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Abstract—In this paper, we investigate and characterize the
behavior of “big” and “fast” data analysis frameworks, in multi-
tenant, shared settings for which computing resources (CPU
and memory) are limited. Such settings and frameworks are
frequently employed in both public and private cloud deploy-
ments. Resource constraints stem from both physical limitations
(private clouds) and what the user is willing to pay (public
clouds). Because of these constraints, users increasingly attempt
to maximize resource utilization and sharing in these settings.

To understand how popular analytics frameworks behave and
interfere with each other under such constraints, we investigate
the use of Mesos to provide fair resource sharing for resource
constrained private cloud systems. We empirically evaluate such
systems using Hadoop, Spark, and Storm multi-tenant workloads.
Our results show that in constrained environments, there is
significant performance interference that manifests in multiple
ways. First, Mesos is unable to achieve fair resource sharing
for many configurations. Moreover, application performance over
competing frameworks depends on Mesos offer order and is
highly variable. Finally, we find that resource allocation among
tenants that employ coarse-grained and fine-grained framework
scheduling, can lead to a form of deadlock for fine-grained
frameworks and underutilization of system resources.
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I. INTRODUCTION

Recent technological advances have spurred production and
collection of vast amounts of data about individuals, systems,
and the environment. As a result, there is significant demand
by software engineers, data scientists, and analysts with a
variety of backgrounds and expertise, for extracting actionable
insights from this data. Such data has the potential for facil-
itating beneficial decision support for nearly every aspect of
our society and economy, including social networking, health
care, business operations, the automotive industry, agriculture,
Information Technology, education, and many others.

To service this need, a number of open source technologies
have emerged that make effective, large-scale data analytics ac-
cessible to the masses. These include “big data” and “fast data”
analysis systems such as Hadoop [1], Spark [6], and Storm [8]
from the Apache foundation, which are used by analysts to
implement a variety of applications for query support, data
mining, machine learning, real-time stream analysis, statistical
analysis, and image processing [2, 37, 15, 36]. As complex
software systems, with many installation, configuration, and
tuning parameters, these frameworks are often deployed under
the control of a distributed resource management system [42,
19] to decouple resource management from job scheduling and

monitoring, and to facilitate resource sharing between multiple
frameworks.

Each of these analytics frameworks tends to work best
(e.g. most scalable, with the lowest turn-around time, etc.)
for different classes of applications, data sets, and data types.
For this reason, users are increasingly tempted to use multiple
frameworks, each implementing a different aspect of their
analysis needs. This new form of multi-tenancy (i.e. multi-
analytics) gives users the most choice in terms of extracting
potential insights, enables them to fully utilize their compute
resources and, when using public clouds, manage their fee-for-
use monetary costs.

Multi-analytics frameworks have also become part of the
software infrastructure available in many private data centers
and, as such, must function when deployed on a private
cloud [34, 29, 20]. With private clouds, resources are restricted
by physical limitations. As a result, these technologies are
commonly employed in shared settings in which more re-
sources (CPU, memory, local disk) cannot simply be added
on-demand in exchange for an additional charge (as they can
in a public cloud setting).

Because of this trend, in this paper, we investigate and
characterize the performance and behavior of big/fast data
systems in shared (multi-tenant), moderately resource con-
strained, private cloud settings. While these technologies are
typically designed for very large scale deployments such as
those maintained by Google, Facebook, and Twitter they are
also common and useful at smaller scales [11, 33, 32].

We empirically evaluate the use of Hadoop, Spark, and
Storm frameworks in combination, with Mesos [19] to mediate
resource demands and to manage sharing across these big data
tenants. Our goal is to understand

• How these frameworks interfere with each other in
terms of performance when they are deployed under
resource pressure,

• How Mesos behaves when demand for resources ex-
ceeds resource availability, and

• The degree to which Mesos is able to achieve fair
sharing using Dominant Resource Fairness (DRF) [14]
in resource restricted cloud settings.

From our experiments and analyses, we find that even
though Spark outperforms Hadoop when executed in isolation
for a set of popular benchmarks, in a multi-tenant system, their
performance varies significantly depending on their respective
scheduling policies and the timing of Mesos resource offers.



Moreover, for some combinations of frameworks, Mesos is
unable to provide fair sharing of resources and/or avoid dead-
locks. In addition, we quantify the framework startup overhead
and the degree to which it affects short-running jobs.

In the next section, we provide background on Mesos
and the analytics frameworks that we employ in this study.
Section III details our experimental methodology, setup, and
configuration and Section IV presents our experimental results
for multi-tenant, resource-restricted clouds. We present related
work in Section V and our conclusions and future work in
Section VI.

II. BACKGROUND

In private cloud settings, where users must contend for a
fixed set of data center resources, users commonly employ the
same resources to execute multiple analytics systems to make
the most of the limited set of resources to which they have been
granted access. To understand how these frameworks interfere
in such settings, we investigate the use of Mesos to manage
them and to facilitate fair sharing. Mesos is a cluster manager
that can support a variety of distributed systems including
Hadoop, Spark, Storm, Kafka, and others [19, 4]. The goal
of our work is to investigate the performance implications as-
sociated with Mesos management of multi-tenancy for medium
and small scale data analytics on private clouds.

We first overview the implementation of Mesos and its
support for the analytics frameworks that we consider in this
study: Hadoop, Spark, and Storm. Figure 1 provides a high
level overview of the Mesos software architecture.

Mesos provides two-level, offer-based, resource scheduling
for frameworks. The Mesos Master is a daemon process that
manages a distributed set of Mesos Slaves. The Master also
makes offers containing available Slave resources (e.g. CPUs,
memory) to registered frameworks. Frameworks accept or
reject offers based on their own, local scheduling policies and
control execution of their own tasks on Mesos Slaves that
correspond to the offers they accept.

When a framework accepts an offer, it passes a description
of its tasks and the resources it will consume to the Mesos
Master. The Master (acting as a single contact point for all
framework schedulers) passes task descriptions to the Mesos
Slaves. Resources are allocated on the selected Slaves via a
Linux container (the Mesos executor). Offers correspond to
generic Mesos tasks, each of which consumes the CPU and
memory allocation specified in the offer. Each framework uses
a Mesos Task to launch one or more framework-specific tasks,
which use the resources in the accepted offer to execute an
analytics application.

Each framework can choose to employ a single Mesos
task for each framework task, or use a single Mesos task
to run multiple framework tasks. We will refer to the former
as “fine-grained mode” (FG mode) and the later as “coarse-
grained mode” (CG mode). CG mode amortizes the cost of
starting a Mesos Task across multiple framework tasks. FG
mode facilitates finer-grained sharing of physical resources.

The Mesos Master is configured so that it executes on
its own physical node and with high availability via shadow
Masters. The Master makes offers to frameworks using a

Fig. 1: Mesos Architecture. Each distributed computing frame-
work implements a Mesos scheduler which negotiates with
the Mesos Master for Slave resource allocation, and a Mesos
executor inside which framework tasks are spawned. Frame-
works launch tasks in Coarse-Grained (CG) mode (1 Mesos
task corresponds to 1+ framework tasks) or Fine-Grained (FG)
mode (1 Mesos task corresponds to 1 framework task). Spark
can use either CG or FG modes; Hadoop and Storm use CG.

pluggable resource allocation policy (e.g. fair sharing, priority,
or other). The default policy is Dominant Resource Fairness
(DRF) [14]. DRF attempts to fairly allocate combinations of
resources by prioritizing the framework with the minimum
dominant share of resources.

The dominant resource of a framework is the resource for
which the framework holds the largest fraction of the total
amount of that resource in the system. For example, if a
framework has been allocated 2 CPUs out of 10 and 512MB
out of 1GB of memory, its dominant resource is memory
(2/10 CPUs < 512/1024 memory). The dominant share of
a framework is the fraction of the dominant resource that it
has been allocated (512/1024 or 1/2 in this example). The
Mesos Master makes offers to the framework with the smallest
dominant share of resources, which results in a fair share policy
with a set of attractive properties (share guarantee, strategy-
proofness, Pareto efficiency, and others) [14]. We employ the
default DRF scheduler in Mesos for this study.

The framework implementations that we consider include
the open source analytics systems Apache Hadoop [1], Apache
Spark [6], and Apache Storm [8]. Hadoop implements the pop-
ular MapReduce programming model via a scalable, fault tol-
erant and, distributed batch system. Spark extends this model
and system with an in-memory data-structure for Resilient
Distributed Datasets (RDDs) [46]. Finally, Storm provides dis-
tributed, fault tolerant, real-time processing of streaming data.
All frameworks leverage the Hadoop Distributed File System
(HDFS) [18] for data persistence and durability. Each of these
frameworks makes different design and implementation trade-
offs (which result in different strengths and weaknesses), each
is amenable to varying types of big data processing, analy-
sis, and programming models, and each have had numerous
applications written for them by developers [17, 38, 39].

In a Mesos deployment, each framework implements the
Mesos scheduler interface and the Mesos executor interface.
For Hadoop, the scheduler corresponds to the Hadoop Job-
Tracker and the executor is a Hadoop TaskTracker. For Spark,



the scheduler corresponds to the Spark Driver and there
is a Spark extension that implements the executor for task
management. For Storm, the scheduler is called Nimbus and
the Mesos executors correspond to the Storm Supervisors.
Storm Supervisors spawn one or more Storm workers, each
of which executes one or more application tasks as process
threads.

Each framework creates one Mesos executor and one or
more Mesos Tasks on each Slave in an accepted Mesos offer.
In CG mode, frameworks release resources back to Mesos
when all tasks complete or when the application is terminated.
In FG mode, frameworks execute one application task per
Mesos task. When a framework task completes, the framework
scheduler releases the resources associated with the task back
to Mesos. The framework then waits until it receives a new
offer with sufficient resources from Mesos to execute its next
application task. In our experiments we consider Spark, which
provides both FG and CG modes as options, and Hadoop and
Storm, which employ CG mode.

III. EXPERIMENTAL METHODOLOGY

We next describe the experimental setup that we use for this
study. We detail our hardware and software stack, overview
our applications and data sets, and present the framework
configurations that we consider.

We employ two, resource-constrained, Eucalyptus [29]
private clouds, each with nine virtual servers (nodes). We use
three nodes for Mesos Masters that run in high availability
mode (similar to typical fault-tolerant settings of most real
systems) and six for Mesos Slaves in each cloud. The Slave
nodes on the first cloud (Eucalyptus v3.4.1), to which we
refer to as development, each have 2x2.5GHz CPUs, 4GB of
RAM, and 60GB disk space. The Slave nodes on the second,
production cloud (Eucalyptus v4.1), have 4x3.3GHz CPUs,
8GB of RAM, and 60GB of SSD disk. Both clouds use Gigabit
Ethernet switches.

Our nodes run Ubuntu v12.04 Linux with Java 1.7, Mesos
0.21.1 [3] which uses Linux containers by default for isolation,
the CDH 5.1.2 MRv1 [10] Hadoop stack (HDFS, Zookeeper,
MapReduce, etc.), Spark v1.2.1 [5], and Storm v0.9.2 [7].
We configure Mesos Masters (3), HDFS Namenodes, and
Hadoop JobTrackers to run with High Availability via three
Zookeeper nodes co-located with the Mesos Masters. HDFS
uses a replication factor of three and 128MB block size. In
addition, we found and fixed a number of bugs that prevented
the Hadoop stack from executing in our environment. Our
modifications are available at [9].

Our batch processing workloads and data sets come from
the BigDataBench and the Mahout projects [43, 2]. We have
made minor modifications to update the algorithms to have
similar implementations across frameworks (e.g. when they
read/write data, perform sorts, etc.). These modifications are
available at [28]. In this study, we employ WordCount, Grep,
and Naive Bayes applications for Hadoop and Spark and a
WordCount streaming topology for Storm. WordCount com-
putes the number of occurrences of each word in a given input
data set, Grep produces a count of the number of times a
specified string occurs in a given input data set, and Naive
Bayes performs text classification using a trained model to
classify sentences of an input data set into categories.

Development

Cloud

Production

Cloud

CPU MEM CPU MEM

Available
Slave 2 2931 4 6784

Total 12 17586 24 40704

Min

Required

Hadoop 1 980 1 980

Spark 2 896 2 896

Storm 2 2000 2 2000

Max Used

Per Slave

Hadoop 2 2816 4 5888

Spark 2 896 4 896

Storm 2 2000 4 4000

Max Used

Total

Hadoop 12 16896 24 35328

Spark 12 5376 24 5376

Storm 6 6000 6 6000

TABLE I: CPU and Memory availability, minimum framework
requirements to run 1 Mesos Task and maximum utilized
resources per slave and in total.

We execute each application 10 times after three warmup
runs to eliminate variation due to dynamic compilation by the
Java Virtual Machine and disk caching artifacts. We report
the average and standard deviation of the 10 runs. We keep
the data in place in HDFS across the system for all runs
and frameworks to avoid variation due to changes in data
locality. We measure performance and interrogate the behavior
of the applications using a number of different tools including
Ganglia [27], ifstat, iostat, and vmstat available in Linux, and
log files available from the individual frameworks.

Table I shows the available resources in our two pri-
vate cloud deployments, the minimum required resources that
should be available on a slave for a framework to run at least
one task on Mesos and, the maximum resources that can be uti-
lized when the framework is the only tenant on the cloud. We
configure the Hadoop TaskTracker with 0.5 CPUs and 512MB
of memory and each slot with 0.5 CPUs, 768MB of memory,
and 1GB of disk space. We set the minimum and maximum
map/reduce slots to 0 and 50, respectively. We configure Spark
tasks to use 1 CPU and 512MB of memory, which also requires
an additional 1 CPU and 384MB of memory for each Mesos
executor container. We enable compression for event logs in
Spark and use the default MEMORY ONLY caching policy.
Finally, we configure Storm to use 1 CPU and 1GB memory
for the Mesos executor (a Storm Supervisor) and 1 CPU and
1GB memory for each Storm worker.

This configuration allows Hadoop to run 3 and 7 tasks
per Mesos executor for the development and production cloud,
respectively. Hadoop spawns one Mesos executor per Mesos
Slave and Hadoop tasks can be employed as either mapper
or reducer slots. Spark in FG mode runs 1 Mesos/Spark task
per executor on the development cloud and 3 Mesos/Spark
tasks per executor on the production cloud. In CG mode, Spark
allocates its resources to a single Mesos task per executor that
runs all Spark tasks within it. In both modes, Spark runs one
executor per Mesos Slave. We configure the Storm topology to
use 3 workers. On the development cloud 1 Supervisor (Mesos
executor) that runs 1 worker fits per slave and therefore 3
Slaves are needed in total. On the production cloud up to 3
workers can fit in the same Supervisor and therefore the Storm



(a) Development Cloud (b) Production Cloud

Fig. 2: Single Tenant Performance: Benchmark execution time in seconds for Hadoop and Spark on Mesos for different input
sizes. In this experiment, we execute each job using Hadoop, Spark in coarse grained mode (SparkCG), and Spark in fine grained
mode (SparkFG), using the development cloud (Figure 2a) and production cloud (Figure 2b).

(a) Development Cloud (b) Production Cloud

Fig. 3: Multi-tenant Performance: Benchmark execution time in seconds for Hadoop and SparkCG using different input sizes
deployed on the development cloud (Figure 3a) and the production cloud (Figure 3b). In this setting, SparkCG receives offers
from Mesos first because it is able to setup the application faster than Hadoop is able to.

topology can be deployed in 1 Slave or distributed in multiple
Supervisors across Slaves. We consider three different input
sizes for the applications to test for small, medium and long
running jobs. As the number of tasks per job is determined by
the HDFS block size (which is 128MB), the 1GB input size
corresponds to 8 tasks, the 5GB input size to 40 tasks and, the
15GB input size to 120 tasks.

IV. RESULTS

For the first set of experiments, we use this experimental
setup to measure the performance of Hadoop and Spark when
they run in isolation (single tenancy) on our Mesos-managed
private clouds. Throughout the remainder of this paper, we
refer to Spark when configured to use FG mode as SparkFG
and when configured to use CG mode as SparkCG.

Figure 2 presents the execution time for the three applica-
tions for different data set sizes (1GB, 5GB, and 15GB) for
the development cloud (left graph) and production cloud (right
graph). These results serve as a reference for the performance
of the applications when there is no resource contention (no
sharing) across frameworks in our configuration.

The performance differences across frameworks are similar
to those reported in other studies, in which Spark outperforms
Hadoop (by more than 2x in our case) [35, 26]. One interesting
aspect of this data is the performance difference between
SparkCG and SparkFG. SparkCG outperforms SparkFG in all
cases and by up to 2x in some cases. The reason for this is
that SparkFG starts a Mesos Task for each new Spark task
to facilitate sharing. Because SparkFG is unable to amortize
the overhead of starting Mesos Tasks across Spark tasks as
is done for coarse grained frameworks, overall performance is



(a) Development Cloud (b) Production Cloud

Fig. 4: Multi-tenant Performance: Benchmark execution time in seconds for Hadoop and SparkCG using different input sizes
deployed on the development cloud (Figure 4a) and the production cloud (Figure 4b), when we delay Spark to ensure that
Hadoop receives Mesos offers first.

significantly degraded. SparkCG outperforms SparkFG in all
cases and Hadoop outperforms SparkFG in multiple cases.

A. Multi-tenant Performance

In the next experiment, we investigate the performance
impact of multi-tenancy in a resource constrained setting. For
this study, we execute the same application in Hadoop and
SparkCG and start them together on Mesos. In this configura-
tion, Hadoop and SparkCG share the available Mesos Slaves
and access the same data sets stored on HDFS. Figure 3 shows
the application execution time in seconds (using different input
sizes) over Hadoop and SparkCG in this multi-tenant scenario.
As in the previous set of results, SparkCG outperforms Hadoop
for all benchmarks and input sizes.

We observe in the logs from these experiments that Spark-
CG is able to setup its application faster than Hadoop is able
to. As a result, SparkCG wins the race to acquire resources
from Mesos first. To evaluate the impact of such sequencing,
we next investigate what happens when Hadoop receives its
offers from Mesos ahead of SparkCG. To enable this timing
of offers, we delay the Spark job submission by 10 seconds.
We present these results in Figure 4. In this case, SparkCG
outperforms Hadoop for only the 1GB input size.

To understand this effect better, we summarize (i.e. we
zoom in) the performance differences between Hadoop and
SparkCG for different Mesos offer orders. Figure 5 shows
execution time for WordCount and the 15GB input size using
the production cloud. The first pair of bars shows the total
time for the benchmark when each framework has sole access
to the entire cluster (for reference from Figure 2b). The
second pair of bars is the total time when Hadoop receives
its resource offers from Mesos first. The third pair shows total
time when SparkCG receives Mesos offers first (for reference
from Figure 3b).

The data shows in this case that even though Spark is more
than 160 seconds faster than Hadoop in single-tenant mode, it
is more than 85 seconds slower than Hadoop when the Hadoop

job starts ahead of the Spark job. Whichever framework starts
first, executes with time similar to that of the single tenancy
deployment.

This behavior results from the way that Mesos allocates
resources. Mesos offers all of the available resources to the
first framework that registers with it, since it is unable to
know whether or not there will be a future framework to
register. Mesos is incapable to change system-wide allocation
when a new framework arrives, since it does not implement
resource revocation. SparkCG and Hadoop will block all other
frameworks until they complete execution of a job. In Hadoop,
such starvation can extend beyond a single job, since Hadoop
jobs are submitted on the same Hadoop JobTracker instance.
That is, a Hadoop instance will retain Mesos resources until
its job queue (potentially holding multiple jobs) empties.

These experiments show that when an application requires
resources that exceed those available in the cloud (input sizes
5GB and above in our experiments), and when frameworks use
CG mode, Mesos fails to share cloud resources fairly among
multiple tenants. In such cases, Mesos serializes application
execution limiting both parallelism and utilization significantly.
Moreover, application performance in such cases becomes
dependent upon framework registration order and as a result
is highly variable and unpredictable.

B. Fine-Grained Resource Sharing

In this section, we investigate the operation of the Mesos
scheduler for frameworks that employ fine grained scheduling.
For such frameworks (SparkFG in our study), the framework
scheduler can release and acquire resources throughout the
lifetime of an application.

For these experiments, we measure the impact of inter-
ference between Hadoop and SparkFG. As in the previous
section, we consider the case when Hadoop starts first and
when SparkFG starts first. We present a representative subset
of the results for clarity and brevity. Figure 6 shows the total



execution time in seconds for WordCount and its 15GB input
on the production cloud when we run Hadoop and SparkFG
together and alter the Mesos offer order. As for Figure 5,
we present three pairs of bars. The first, for reference, is
the single-tenant performance. The second is the performance
when Hadoop receives offers from Mesos ahead of SparkFG.
For the third, SparkFG receives Mesos offers ahead of Hadoop.

As we expect, when Hadoop receives offers from Mesos
first, it acquires all of the available resources, blocks SparkFG
from executing, and outperforms SparkFG. Similarly, when
SparkFG receives its offers ahead of Hadoop, we expect it to
block Hadoop. However, from the performance comparison,
this starvation does not occur. That is, Hadoop outperforms
SparkFG (the far right pair of bars) even when SparkFG starts
first and can acquire all of the available resources.

We further investigate this behavior in Figure 7. In this set
of graphs, we present a timeline of multi-tenant activities over
the lifetime of two WordCount/5GB applications (one over
Hadoop, the other over SparkFG). In the top graph, we present
the number of Mesos Tasks allocated by each framework.
Mesos Tasks encapsulate the execution of one (SparkFG) or
many (Hadoop) framework tasks. The middle graph shows the
memory consumption by each framework and the bottom graph
shows the CPU resources consumed by each framework.

In this experiment, SparkFG receives first the offers from
Mesos and acquires all the available resources of the cloud
(all resources across the six Mesos Slaves are allocated to
SparkFG). SparkFG uses these resources to execute the appli-
cation and Hadoop is blocked waiting on SparkFG to finish.
Because SparkFG employs a fine grained resource use policy, it
releases the resources allocated to it for a framework task back
to Mesos when each task completes. Doing so enables Mesos
to employ its fair sharing resource allocation policy (DRF) and
allocate these released resources to other frameworks (Hadoop
in this case) – and the system achieves true multi-tenancy.

However, such sharing is short lived. As we can observe in
the graphs, over time as SparkFG Mesos Tasks are released,
they are allocated to Hadoop until only Hadoop is executing
(SparkFG is eventually starved). The reason for this is that even
though SparkFG releases its task resources back to Mesos, it
does not release all of its resources back, in particular, it does
not release the resources allocated to it for its Mesos executors
(one per Mesos Slave).

In our configuration, SparkFG executors require 768MB
of memory and 1CPU per Slave. Mesos DRF considers these
resources part of the SparkFG dominant share and thus gives
Hadoop preference until all resources in the system are once
again consumed. This results in SparkFG holding onto memory
and CPU (for its Mesos executors) that it is unable to use
because there are insufficient resources for its tasks to execute
but for which Mesos is charging under DRF. Thus, SparkFG
induces a deadlock and all resources being held by SparkFG
executors in the system are wasted (and system resources
are underutilized until Hadoop completes and releases its
resources).

In our experiments, we find that this scenario occurs for
all but the shortest lived jobs (1GB input sizes). The 1GB
jobs include only 8 tasks and so SparkFG will execute 6 out
of its 8 task after getting all the resources on the first round

Fig. 5: Performance Implications of Multi-tenancy and Mesos
Offer Order: Hadoop and SparkCG. This graph shows Word-
Count execution time in seconds for input size 15GB using
the production cloud (single-tenant, multi-tenant with Hadoop
ahead of Spark, and multi-tenant with Spark ahead of Hadoop).
The framework that receives Mesos offers first performs best.

Fig. 6: Performance Implications of Multi-tenancy and Mesos
Offer Order: Hadoop and SparkFG. This graph shows Word-
Count execution time in seconds for input size 15GB using
the production cloud (single-tenant, multi-tenant with Hadoop
ahead of Spark, and multi-tenant with Spark ahead of Hadoop).

of offers. Moreover, Hadoop doesn’t require all the Slaves to
run 8 tasks for this job as explained on Section III leaving
sufficient space to Spark to continue executing the remaining
two tasks uninterrupted.

Deadlock in Mesos in resource constrained settings is not
limited to the SparkFG scheduler. The fundamental reason
behind this type of deadlock is a combination of (i) frameworks
“hanging on” to resources and, (ii) the way Mesos accounts
for resource use under its DRF policy. In particular, any
framework scheduler that retains resources across tasks, e.g.
to amortize the startup overhead of the support services (like
Spark executors), will be charged for them by DRF, and
thus may deadlock. Moreover, any Mesos system for which
resource demand exceeds capacity can deadlock if there is at
least one framework with a fine grained scheduler and at least
one framework with a coarse grained scheduler.

C. Batch and Streaming Tenant Interference

We next evaluate the impact of performance interference
in Mesos under resource constraints, for batch and streaming
analytics frameworks. This combination of frameworks is



(a) Number of active (staging or running) Mesos Tasks

(b) Memory allocation per framework

(c) CPU cores allocation per framework

Fig. 7: Multi-tenancy and Resource Utilization: The timelines
show active Mesos Tasks, memory, and CPU allocation in
Mesos for the development cloud. Hadoop and Spark in FG
mode compete for resources. Hadoop gradually takes over,
running Tasks on its executors (Figure 7a), while memory
(Figure 7b) and CPU cores (Figure 7c) previously assigned
to Spark remain idle until Hadoop completes.

increasingly common given the popularity of the lambda archi-
tecture [21] in which organizations combine batch processing
to compute views from a constantly growing dataset and
stream processing to compensate for the high latency between
subsequent iterations of batch jobs and to complement the
batch results with newly arrived unprocessed data [41, 23, 22].

Fig. 8: Hadoop and Spark performance on Mesos-managed
cloud shared with Storm: Execution time in seconds for
Hadoop and Spark applications in CG and FG mode, for
different input sizes and benchmarks on the development
cloud.

We perform two types of experiments. In the first, we
execute a streaming application using a Storm topology contin-
uously, while we introduce batch applications. In the second,
we submit batch and streaming jobs simultaneously to Mesos.
Figure 8 illustrates the performance results for the former.
We present execution time in seconds for the applications
and input sizes using Hadoop, SparkFG, and SparkCG, when
Storm executes in the background. The results show that the
performance degradation introduced by the Storm tenant varies
between 25% to 80% across frameworks and inputs, and is
insignificant for the 1GB input.

The reason for this variation is that Storm accepts offers
from Mesos for three Mesos Slaves to run its job on the devel-
opment cloud. This leaves three Slaves for Hadoop, SparkFG,
and SparkCG to share. The degradation is limited because
fewer Slaves impose less startup overhead on the framework
executors per Slave. The overhead of staging new Mesos Tasks
and spawning executors is so significant that it is not amortized
by the additional parallelization that results from additional
Mesos Slaves. We omit results for the production cloud for
brevity. The results are similar but show less degradation
(insignificant for 1GB, and 5% to 35% across frameworks and
other inputs) due to the additional resources available in the
production cloud.

Figure 9 shows the impact of interference from batch
systems on Storm throughput in tuples per second (Results
for latency are similar and we omit them for brevity). We find
that the interference is insignificant and Storm performance
is the same as that when it executes in single-tenant mode,
since Storm receives its offers and allocates the resources it
needs ahead of the batch frameworks. When a coarse-grained
batch system receives its resource offers from Mesos ahead
of Storm, Storm execution is blocked until the batch system
finishes. Figure 10 shows the timing diagram and this effect
on Storm when executed with a SparkCG tenant in Mesos for
the development cloud. Each line type shows a different stage
of execution for each framework for each Mesos Task. Results
with Hadoop and SparkFG are not shown for brevity. Hadoop
has the exact same effect on Storm as SparkCG, while with



Fig. 9: Impact of Multi-tenancy on Storm in Mesos: When
Storm receives its offers from Mesos ahead of the batch
frameworks, there is no interference impact on Storm, i.e.
Storm throughput is the same in multi-tenant and single tenant
deployments.

Fig. 10: Multi-tenant Interference between Storm and SparkCG
in Mesos, broken down by stage of execution: When SparkCG
receives its Mesos offers first, Storm blocks until SparkCG
finishes.

SparkFG this depends on the cloud size. On the development
cloud the released resources from SparkFG are not sufficient
for Storm to deploy its executors and therefore Storm is
blocked, while in the production cloud Storm will acquire
some of the resources released by SparkFG as described
previously, without however deadlocking SparkFG because
Storm does not consume all of the cloud resources to run its
tasks.

D. Startup Overhead of Mesos Tasks

We next investigate Mesos Task startup overhead for the
batch frameworks under study. We define the startup delay of
a Mesos Task as the elapsed time between when a framework
issues the command to start running an application and when
the Mesos Task appears as running in the Mesos user interface.
As part of startup, the frameworks interact with Mesos via
messaging and access HDFS to retrieve their executor code.
This time includes that for setting up a Hadoop or Spark job,
for launching the Mesos executor (and respective framework
implementation, e.g. TaskTracker, Executor), and launching the
first framework task.

Figure 11a shows the average startup time in seconds for
each Mesos Slave across applications for Hadoop, SparkFG,
and SparkFG when running the WordCount application with
input size 15GB. Our experiments indicate that other ap-
plications perform similarly. The data shows that as new

(a) Task startup delays across frameworks

(b) Task startup delays across input sizes

Fig. 11: Task Startup Delays Across Frameworks (Figure 11a)
and Input Sizes (Figure 11b) for the Development Cloud: The
data shows the time in seconds required for each Mesos Task
to finish its startup process.

tasks are launched (each on a new Mesos Slave), the startup
delay increases and each successive Slave takes longer to
complete the startup process. Our measurements show that this
increase is due to network and disk contention. Slaves that
start earlier complete the startup process earlier and initiate
application execution (execution of tasks). Task execution
consumes significant network and disk resources (for HDFS
access) which slows down the startup process of later Slaves.
This interference grows with the size of application input as
shown in Figure 11b. The graph shows the Mesos Task startup
overhead in seconds for each Slave for different input sizes
for WordCount over Hadoop (other frameworks exhibit similar
behavior).

Our results show that startup overhead impacts the overall
performance of applications and can significantly degrade the
performance of short running jobs: 30% for Hadoop and
55% for SparkFG for the 1GB experiments. Given that short
running jobs account for an increasingly large portion of big
data workloads today [11, 33, 32], such overheads can cause
significant under-utilization and widely varying application
performance in constrained settings.



V. RELATED WORK

This paper is an extended version of a conference publi-
cation [13]. Our extensions include results from experiments
using a second private cloud system (called production) and a
study of the impact of multi-tenancy when different resource-
offer orders are considered. We also provide additional analysis
on fine-grained resource sharing and on the impact of multi-
tenancy consisting of combinations of big data and fast data
(streaming) frameworks.

Cluster managers like Mesos [19] and YARN [40] enable
the sharing of cloud and cluster resources by multiple, data
processing frameworks. YARN uses a classic resource request
model in which each framework asks for the resources it needs
to run its jobs. Mesos as described herein, implements an
offer-based model in which frameworks can accept or reject
offers for resources based on whether the offers satisfy the
resource requirements of the application. Our work focuses on
fair-sharing and deadlock issues that occur on Mesos due to
lack of admission control and resource revocation. However,
Mesos is not the only cluster manager that suffers from such
problems. Other work [44] shows that, when the amount of
required resources exceeds that which is available, deadlocks
also occur on YARN.

Recently, new big data workflow managers that support
multiple execution engines have emerged. Musketeer [15]
dynamically maps a workflow description to a variety of
execution engines, including Hadoop and Spark to select the
best performing engine for the particular workflow. Simi-
larly, [36] optimizes end-to-end data flows, by specializing
and partitioning the original flow graph into sub flows that are
executed over different engines. The advent of these higher-
level managers calls for an increase in the combined use of
data processing systems in the near future. Our work focuses
on understanding system design limitations that will emerge
under these new conditions.

The performance differences of MapReduce and Spark
on very large clusters, with an emphasis on the architectural
components that contribute to these differences is studied
in [35]. [16] evaluates the memory and time performance of
Spark and MapReduce on Mesos, for the PageRank algorithm.
The authors in [26] extend MPI to support Big Data jobs and
compare performance and resource utilization of Hadoop and
Spark. Ousterhout et al [30] suggest using blocked-time analy-
sis to quantify performance bottlenecks in big data frameworks
and apply it to analyze Spark’s performance. In a recent work,
Li et al [24] extend incremental Hadoop [25] to support low
latency stream queries and compare the performance of their
system to Spark streaming [45] and Storm. The key aspect that
differentiates our work is our investigation and characterization
of the performance of Hadoop, Spark and Storm applications,
when run over Mesos cluster manager, in resource constrained
and multi-tenant settings.

There are numerous studies that characterize the per-
formance of MapReduce workloads. Many show that these
workloads consist of many jobs (if not the majority) that have
small input sizes and that have short execution times. Chen et
al [11] observe that most jobs have input, shuffle and, output
sizes in the MB to GB range and that 90% of the jobs have
input datasets less than few GBs. Similarly, authors of [33] find

that over 40% of jobs have less than 10 tasks, while about 50%
of jobs have between 10 to 2000 tasks and, 80% of the jobs
have duration less than 2 minutes. Lastly, the authors in [32]
observe that small jobs dominate their workloads and that more
than 90% of jobs touch less than 20GB of data, and their
duration is less than 8 minutes. Other researchers (e.g. [12,
31]) have shown the significant impact of startup overhead on
MapReduce jobs that run on large cluster systems (hundreds
to thousands of nodes). Our work differs from this past work
in that we investigate the performance impact of multi-tenant
interference on short running applications and analyze the
overhead of job startup under moderate resource constraints.
Such scenarios are increasingly common yet are not those for
which large scale analytics systems were originally designed,
warranting further study.

VI. CONCLUSIONS AND FUTURE WORK

The goal of our work is to characterize the behavior of
“big data” analytics frameworks in shared settings for which
computing resources (CPU and memory) are limited. Such
settings are increasingly common in both public and private
cloud systems in which cost and physical limitations constrain
the number and size of resources that are made available to
applications. In this paper, we investigate the performance and
behavior of distributed batch and stream processing systems
that share resource constrained, private clouds managed by
Mesos. We examine how these systems interfere with each
other and Mesos, to evaluate the effect on systems perfor-
mance, overhead, and fair resource sharing.

We find that in such settings, the absence of an ef-
fective resource revocation mechanism supported by Mesos
and the corresponding data processing systems running on
top of it, leads to violation of fair sharing. In addition, the
naive allocation mechanism of Mesos benefits significantly
the framework that submits its application first. As a result
coarse-grained framework schedulers cause resource starvation
for later tenants. Moreover, when systems (either batch or
streaming) with different scheduling granularities (fine-grained
or coarse-grained) co-exist on the same Mesos-managed cloud,
resource underutilization and resource deadlocks can occur.
Finally, the overhead introduced during application startup on
Mesos affects all frameworks and significantly degrades the
performance of short running applications.

In future work, we are investigating new resource allocation
strategies that facilitate fair, deadlock free sharing, without
introducing pre-emption, performance overhead, and system
complexity. In particular, we are interested in incentive-based
resource allocation that penalizes frameworks that hold onto
resources without using them and that encourages framework
developers to cooperate without increasing the complexity of
the core scheduling mechanism.
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