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Abstract—Serverless computing is a new cloud pro-
gramming and deployment paradigm that is receiving
wide-spread uptake. Serverless offerings such as Ama-
zon Web Services (AWS) Lambda, Google Functions, and
Azure Functions automatically execute simple functions
uploaded by developers, in response to cloud-based
event triggers. The serverless abstraction greatly sim-
plifies integration of concurrency and parallelism into
cloud applications, and enables deployment of scalable
distributed systems and services at very low cost.

Although a significant first step, the serverless ab-
straction requires tools that software engineers can use
to reason about, debug, and optimize their increas-
ingly complex, asynchronous applications. Toward this
end, we investigate the design and implementation of
GammaRay, a cloud service that extracts causal depen-
dencies across functions and through cloud services,
without programmer intervention. We implement Gam-
maRay for AWS Lambda and evaluate the overheads
that it introduces for serverless micro-benchmarks and
applications written in Python.

I. Introduction

Serverless computing [1], [2] (also known as cloud
functions or functions-as-a-service (FaaS) [3], [4]), is
an emerging paradigm for cloud software development
and deployment in which software engineers express
arbitrary computations as simple functions that are
automatically invoked by a cloud platform in response
to cloud events (e.g. HTTP requests, performance or
availability changes in the infrastructure, data storage
and production, log activity, etc.). Serverless platforms
automatically set up and tear down function execution
environments on-demand (typically using Linux con-
tainers), precluding the need for developers explicitly
to provision and manage servers and configure soft-
ware stacks. Developers construct and upload functions
and specify triggering events. Functions are typically
written in high level languages including Python, Java,
or Node.js, leverage cloud services for their implemen-
tation, and communicate via HTTP or similar protocols.

Serverless applications are characterized by large
numbers of transient, short-lived, concurrent functions.
Because the cloud (and not the developer) provisions
the necessary resources, and such functions (by defini-
tion) can tolerate a high degree of multi-tenancy, appli-
cation owners pay a very small fee (after any “free tier”
usage) for CPU, memory, and cloud service use (e.g.
$0.20 per 1M invocations per month, and $0.00001667
per memory * execution time). To facilitate scale at a
low price point relative to virtual server rental, cloud
providers restrict function size (i.e., memory, code size,
disk) and execution duration (e.g. 5 minutes maximum).

Amazon Web Services (AWS) released the first com-
mercially viable FaaS, called AWS Lambda, in 2014 [5],
[6]. Since this time, the model has received wide-spread
adoption because of its simplicity, low-cost, scalability,
and fine-grained resource control versus traditional
cloud services. Its popularity has spawned similar of-
ferings in other public clouds (e.g. [7], [8]) as well
as in open source and private cloud settings (e.g. [9],
[10], [11], [12], [13], [14]). Today, serverless is used
to implement a wide range of scalable, event-driven,
distributed cloud applications, including web sites and
cloud APIs, big data analytics, microservices, image
and video processing, log analyses, data synchroniza-
tion and backup, and real-time stream processing.

The serverless programming paradigm simplifies
parallel and concurrent programming and thus is a
significant step toward enabling efficiency and scale
for the next-generation (post-Moore’s-Law era) of ad-
vanced applications, such as those that interact with
data and the physical world (e.g. the Internet of Things
(IoT)) [15], [16], [17], [18]. However, the complexity
of asynchronous programming that these new applica-
tions embody requires tools that developers can use to
reason about, debug, and optimize their applications.
Today, such tooling for FaaS applications is nascent
with only simple logging services available. Logging
forces developers to write complex secondary applica-
tions that download, aggregate, analyze, and provide



effective anomaly alerts or feedback. Such effort is
error prone, takes focus away from innovation, and
must be repeated for every application.

To address some of these needs for Lambda, Amazon
has developed AWS X-Ray [19]. X-Ray links function
activities together using unique identifiers per function
invocation and presents performance and dependency
data to developers as logs and service graph summaries
for each application. Although a good first step, X-Ray
is limited in that (i) it does not provide causal ordering
of events, (ii) it does not trace through cloud services
(i.e. to capture dependency A—B, for a function A that
updates a DynamoDB table that triggers function B),
(iii) it performs sampling (missing events), and (iv) its
history is limited to 24 hours.

Causal order is a partial order on the events in
a distributed application that can be induced from
observing internal events and messages between func-
tions. Causality is an important tool employed in con-
current and distributed systems that facilitates reason-
ing about, analyzing, and drawing inferences from a
computation [20], [21], [22], [23]. In particular, causal
order is required for function design (to enable mu-
tual exclusion, consistency, deadlock detection), for dis-
tributed debugging, failure recovery, and inconsistency
detection, for reasoning about progress (termination
detection, collection of obsolete data and state), and
for measuring and optimizing concurrency. This lack
of support in AWS Lambda limits the degree to which
developers can identify the root cause of errors, per-
formance bottlenecks, cost anomalies, and optimization
opportunities for Lambda applications.

To address these limitations, we present Gam-
maRay, a cloud service for AWS Lambda applications
that provides a holistic view of causal application be-
havior and performance end-to-end. GammaRay re-
quires no developer intervention and works across AWS
regions and AWS cloud services. GammaRay intercepts
Lambda function entry points and calls to AWS ser-
vices made by the application. It records these events
synchronously using transactional database streams
(to guarantee causal consistency) and processes them
off line, in near real-time, to provide developers with
service graphs and analysis data at both the function
aggregate and instance level. As such, GammaRay
precludes the need for developers to write their own
CloudWatch and X-Ray log parsing and aggregation
tools for each application, and provides causal ordering
for concurrent, multi-function Lambda applications.

This paper investigates three implementation alter-
natives for GammaRay. Two of these alternatives are
full X-Ray replacements that collect both performance
data and causal relationships using static and dynamic
instrumentation. The third is a hybrid approach that
leverages X-Ray for performance monitoring (incurring
some of its limitations) in exchange for lower runtime
performance overhead. We investigate the overhead

of each alternative using micro-benchmarks and multi-
function serverless applications. We find that the hybrid
approach performs the best and that its implementa-
tion introduces 17ms per API call, 419ms on function
startup, and 5MB of memory, on average, over X-Ray.

II. Background

Serverless computing [1], [24], [4], [25], [26] is a
cloud computing execution model in which a cloud ser-
vice invokes functions that comprise an application, on
behalf of an application owner and in response to cloud
service events. Event triggers include HTTP requests,
database or object store updates, invocation by other
functions, performance or availability changes in the
infrastructure, log and queue activity, and publish/sub-
scribe notifications, among others. Because the service
automates and abstracts away the details of function
invocation, resource allocation and deallocation, and
runtime triggers for these applications, the model is
referred to as serverless, even though, behind the
scenes, servers are still involved. In this section, we
provide background on the AWS Lambda service which
we build upon and extend in this paper.

A. AWS Lambda

AWS Lambda was made available to the public as
an AWS service in 2014. The service provides support
for Lambda functions written in Python, Java, C#, and
Node.js, which access AWS cloud services via AWS
software development kits (SDKs) for these languages.
Each Lambda function has a single entry point (speci-
fied in its deployment configuration) and is deployed
in a particular AWS region. A Lambda function can
invoke other Lambda functions (including themselves)
in the same region. They can also be invoked automat-
ically (i.e. triggered) by updates made to AWS “event
sources” including DynamoDB, Simple Storage Service
(S3 object storage) Simple Notification Service (SNS),
CloudWatch, Alexa, and Kinesis. Some services serving
as event sources pass details about the triggering
action (e.g. the key that was updated in DynamoDB,
the bucket and file prefix that was deleted or modified
in S3, the SNS topic to which a post occurred, etc.).
Other event sources such as function invocation via
the command line interface (CLI) and the API Gate-
way [27], that trigger functions asynchronously, include
no trigger-identifying information in the callee.

AWS deploys Lambda functions via isolated Linux
containers and may (or may not) reuse containers for
repeat executions of the same, recently executed, func-
tion [28]. Functions can access parts of the container
file system (e.g. deployment directory and /tmp), en-
vironment variables, and the network. Functions can
integrate libraries and binary programs, but the re-
sulting deployment package is size-constrained. AWS
Lambda also limits on the number of concurrent func-
tion executions, disk usage, and execution duration of



functions (e.g. to 5 minutes), among other restrictions.
The latest AWS Lambda limits can be found at http:
//docs.aws.amazon.com/lambda/latest/dg/limits.html.

Moreover, some event sources (e.g. DynamoDB, Ki-
nesis, CloudWatch logs) can trigger multiple functions
in the same region for the same event (i.e. events
have “fan-out” dependencies). Alternatively, S3 and
API Gateway trigger a single function in the same
region per path or route, respectively. Finally, a SNS
notification can trigger one or more Lambda functions
in any region and is an ideal event source for cross-
region interoperation within region-distributed Lambda
applications.

B. Monitoring AWS Lambda Applications

There are two performance monitoring
services available to AWS application developers:
CloudWatch [29] and X-ray [19]. CloudWatch is a
service that collects information about AWS service
and resource use. It also includes the ability for
applications to write their own performance records
and an API for filtering, downloading, and reading
CloudWatch logs. Accessing CloudWatch via the API
however, is limited (e.g. 5 transactions per second per
region) with commonly long delays (on the order of
seconds) between event execution and the availability
of its log record, for scaling and system stability
purposes. The latest CloudWatch limits can be found
at http://docs.aws.amazon.com/AmazonCloudWatch/
latest/logs/cloudwatch limits cwl.html.

CloudWatch logging is available for AWS Lambda
functions in all AWS regions, however log streams are
local to a region and may or may not be distinct for con-
current invocations of the same function. Developers
must write complex applications (potentially as Lambda
applications themselves) to extract actionable insights
about the performance and behavior of their Lambda
applications, which is tedious and error prone given the
use limits, region isolation, and eventual consistency
of CloudWatch logging. Such efforts are infeasible and
costly for even medium-scale AWS Lambda applica-
tions, which can consist of hundreds to thousands of
function instances.

To address some of these limitations for highly
dynamic Lambda applications, web applications, and
microservices, AWS more recently introduced X-Ray. X-
Ray automatically samples the entry and exit of func-
tion instances, called segments, using unique trace
identifiers (trace_id). When a sample is taken, X-
Ray records function duration and container startup
overhead, and records and times SDK calls and HTTP
accesses that a function makes, as subsegments. Users
can define, annotate, and record their own subseg-
ments. X-Ray data is sent to an X-Ray daemon running
in the container with the function via UDP. The daemon
buffers and sends monitoring data (when sampled) to
the X-Ray logging service.

West Region X-Ray Management Console

East Region X-Ray Management Console
(Logs and service graphs are separate and disconnected
from those above in another AWS region)

Fig. 1: X-Ray service graph for ImgProc [30].

The X-Ray logging service presents data to devel-
opers as logs and dependency trees, called service
graphs. X-Ray links the segment and its subsegments
(per trace_id) into an application’s service graph as
leaf nodes with meta-information, such as the table
name of the DynamoDB table that the function updated
and the region in which it is located. Service graphs
visualize X-Ray log data for specified time durations
(aggregating multiple invocations of the applications).

Figure 1 shows the service graph for a multi-
function, concurrent Lambda application that inte-
grates two popular Lambda use cases (image process-
ing and geo-replication of data). The application, called
ImgProc (ImageProcPyF), is triggered by a user upload-
ing a photo to an S3 bucket (we configure updates to
this bucket as an event source for the function). Via the
AWS SDK, the function invokes the AWS Rekognition
image processing service on the photo and writes the
labels that it returns to a DynamoDB table (image-proc-
F). The function then reports its findings to a dynamic
web page (cf the requests object) and exits. They table
write triggers a second function (DBSyncPyF), which
concurrently synchronizes the table across regions
(reading table image-proc-F in the west region and
writing to table eastSyncTable-F in the east region).
This second table write triggers a third function in the
east region which updates a mirrored web page local
to its region. ImgProc was originally developed by AWS
engineers [30]; it is one of the applications with which
we empirically evaluate our work.

When a function is triggered by an unknown source,
the service graph represents this via a Clients icon.
X-Ray divides the function into two parts (subseg-
ments): its startup overhead (type AWS::Lambda) and
its execution time (AWS::Lambda::Function). Multiple
instances of functions are combined into aggregate
service graphs by X-Ray. However, within the raw
data of the logs from which the service graphs are



drawn, there is a segment with a unique trace_id for
each service graph with unknown source. The segment
consists of metadata and subsegments (for SDK calls,
HTTP requests, and any user-defined operations). The
metadata includes start and end times, trace_id, and
details about the operation type and outcome (e.g.
error status, if any). Segments and subsegments are
linked via Id’s and parent_id’s for subsegments with
the same trace_id. Thus it is possible to construct an
ordering of events (subsegments) that originate from
the same function (parent) but not across top-level
segments.

C. Limitations

The figure above (Fig. 1) reveals multiple limitations
of X-Ray. First, even though the ImageProcPyF triggers
DBSynchPyF by updating a DynamoDB table, X-Ray
log and service graph data does not capture these
relationships. Similarly, across regions, functions are
disconnected and part of independent X-Ray traces.
Moreover, the only option for viewing service graph
data is in aggregate; only log data contains per function
instance data.

Other X-Ray limitations relate to record loss. X-Ray
uses statistical sampling of performance information.
Highly scalable applications, “rare” events that exer-
cise code paths that are difficult to test can cause faults
that are difficult to reproduce and diagnose. If the
events are sufficiently rare, a statistical technique may
miss them. In addition, X-Ray uses UDP messages to a
separate process to offload logging overhead. Because
UDP is an unreliable network transport mechanism, it
may be that message are lost before their content can
be logged. Given this implementation, it is not possible
to use X-Ray alone to construct the causal order of
events across Lambda applications.

III. GammaRay

Causality (or the causal precedence relation) is a
well understood and important tool employed in con-
current and distributed systems that enables devel-
opers to reason about, analyze, and draw inferences
their applications [22], [31], [32]. Such reasoning and
analysis is difficult in these settings because the com-
munication delay between distributed functions that
communicate via message passing over a network, is
unpredictable. As such, it is impossible for them to
agree on the exact time and thus on the total order
of events that the application experiences across func-
tions [20]. However, it is possible to establish a partial
order on events with causal precedence if we know
the order of internal events — and — we synchronously
record when messages are passed.

To facilitate causal order tracking for serverless
applications in AWS that is cloud-wide - across all
AWS services and regions - we have developed a

DynamoDB

| CEREE

SNS
GammaRay

Support [C
L P

API Gateway

Fig. 2: GammaRay Overview. GammaRay automatically
injects support that captures the entry/exit and SDK
(cloud service access) of AWS Lambda applications.
Each SDK invocation carries a trace identifier through
the call. GammaRay extracts the identifier upon func-
tion entry for any triggered functions.

cloud service for AWS called GammaRay that we de-
pict in Figure 2. GammaRay extracts causal prece-
dence for Lambda applications by monitoring both
function-internal events (like X-Ray) and the message-
passing performed by functions through AWS cloud
services (which X-Ray does not). Moreover, Gam-
maRay augments causal relations with both aggregate
and instance-level performance data. To enable this,
GammaRay automatically injects instrumentation into
Lambda functions and into the SDK with which they
invoke cloud services (event sources that trigger other
functions) upon function deployment to AWS Lambda.
GammaRay considers messages in this setting to be
SDK calls between functions and services. GammaRay
synchronously records sender and receiver informa-
tion for each call. GammaRay consumes these records
off-line to compute causal relations and performance
statistics for each event and to construct a service
graph that can be easily interrogated by developers and
analysis tools.

The GammaRay design consists of three compo-
nents: a Lambda function deployment tool, GammaRay
runtime support, and GammaRay event processing en-
gine. The function deployment tool takes a code di-
rectory and a list libraries and builds a code package
that it then uploads to Lambda using the developer’s
credentials. The tool filters out unused libraries to min-
imize package size. If GammaRay support is requested
(a command line option), the tool injects GammaRay
instrumentation by replacing the function entry point
with the GammaRay entry point and by “wrapping”
AWS SDK and HTTP operations.

When a function executes, the GammaRay runtime
assumes control via this instrumentation, upon entry
and exit of function, SDK, and HTTP calls. The runtime
records information about each event synchronously in
a database. The record contains information including
a timestamp and a unique ID for the function instance.
Upon entry, GammaRay stores the unique ID of the
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Fig. 3: GammaRay service graph for ImgProc [30].
GammaRay captures causal dependencies and perfor-
mance through AWS services and across regions.

function instance, for inclusion in downstream records
for the function. It also invokes the original function.
When the original function returns, GammaRay records
its duration its return/response, and any errors/excep-
tions that occur, as part of the exit record. For SDK
calls, GammaRay records information about cloud ser-
vice access such as table name and keys for DynamoDB
updates, bucket name, prefix, and key for S3 updates,
SNS topics, and HTTP URLs.

As mentioned previously, when a Lambda function
invokes another (via the SDK or HTTP) there is no
trigger-identifying information available in the callee.
To overcome this limitation, GammaRay injects the
caller’s unique (request) ID into the payload of the
invocation as a hidden argument. This data is later used
by the event processing engine to map cloud service
updates (event sources) to function invocations and
produce causal relations across the application.

The GammaRay event processing engine runs in the
background in response to a transactional database
stream, to construct a service graph using the causal
order and performance of events across an applica-
tion !. Using the GammaRay API, this data can be
queried and analyzed by downstream data analysis
tools, e.g. those for anomaly detection and root cause
analysis [33].

INote that DynamoDB Stream semantics (employed by GammaRay
to implement the transactional database stream) enables multiple
agents to agree upon a single shared total order on events (when/if
connected).

us-east-1 UpdateWebsiteS
avg: 3398.0ms

A. Implementations

We next investigate three alternative implementa-
tions of GammaRay: G-Ray-D, G-Ray-S, and G-Ray-H.
In all three, GammaRay automatically inserts “hidden”
arguments into function invocations as needed, and
processes all function arguments upon function entry.
Additionally, all configurations implement the Gam-
maRay log via a shared DynamoDB table and stream.
DynamoDB Streams record the sequence of record-
level DynamoDB table modifications [34] and thus en-
able GammaRay to extract the causal relationships
across events that it records (in the order they occur).

G-Ray-D injects the necessary GammaRay instru-
mentation dynamically using a library that “monkey-
patches” [35] AWS Lambda SDK calls made by the
function to invoke the GammaRay runtime before and
after the call. It represents the most flexible, portable,
and application-transparent implementation strategy.
Alternatively, G-Ray-S implements the same function-
ality by adding the instrumentation code statically to
the AWS Lambda Python SDK. It increases the size of
an instrumented Lambda program (both in terms of
memory and package size) but avoids dynamic runtime
instrumentation overhead.

G-Ray-D and G-Ray-S are full replacements for AWS
X-Ray. They improve upon X-Ray in two ways. First,
they track causal order across AWS regions and across
service invocations. Secondly, they track all events
(rather than a statistical sample) so they can be bet-
ter used for performance debugging activities such
as diagnosis of faults due to rare events (X-Ray uses
statistical sampling). Moreover, because they only de-
pend on AWS’s scalable database (DynamoDB), and this
functionality is relatively common among public cloud
providers, in theory, these implementations could be
ported to other public clouds.

Alternatively, G-Ray-H is an AWS-specific implemen-
tation of GammaRay that makes maximal use of extant
AWS services, including X-Ray and CloudWatch. It im-
plements the same causal-ordering tracking as G-Ray-
D and G-Ray-S, but because G-Ray-H relies on AWS for
function timings, its performance data is sampled.

All implementations use the AWS SDK (boto [36])
and G-Ray-H and G-Ray-D rely on the Fleece library for
X-Ray daemon support [37] for Python. The GammaRay
deployment tool also uses the SDK to upload the com-
pressed Lambda package to AWS Lambda, to set up
the necessary policy and permissions for the function,
and to configure any event sources that trigger function
invocation. We have experimented with implementing
GammaRay for Java as well. In this paper, however, we
report on our experiences with Python exclusively.

B. GammaRay Event Processing Engine

The GammaRay event processing engine runs of-
fline - in the background and so does not introduce



App Description

empty Micro: Returns immediately

DDB read Micro: 100 random reads of DynamoDB table

DDB write Micro: 100 random writes to DynamoDB table

S3 read Micro: 100 random reads of random S3 object

S3 write Micro: 100 creates of a new S3 object

SNS Micro: 100 postings to SNS

Map- A Big-Data-Benchmark [39], [40] app implemented

Reduce in Lambda by AWS Engineers [41]

ImgProc Image Processing app [30]. Images uploaded
to S3 trigger a function which extracts labels using AWS
Rekognition service, and reads and writes DynamoDB tables
within and across regions (performing geo-replication),
and triggering a cross-region function

TABLE I: Micro-benchmarks (demarked Micro) and
Multi-Function Lambda Apps used to evaluate Gam-
maRay. All are available from our project repository.

overhead on serverless applications. The engine pro-
cesses the table data in append-order via the Dy-
namoDB Stream. From this information, it constructs
a service graph containing causal order dependencies
for each application across AWS services and regions.
It presents this data to users as graph aggregates
(as X-Ray does) or for individual function instances
(which X-Ray does not) and annotates the graph with
performance data. The amount and type of data with
which GammaRay annotates its graphs is configurable.

Figure 3 shows the service graph for the ImgProc
application for one run of the G-Ray-S configuration.
GammaRay leverages graphviz [38] for its service
graph implementation. In this configuration, the engine
displays SDK operation names and key names, and
average performance across event instances. Because
the S3 write is performed by a user (Clients) directly,
the average time is not available (denoted ??ms in the
figure). GammaRay displays non-event-source opera-
tions (e.g. DB reads) in gray and errors in red.

IV. Evaluation

To evaluate GammaRay, as well as to illuminate
the source of the overhead it introduces, we employ
both multi-function Lambda applications and micro-
benchmarks. We first overview these applications and
our empirical methodology and then present our em-
pirical results. We used only the AWS Free Tier for
implementation and evaluation of this study (i.e. no
costs were incurred for function invocation).

A. Methodology

The applications and micro-benchmarks that we
use in this study are listed in Table I. We present
the baseline timings in milliseconds (ms) and memory
used in megabytes (MB) for each in Figure 4. For the
micro-benchmarks, the DB payload is 4 bytes; the S3
operations are on empty files. We execute both sets of
Lambda applications multiple times and compute the

TTime (ms) _ |Clean X-RayND  |X-Ray |
empty 6.825 10.304 12.888)
DDB read 2,430.524| 2,760.705| 4,745.461]
DDB write 2,392.259| 2,926.633] 4,754.816
S3 read 2,841.425| 3,134.483 5,215.324}
53 write 5,354.460| 6,073.092| 8,727.31§
5NS 4,217.200| 4,327.122 6,432.616
Map-Reduce |124,582.122|122,156.327|114,006.962
ImgProc 3,417.780| 3,047.135| 3,067.145
Memory (MB) |Clean X-RayND __ |X-Ray

empty 20.990 24 980 40.960)
DDB read 24,980 40,960 44.410
DDB write 40.960 44.410 64.860|
53 read 44.410 64.860 63.560|
S3 write 64.860 63.560 48.625)
SNS 30,960 34,840 46.720
Map-Reduce | 1,175.333| 1,203.825| 1,231.351
ImgProc 107.920] 113.360]  114.440

Fig. 4: Baseline performance data for the micro-
benchmarks and Lambda apps. The top table shows the
total time in microseconds; the bottom table shows the
total memory consumed in MB, on average across runs.

average and standard deviation. We execute the micro-
benchmarks 200 times and the Lambda applications 50
times unless otherwise noted.

The baseline configurations, which we use for com-
parison and which include no GammaRay functionality,
are Clean, X-RayND and X-Ray. Clean captures the
performance of the application with all tracing turned
off for all functions. X-RayND shows the performance
of the stock AWS X-Ray with tracing turned on, but
the data capture mechanisms do not use a separate
X-Ray “daemon”. Without this daemon option, X-Ray
logs function entry and exit calls in Python applications
but not the Python SDK calls that the function makes.
X-Ray is full AWS X-Ray support for Python applications
using the X-Ray daemon implemented via the Fleece
library [37].

The baseline measurements reveal interesting char-
acteristics about AWS Lambda. First, the empty micro-
benchmark results (in which the function simply re-
turns) show no statistical difference in either the mean
or the variance of their execution times, either with or
without tracing. This result seems to indicate that the
X-Ray logs are updated asynchronously (i.e. there is in-
termediate buffering for which users are not charged).

Full X-Ray introduces overhead for both the
DDBread and DDBwrite benchmark. Each benchmark
reads/writes DynamoDB 100 times. In the case of
X-RayND, only the start and exit of the benchmark are
logged. For X-Ray, each of the internal 100 SDK calls to
DynamoDB are also logged. Since the mean execution
time approximately doubles, we conclude that internal
SDK logging for DynamoDB using the X-ray daemon



requires approximately 1/100 the time required for
entry and exit logging. The same seems to hold for S3
reads but not for S3 writes (which take more time than
reads. For long-running X-Ray does not wait but instead
posts records that the operation is “in-progress” [42]
potentially incurring more overhead for multiple log
records.

For the multi-function Lambda applications, Map-
Reduce and ImgProc, X-Ray executes in less total time
than Clean (last two rows of top table in Figure 4).
We ran a Student’s t-test [43] on the datasets and find
their means to be different. We do not have a good
explanation as to why X-Ray is faster but believe that
it is related to the AWS implementation and deployment
of X-Ray. In our evaluation, we compare GammaRay to
X-Ray for these applications.

B. Application Performance

We first empirically evaluate GammaRay for our
long-running Lambda application: Map-Reduce. This
application was written by AWS engineers and is based
on one of the Big Data Benchmark programs [39]. This
application implements the map-reduce protocol but
relies only on AWS Lambda and S3 for its implemen-
tation, i.e. it does not use HDFS [44], Hadoop [45],
Spark [46], or Amazon Elastic Map Reduce (EMR). We
use the pavlo/text/Inode/uservisits [40] dataset which
is 24MB in size and contains IP addresses that have
visited particular websites. The application invokes 29
mappers, which read their portion of the input from S3.
Mappers count the number of access per IP prefix for a
range of IPs and store the results in S3. A coordinator
monitors this progress (via triggers from S3 writes)
and invokes a single reducer function when all mappers
complete. The reducer downloads the intermediate re-
sults and performs a reduction across them to produce
the final per-IP count which its stores in S3 (which
again triggers the coordinator one final time).

Recall from Figure 4, that the application with-
out GammaRay or X-Ray completes in approximately
125 seconds (cf Map-Reduce row, Clean column of
Figure 4) and 114 seconds with full X-Ray enabled
(shown in the X-Ray column of Figure 4 in the Map-
Reduce row). Figure 5 shows the percentage overhead
versus full X-Ray introduced by GammaRay on the map-
reduce application. On total time, G-Ray-D introduces
25.1%, G-Ray-S introduces 15.3%, and G-Ray-H intro-
duces 11.9% overhead versus X-Ray. On memory use,
G-Ray-D introduces 3.7%, G-Ray-S introduces 7.5%,
and G-Ray-H introduces 4.4% overhead.

This overhead is primarily due to the instrumen-
tation performed by each variant. On function entry,
GammaRay parses and logs (in DynamoDB) function
input data. G-Ray-D and G-Ray-S both also log exit
events to DynamoDB (to record timings). G-Ray-D and
G-Ray-S log before and after each SDK call to capture
timings and causal dependencies; G-Ray-H records a

Map-Reduce Lambda: Pct. Overhead (Time and Memory) vs XRay
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Fig. 5: Percent overhead versus X-Ray for Gam-
maRay for the Map-Reduce Lambda application. For
each GammaRay variant (G-Ray-D=dynamic, G-Ray-
S=static, and G-Ray-H=hybrid), we present the percent
overhead on total time across functions and on memory
used across functions, on average for 50 runs of the
application.

log entry before each SDK call that might trigger
other Lambda functions, to track causal dependencies.
Moreover, X-Ray tracing is turned off for G-Ray-D and
G-Ray-S (because it is not needed) and turned on for
G-Ray-H which uses X-Ray data to annotate the causal
service graph with performance data (offline).

The overhead of GammaRay is low for this appli-
cation because the time spent not executing event-
source-triggering calls is large relative (the application
executes for over 124 seconds) to the number of calls
that GammaRay instruments. For this app, G-Ray-S
and G-Ray-D generate over 840 GammaRay tracing
records; G-Ray-H generates 125 records. As a result,
much of the time is spent in mapper and reducer
functions for data processing.

We next evaluate the overhead of GammaRay for the
short running ImgProc application. ImgProc performs
image processing and geo-replication of database ta-
bles; we describe this application fully in Section II. The
application consists of three dependent functions (two
in the east region and one in the west) that trigger each
other via DynamoDB table updates (in both regions).
Application execution is initiated by file being placed
in an S3 bucket.

Figure 6 shows the percentage overhead of Gam-
maRay versus X-Ray for the ImgProc application. As
shown in the baseline data, one instance of the app
completes in 3.1 seconds and uses 114MB of memory
for X-Ray. Because a single instance of this application
is very short running, GammaRay consumes a signif-
icantly larger overall percentage of total time than it
did for Map-Reduce. For this application, G-Ray-D intro-
duces 92.3%, G-Ray-S introduces 66.8%, and G-Ray-H
introduces 42.9% execution overhead. In terms of mem-
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Fig. 6: Percent overhead versus X-Ray for GammaRay
for the Image Processing (ImgProc) Lambda applica-
tion. For each GammaRay variant (G-Ray-D=dynamic,
G-Ray-S=static, and G-Ray-H=hybrid), we present the
percent overhead on total time across functions and on
memory used across functions, on average for 50 runs
of the application.

Storage MB |Local Project Directory /ftmp Directory
compressed |uncompressed |compressed [uncompressed

Clean 0.0002 0.0001

X-RayND 0.0002 0.0001

X-Ray 0.7311 2.2188

G-Ray-D 0.7325 2.2266

G-Ray-5 0.0021 0.0117 3.4353 23.8320]
G-Ray-H 0.7330 2.9609

Fig. 7: Container disk space usage for GammaRay
wrapper and library support

ory use, G-Ray-D introduces 26.5%, G-Ray-S introduces
101.1%, and G-Ray-H introduces 7.2% overhead.

The implementation of G-Ray-S adds more memory
overhead than the other variants. We believe this is
because of the additional code footprint that we require
for the GammaRay library extensions (we measure and
discuss disk space usage further below). Moreover, a
single invocation of the ImgProc application comprises
18 events that consume most of the execution time.
GammaRay writes database records for all 18 events
including entry/exit for configurations G-Ray-D and
G-Ray-S. Configuration G-Ray-H posts only 5 records at
during execution (those sufficient to capture the causal
ordering). Clean, X-RayND, and X-Ray post no records
during execution - all performance data is recorded via
unreliable communication and eventually consistent,
non-order preserving logs, asynchronously.

From the results of these two Lambda applications,
we conclude that the execution overhead associated
with tracking causal ordering across regions and AWS
service invocations is lowest for the GammaRay-X-
Ray hybrid (configuration G-Ray-H). This configuration
enables GammaRay to use less memory and record

the minimal set of events (required to identify causal
relations across events) synchronously, and all other
events asynchronously via the X-Ray daemon. We next
investigate the overhead that GammaRay introduces
at a finer grain using micro-benchmarks (the first six
programs in Table I).

C. Container Disk Space Usage

As discussed previously, the empty micro-
benchmark returns immediately when invoked. We use
this micro-benchmark to evaluate the storage overhead
GammaRay imposes on container disk space given
the minimal Clean code package of this benchmark.
The table in Figure 7 reports disk space usage in
megabytes (MB) for the Lambda function package (the
function code and its libraries) that is downloaded and
decompressed upon container instantiation when a
function is invoked. Columns 2 and 3 shows the size in
MB for the package compressed and uncompressed.
On average GammaRay increases compressed package
size by less than 1% for G-Ray-H.

The size of the package is limited by AWS to have
a maximum of 50MB compressed and 250MB uncom-
pressed. Large package sizes also slow down function
deployment times (including version replacement and
code update). To keep deployment times low, libraries
in the package can be placed in the tmp file system in
the container. To use this option, developers package
this code separately and upload it to S3. Upon invoca-
tion the developer adds code to the start of the function
that downloads, extracts, and links the code into the
application. The GammaRay tool performs these oper-
ations automatically. AWS limits the maximum size of
the tmp file system to 500MB.

We use this option for the G-Ray-S configuration.
We do so because this configuration rewrites a small
portion of the AWS SDK (botocore). AWS provides the
SDK in the container for free. Because of the rewrite,
GammaRay must include botocore in the deployment
(to replace the default container version). By doing so,
G-Ray-S has a very small project package and a large
(compressed and uncompressed) tmp file system com-
ponent as shown in the table using columns 3 and 4.
We include the time required to download from S3 and
uncompress the package in all G-Ray-S experiments.
We find that if the function is executed repeatedly and
AWS reuses the container, we can avoid this overhead.
To do so, GammaRay first checks whether the down-
loaded package exists and if so, performs only library
loading and linking.

We also believe that the additional G-Ray-S library
code increases the overall memory footprint at runtime
(cf G-Ray-S Memory in Figures 5 and 6). On average,
however, GammaRay introduces a small overhead on
container storage for its wrappers and additional li-
braries for both G-Ray-D and G-Ray-H versus X-Ray



TTime Startup SDK (Overhead per operation)

Ohead (ms) (wrapper)| DDB Read | DDB Write | 53 Read | 53 Write SNS Avg
X-Ray (over Clean) 6.063) 47.326 47.419 52.024 B7.144 b64.197 59.622
G-Ray-H (over X-Ray) 418.850| 1.458 29.474 2.700 19.347|  33.846| 17.365
G-Ray-H (Total over Clean) 424.913' 48.783 76.894 54,724 106.492 93.043' 76.987
Memory Ohead (MB) SDK (Total per benchmark)

X-Ray [Over clean) 17.285 16.910 16.495 14.150 14.150' 15.798
G-Ray-H (over X-Ray) 1,985 5010, 8270 7.855|  4.360] 5.496
G-Ray-H (Total over Clean) | | 19.270 21.920] 24765  22.005] 18510  21.294

Fig. 8: Micro-benchmark Result Summary. The top table shows the overhead on total time (TTime) in milliseconds
(ms) and the bottom table shows overhead on memory in megabytes (MB) for the micro-benchmark programs. The
first row of data is the overhead that X-Ray introduces for performance monitoring. The second row of data is the
additional overhead on top of X-Ray that GammaRay introduces. In the top table, the overhead is broken down by
startup time and per-SDK operation. At startup, the GammaRay wrapper introduces 125ms for obtaining a handle
to the GammaRay database table from AWS and just under 300ms for processing function inputs and storing them
in the table. On average, X-Ray adds 60ms per SDK operation and 16MB of memory overall. GammaRay adds

another 17ms and 5MB of memory, respectively.

because it is able to leverage the same libraries as X-
Ray for their implementation.

D. Micro-Benchmark Performance

We next breakdown the overhead of tracing on
the remaining micro-benchmarks. We only consider
G-Ray-H as it is the best performing GammaRay con-
figuration. G-Ray-H keeps its overhead low by relying
on X-Ray to collect performance statistics. Thus X-
Ray must be turned on in this configuration (intro-
ducing some overhead itself). Moreover, since X-Ray
only performs sampling and its logs are eventually
consistent (with delays of seconds in many cases), the
performance information on the GammaRay service
graphs is also subject to these disadvantages. However,
GammaRay guarantees causal order for service graph
connectivity through AWS services.

The two DDB micro-benchmarks execute random
100 reads and 100 writes to different AWS DynamoDB
tables, respectively. The two S3 micro-benchmarks ex-
ecute random 100 reads and 100 writes to AWS S3
buckets, respectively. And the SNS micro-benchmark
posts 100 notifications to AWS SNS. The performance
data for the Clean and X-Ray configurations to which
we compare is shown in the baseline data (Figure 4).
The performance results for the micro-benchmarks is
shown in Figure 8. The top table presents data for
total time overhead in milliseconds (ms) and the bottom
table shows memory overhead in megabytes (MB) for
X-Ray and G-Ray-H.

For total time overhead (the top table), we break
out that imposed on function startup from that imposed
on SDK calls. The first row of data in the top table
shows the number of milliseconds added to Clean by
X-Ray. X-Ray adds 6ms at startup and 47-87ms on the

different SDK operations evaluated. X-Ray tracing is
lowest on DynamoDB reads and writes and highest on
S3 writes and SNS notifications. We believe that this
latter overhead is due to the multiple “in-progress”
records that X-Ray posts for longer running operations
such as these. We observe many such records for S3
write and SNS operations for these benchmarks.

The second row in the top table shows the addi-
tional overhead (over X-Ray) that G-Ray-H introduces.
Since GammaRay relies on X-Ray for performance data,
the total overhead of GammaRay versus Clean is a
combination of both X-Ray and GammaRay (last row
in both tables). G-Ray-H imposes 419ms on function
startup. This overhead consists of obtaining a handle
to the GammaRay DynamoDB table, parsing the func-
tion arguments to extract trigger information (either
inserted by GammaRay or by AWS automatically), and
synchronously writing a record containing this payload
to the DynamoDB table. The payload contains a time-
stamp, the request ID, the function ID, and 4-8 addi-
tional strings describing the event source (triggering
operation). Depending on the event source this payload
can vary in size from 16 bytes to arbitrary length (e.g.
a DynamoDB key, S3 bucket name, or SNS subject
contains application-specific data which can be large).

In our study, the largest payload we have observed is
4 kilobytes. Thus, table write time by the GammaRay
wrapper can vary but we observe it to be 293ms on
average with a standard deviation of 78ms. We mea-
sured the time for obtaining the DynamoDB handle
from AWS via repeated executions of it alone in a
Lambda function (i.e. as another micro-benchmark).
We find that for Clean, this operation takes 126ms
on average (with a standard deviation of 59ms). Be-
cause this startup overhead has a significant impact
on short-running applications (as shown previously for



the ImgProc application), we are investigating ways of
minimizing payload size in particular, and optimizing
the GammaRay startup process (wrapper), as part of
future work.

As shown in columns 3-7 (row 2 of data) in the
top table, GammaRay introduces 1-34ms of additional
overhead (over X-Ray) on individual SDK operations.
Because G-Ray-H writes to the DynamoDB table once
per operation (immediately prior to the operation), only
for events that can potentially trigger other Lambda
functions, its overhead is small for DDB Read and S3
Read. Only DDB Write, S3 Write, and SNS include
operations that are potentially triggering (i.e. they
can be event sources). G-Ray-H introduces 29ms on
DynamoDB write operations, 19ms on S3 write oper-
ations, and 34ms on SNS notifications.

The final column of the table shows the average
overhead per operation. X-Ray introduces 60ms per
operation for tracing and G-Ray-H introduces an ad-
ditional 17ms. The sum of these overheads is what
G-Ray-H requires to produce causal service graphs,
through AWS services, annotated with performance
data. This data is shown in the bottom row of both
tables. G-Ray-H introduces on average, a total of 424ms
on function startup and 77ms on each AWS SDK call to
achieve this. In terms of memory (bottom table), X-Ray
introduces 16MB of memory, with G-Ray-H adding an-
other 5MB, across the micro-benchmarks on average.

V. Related Work

In this section, we overview related work. We focus
on research contributions in the area of debugging
serverless applications and tracking causal relation-
ships in distributed systems.

The Serverless framework[12] simplifies the process
of developing Lambda applications. With an offline
plugin, users debug Lambda functions locally. Docker-
lambda[47] is a reverse-engineered sandbox that repli-
cates AWS Lambda. It supports all Lambda runtimes
and guarantees the same behavior of on AWS Lambda.
Josef Spillner studied FaaS and implemented Snafu[48],
a modular system compatible to AWS Lambda, which
is useful for debugging Lambda applications. The only
other extant debugging and analysis support for AWS
Lambda applications comes from logging tools. AWS
as mentioned previously, provides CloudWatch and X-
Ray logging with their limitations detailed in Section II.
New Relic[49] and Dashbird[50] provide AWS Lambda
monitoring by collecting data from AWS Cloudwatch.
Zipkin[51] is a distributed tracing system based on
Google Dapper[52]. It helps gather timing data needed
to troubleshoot latency problems in Lambda applica-
tions.

Capturing causal ordering in support of debugging
and performance analysis is well understood and has
been extensively researched. Schwarz et al.[22] shows

that characterizing the causal relationship is key to
understanding distributed applications. Bailis et al.
revisits causality in [53] in the context of real-world
applications and proposes a number of interesting ex-
tensions to the model.

Many distributed track causal relationships in dis-
tributed applications. Google has made its production
distributed systems tracing infrastructure, Dapper[52]
available for public use. The paper describes how they
achieve low overhead, application-level transparency,
and ubiquitous deployment in the large scale. Fonseca
et al. proposed X-trace[54], a tracing framework that
provides a comprehensive view of behavior of a mod-
ern Internet system that consists of many applications
across multiple administrative domains. Kronos [55]
utilizes a separate event ordering service to determine
the order of interdependent operations in a distributed
system. Escriva et al. demonstrates the benefit of pro-
viding a Kronos API via several example applications.

Other research contributes new approaches to
achieving causal consistency in distributed and
scalable datastore systems. Lloyd et al. proposed
COPS[56], a key-value store that delivers causal
consistency across the wide-area. They identify and
define a new consistency model, causal consistency
with convergent conflict handling. Bolt-on[57] is a
system proposed by Bailis et al., which provides a
shim layer that provides causal consistency on top
of general-purpose and widely deployed datastores.
Saturn[58] is a metadata service for geo-replicated
data management systems. It can be used to ensure
that remote operations are in a visible order that
respects causality. Saturn has been evaluated in
Amazon EC2 and the work demonstrates that weakly
consistent datastores can provide an improvement (via
causal consistency) over eventually consistent models.

VI. Conclusions

Serverless is an emerging cloud service that sim-
plifies and facilitates development and deployment of
highly concurrent and scalable applications. Despite
its popularity and wide-spread availability, developer
support is limited to only basic logging. With this paper,
we take an initial step to address this limitation with
GammaRay, a cloud service that tracks causal depen-
dencies across functions and through cloud services for
serverless applications. Causal dependency analysis is
an important tool employed in non-serverless concur-
rent and distributed systems that links events in an
application in “happens-before” order. Such ordering
is key for effective distributed debugging, performance
and cloud cost optimization, failure recovery, anomaly
detection, and root cause performance analysis.

GammaRay tracks dependencies across serverless
applications and through cloud services. We investigate
three different ways of engineering GammaRay and



evaluate the overhead of each using serverless micro-
benchmarks and applications. We implement Gam-
maRay for AWS Lambda Python applications and show
that it is possible to leverage existing cloud services
for much of its implementation. For the applications,
GammaRay introduces 12-43% execution overhead and
1-7% memory overhead on average. This translates to
approximately 17ms per API call, 419ms on function
startup, and 5MB of memory, on average, over X-Ray.
Finally, the entirety of this study (development and
empirical evaluation triggering hundreds of thousands
of lambda functions) was performed using only the AWS
Free Tier (i.e. no costs were incurred).
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