)→ |γ1| ≥ |γ2| γ1.γ2 = γ3 → |γ1|+ |γ2| = |γ3| ∧ γ3.begins(γ1)

Fig. 3. Implication rules

Constraints on any given variable depend only on variables within its con-
nected component. This allows us to decompose a formula based on connected
components, solve and count each component individually, and then take the
product of the results to obtain accurate counts for tuples of variables. This
results in smaller automata and faster computation.

Equivalence Classes: The variables of a formula ϕ can be partitioned into
equivalence classes so that any pair of given variables x, y are in the same equiv-
alence class only if the have the same solution set. In our implementation, we
construct these equivalence classes based on equality clauses. Every term, vari-
able or otherwise, begins in its own equivalence class and for every equality
clause, the equivalence classes of the left and right sides are merged.

From each equivalence class, we choose a representative. Priority in this
choice is given to constant terms then to variables. Each variable in the equiv-
alence class is then replaced by this representative in the formula ϕ. This op-
timization can result in the elimination of variables from ϕ, and hence tracks
from its DFA, without any loss of precision in counting.

Implication Rules: As noted previously, our automata construction for
some constraints can be imprecise. However, precision can be improved for some
of these constraints by augmenting the original formula ϕ with clauses implied
by ϕ. We present a set of implication rules which define the augmenting clauses
added to ϕ in the presence of certain imprecise constraints in Fig. 3. We only
add a clause to ϕ if we can solve it precisely and if it can potentially improve
the precision for another constraint.

6 Implementation and Experiments

We compare ABC with two existing model counters: (1) SMC [20], a string
model counter, and (2) LattE [5, 19], a linear integer arithmetic solver with
model counting capabilities. All experiments were run on an Intel i5 machine
with 2.5GHz X4 processors and 32GB of memory running Ubuntu 14.04. ABC
source code is available online 3 along with the experimental data.

ABC-SMC Comparison for String Constraints: We ran ABC on two
benchmarks of satisfiable constraints which were generated via symbolic execu-
tion of JavaScript and originally solved with the Kaluza string solver [25]. The
authors of SMC translated these benchmarks into their input format and sep-
arated them into two sets: SMCSmall and SMCBig. We translated from SMC
format to ABC input format. The SMCSmall set contains 17554 test constraints

3 https://github.com/vlab-cs-ucsb/ABC

https://github.com/vlab-cs-ucsb/ABC


and SMCBig contains 1342 test constraints. ABC gives an upper bound (uabc)
on the model count for all tuples of string variables, while SMC gives both a
lower and upper bound (lsmc, usmc), but only for a single target variable of a
constraint. Thus, to compare with SMC we project our counts to their target
variable. ABC completed SMCSmall after 3.40 minutes (0.01 seconds per con-
straint) and SMCBig after 6.55 hours (17.60 seconds per constraint); SMC took
2.04 hours (0.42 seconds per constraint) for SMCSmall, and 1.52 hours (4.08
seconds per constraint) for SMCBig. We see that ABC is about 36 times faster
than SMC on the small benchmark and 4 times slower on the large benchmark.
However, ABC has better precision on 78% of the constraints in the large bench-
mark. We compare the upper bound ABC gives to those given by SMCfor both
date sets, shown in table 4. There were 23 small tests and 15 big tests for which
ABC gave a count where uabc < lsmc or uabc > usmc. We manually confirmed
that ABC gives the correct count for those cases, thus these cases correspond to
bugs in SMC’s implementation.

Table 4. ABC upper bound (uabc) and SMC lower and upper bounds (lsmc, usmc)
comparison

Benchmark #Constraints lsmc < uabc < usmc uabc = usmc SMC bugs

SMCSmall 17554 862 (4.9%) 16669 (95%) 23 (0.1%)

SMCBig 1342 1046 (78%) 281 (20.9%) 15 (1.1%)

ABC-LattE Comparison for Numeric Constraints: We compare ABC
with LattE in the context of program analysis using the benchmarks (Table 5)
from reliability analysis [10] and side-channel analysis [4, 6]. First nine applica-
tions, including sorting algorithms, are benchmarks from reliability analysis [10].
We extended the reliability analysis benchmarks by adding Merge sort, Quick
sort, and Binary search examples. Password, LawDB, and CRIME are bench-
marks from timing/space side-channel analysis [4, 6].

Both analysis techniques require a symbolic execution tool to extract program
path constraints, and a model counting tool to enable quantitative analysis on
the path constraints. The implementation of both analysis techniques uses SPF
for symbolic execution. Using SPF, we collected path constraints from fifteen
applications using the frameworks and we counted solutions to path constraints
given bit-length bounds 4,8,16, and 32. ABC and LattE return identical counts
for all constraints in all cases as both model counters are precise in counting nu-
meric constraints. We focus on the timing comparison between ABC and LattE.

The LattE input format only supports conjunctions of linear equalities and
inequalities. In order to handle disequalities ( 6=) that can arise from path con-
straints, a preprocessing step is required. LattE integration with SPF uses Omega [15]
to convert disequalities into inequalities, which comes with the benefit of con-
straint simplifications whenever possible. LattE timing measurements includes



Omega simplification time and SPF simplification time. Details of the LattE
integration can found in [4, 6, 10].

Table 5. Average time differences in seconds between ABC and LattE. b is bit-length
bound for model counting. Positive means ABC is faster.

Application #PCs b1 = 4 b2 = 8 b3 = 16 b4 = 32 {b1, b2, b3, b4}
Alarm 2000 +0.002 +0.003 +0.003 +0.003 +0.039

Booking 2000 +0.003 +0.003 +0.003 +0.003 +0.043

DaisyChain 1434 +0.235 +0.023 +0.023 +0.022 +0.343

FlapController 641 +0.021 +0.021 +0.021 +0.021 +0.114

RobotGame 660 +0.137 +0.130 +0.130 +0.128 +0.560

Bubble sort 720 +0.004 +0.003 +0.001 −0.004 +0.061

Heap sort 1943 +0.005 +0.005 +0.004 +0.001 +0.066

Insertion sort 720 +0.004 +0.003 +0.001 −0.005 +0.061

Selection sort 1359 +0.005 +0.005 +0.003 −0.000 +0.065

Merge sort 720 +0.004 +0.003 +0.001 −0.005 +0.060

Quick sort 1134 +0.005 +0.005 +0.003 −0.001 +0.065

Binary search 21 −0.705 −0.807 −1.010 −1.653 −1.477

Password 11 +0.066 +0.067 +0.066 +0.064 +0.297

LawDB 101 −2.989 −3.027 −3.088 −3.085 −2.550

CRIME 1540 +0.182 +0.249 +0.252 +0.245 +0.972

Table 5 shows that in general ABC performs better than LattE. As bit-length
bound increases the timing differences between ABC and LattE decreases in
most of the cases and LattE performs better for some of the applications with
the larger bounds. As bit-length bound increases, ABC needs to perform more
matrix multiplications which takes more time.

Notice that the timing difference between ABC and LattE, when we count
for multiple bounds, is largest; in all cases except Binary search and LawDB.
ABC first solves a constraints without putting any bounds on it and then uses
generated automaton to count given multiple bounds. In contrast, LattE needs
to be called multiple times for each bound.

LattE performs better in counting for Binary search and LawDB applications
for all bounds. SPF puts additional ordering constraints on input variables which
increases the size of the formulae. The multi-track DFA generated by ABC can
be exponential in the size of the input constraints which affects both constraint
solving and model counting times. Note that even when we do worse than LattE,
the timing difference of the multiple bound count is strictly smaller than the
largest single bound count timing difference.

ABC Performance on Mixed String and Numeric Constraints: We
evaluated ABC performance on mixed constraints that neither SMC nor LattE
can handle. We created a benchmark for mixed constraints using SMCSmall
benchmark. Out of 17554 test cases in SMCSmall, 6617 contained length con-
straints on string variables. Length constraint in SMC benchmarks contains only



integer constants. For every such length constraint, we replaced the constant
length with a symbolic integer, thus producing mixed constraints. We ran ABC
on all 6617 such constraints, and computed a projected count similarly to the
method used for the ABC-SMC comparison. ABC completed after 3.50 minutes
(0.03 seconds per constraint). In comparison, ABC averaged 0.01 seconds per
constraint for the SMCSmall benchmark, of which the mixed constraints were
taken from.

Increasing ABC Performance and Precision with Heuristics: The
sizes of the multi-track DFA generated by ABC can be exponential in the size of
the input constraints. In our experiments we always use the equivalence class gen-
eration and dependency heuristics, since without these heuristics ABC runs out
of memory for large formulae. In order to evaluate the effectiveness of the impli-
cation heuristic, we run different versions of our tool on the SMCBig benchmark:
a version with the implications heuristics and a version without. Both implemen-
tations used equivalence class generation and dependency analysis. The results
given by each version are shown in figure 4. The version with added implica-
tions completed the benchmark after 6.60 hours (17.60 seconds per constraint),
while the version without implications took 23.50 minutes (1.05 seconds per con-
straint). Intuitively, adding implications tends to increase precision, often at the
expense of longer execution times. The results reinforce this intuition, at least
for this particular benchmark.
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Fig. 4. Precision differences between different configurations for ABC.

7 Conclusion

Model counting is a crucial problem in quantitative program analysis. Using
automata as a representation for all solutions of a given constraint reduces the
model counting problem to path counting. In this paper, we show that, using
automata-based constraint solving, one can construct a model counting con-
straint solver that is able to handle both string and numeric constraints and
their combinations. Our experiments on a large set of constraints generated
from Java and JavaScript programs indicate that, automata-based model count-
ing approach is as efficient and as precise as domain specific model counting
methods, while it is able to handle a richer set of constraints.
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