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Example-Based Microstructure Rendering with Constant Storage
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Ours, 3.93 min

mem. cost: 35.0 MB

Yan et al. [2016], 3.44 min

mem. cost: 7896.0 MB

Microfacet model, 3.05 min Ours, 5.80 min

mem. cost: 35.0 MB

Yan et al. [2016], 4.59 min

mem. cost: 7896.0 MB

Microfacet model, 3.36 min

Fig. 1. Comparison between renderings produced with our method and the work of Yan et al. [2016]. The leather material is represented using two normal

maps: a standard macro-level map, and a microstructure map, synthesized on-the-fly using our method from a small 512 × 512 example patch. Bottom:

zoomed-in images rendered at higher resolution. For Yan et al. we use a 5K × 5K normal map as input. The storage of our method is 35.0 MB, while the

previous method costs 7896.0 MB to handle a similar level of detail without repetition. For comparison, we also show the rendering with a standard microfacet

model, lacking the microstructure details.

Rendering glinty details from specular microstructure enhances the level of

realism, but previous methods require heavy storage for the high-resolution

height field or normal map and associated acceleration structures. In this

paper, we aim at dynamically generating theoretically infinitemicrostructure,

preventing obvious tiling artifacts, while achieving constant storage cost.

Unlike traditional texture synthesis, our method supports arbitrary point and

range queries, and is essentially generating themicrostructure implicitly. Our

method fits the widely used microfacet rendering framework with multiple

importance sampling (MIS), replacing the commonly used microfacet normal

distribution functions (NDFs) like GGX by a detailed local solution, with a

small amount of runtime performance overhead.

CCSConcepts: ·Computingmethodologies→Rendering;Reflectance

modeling.

Additional KeyWords and Phrases: Rendering, surface microstructure, glints,

constant storage, procedural by-example noise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Anonymous Author(s). 2019. Example-Based Microstructure Rendering with

Constant Storage. ACM Trans. Graph. 1, 1 (September 2019), 12 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Microstructure rendering of glinty details [Yan et al. 2014] has

brought a new level of realism to rendering specular highlights,

a core effect in computer graphics. This method and subsequent

work uses high-resolution normal maps to explicitly define every

microfacet normal. However, very large normal maps are required to

cover enough surface area without obvious repetition. For example,

Yan et al. [2018] used a resolution of one micron per texel, which

requires a 10K × 10K normal map to cover just one square centime-

ter. Worse, hierarchical acceleration structures over these normal

maps are needed for efficient pruning of non-contributing normals,

making the storage problem even more severe. Designing normal

maps of that size, which moreover need to allow for seamless tiling,

requires additional tedious effort; normal map data of such size and

quality is not easily available. These are key issues reducing the

practicality of these methods.

Although texture synthesis methods are ubiquitous, few of them

are suitable for the microstructure rendering task. Earlier image

quilting techniques [Efros and Freeman 2001; Efros and Leung 1999;

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.
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Wei and Levoy 2000] and recent neural network based texture syn-

thesis methods [Jetchev et al. 2016; Zhou et al. 2018] are synthesiz-

ing an image starting from a core example image. The problem is

that, if we would like to query the synthesized image say at index

(100K , 100K), the method has to actually synthesize the image all

the way up to that point, which is a clear violation of our constant

storage need. We see that a dynamic point query is needed instead.

On the other hand, procedural noise methods, such as Perlin

noise [Perlin 1985], Gabor noise [Lagae et al. 2009] and texton

noise [Galerne et al. 2017], use a few parameters to control the

appearance of a non-repeating noise function over an infinitely

large space. By-example noise methods [Galerne et al. 2012; Gilet

et al. 2012; Heitz and Neyret 2018] offer more artist controllability

by providing an example texture and blending patches from it at

different querying positions. These methods require no additional

storage, and support on-the-fly point queries. However, for mi-

crostructure rendering, we need not only a normal map, but also the

corresponding acceleration method for pruning non-contributing

regions. Unfortunately, none of these methods are able to support

min-max queries in an arbitrary range. Such a range query capability

is a necessary component of a solution to our problem.

We present a method that implicitly generates the normal map

along with a range query capability, so that it can directly fit into

the microstructure rendering framework. Our method builds upon

by-example noise methods to maximize artist controllability, and

generates normal maps by blending patches from input examples.

We support dynamic point queries and range queries on the implicit

normal map generated using any by-example method, as long as the

blending operation is monotonically increasing (as will be defined

in Sec. 4.2). With our method, we are able to render microstructure

with non-repetitive patterns, with constant storage cost and a small

performance overhead over previous methods.

The rest of the paper is arranged as follows. In Sec. 2, we intro-

duce previous work related to microstructure rendering and general

procedural appearance. In Sec. 3, we briefly review the key ideas

of microstructure rendering and by-example noise, after which we

propose our insight and method framework. Next, in Sec. 4, we

describe our point query (Sec. 4.2) and range query (Sec. 4.3) ap-

proaches, respectively. We illustrate our implementation details in

Sec. 5 and compare our method with previous work in Sec. 6 in

terms of overall quality, storage and performance.

2 RELATED WORK

In this section, we organize the related work into two basic cat-

egories. We first briefly review previous work on microstructure

rendering and capture, then introduce related work on texture syn-

thesis and general procedural appearance.

Microstructure rendering. Surface reflectance in computer graph-

ics is typically described using statistical tools. More specifically,

microfacet theory [Torrance and Sparrow 1967] uses smooth ana-

lytic functions such as Beckmann [Beckmann and Spizzichino 1987]

and GGX [Walter et al. 2007] to model the distribution of surface

normals. More recently, Yan et al. [2014] introduced the idea of using

patch-local normal distribution functions (P-NDFs) to accurately

compute the spatially and directionally varying appearance from

explicit specular microstructure such as bumps, brushes, scratches

and metallic flakes. The microgeometry is defined using extremely

high resolution normal maps. Yan et al. [2016] proposed a position-

normal distribution method to accelerate computation, which was

later extended to handle wave optics effects [Yan et al. 2018]. All

these methods share a common problem with storage cost: the mi-

crostructures have to be defined at resolutions of 1 − 10 microns

per texel, which either requires very large textures (and associated

acceleration structures) or leads to tiling artifacts.

Since explicit microstructure is costly to store, a series of methods

were designed to model specific effects. Jakob et al. [Jakob et al.

2014] introduce a procedural BRDF that produces glitter effects

from implicit mirror flake distributions without explicitly storing

the underlying microstructure, but is not extensible to other kinds of

microgeometry. Raymond et al. [2016] model surfaces as the mixture

of a base surface and a collection of 1D scratches, later extended by

Werner et al. [2017] for wave optics effects; these methods work well

for scratches but do not support other appearances. Zirr et al. [2016]

dynamically adds micro-level details to a predefined macro-scale

BRDF, but is focused on real-time performance, not on accurate

simulation of the appearance of a given microgeometry.

Detailed appearance measurement. Several approaches mea-

sure real-world samples and use the measured data to render, either

directly or indirectly. Dong et al. [2015] used an interferometry de-

vice to acquire the microstructure of brushed metal, but they still use

statistical reflectance models to fit the measured data for rendering.

Other methods [Graham et al. 2013; Nagano et al. 2015; Nam et al.

2016] aim at measuring accurate heightfields; these could be used

with glint rendering methods, but seamless extension of the data

across larger surface areas remains a problem.

Texture synthesis.We aim at generating non-repeating appear-

ance, which is also the goal of texture synthesis. Texture synthesis

methods can be categorized into three different kinds. The first kind

is by expansion: starting from a small texture, they dynamically

łgrowž a new larger texture. Representative work of this kind ranges

from the classic image quilting methods [Efros and Freeman 2001;

Efros and Leung 1999; Wei and Levoy 2000] to modern solutions

using Generative Adversarial Networks (GANs) [Jetchev et al. 2016;

Zhou et al. 2018]. These methods, however, are not applicable to our

problem ś to query the value at a specific location on the generated

texture, the texture has to be actually generated from its original po-

sition to the query. This violates our goals of zero dynamic memory

consumption and minimum performance overhead.

The second kind of related texture synthesis work is tiling meth-

ods, such as Wang tiles [Cohen et al. 2003; Wang 1961]. These meth-

ods first create small tiles from the input texture. These tiles are

designed to allow seamless stitching to others, and are thus used

as building blocks to generate larger textures. The tiling methods

can support point queries; however, since the number of tiles is

usually limited due to the difficulty of satisfying the seamless tiling

property, repeated tiles are often visible as artifacts.

The third kind is blending methods, also known as by-example

noise methods. They assume that any point on the resulting texture

is blended from several patches from the input texture (example).

Different blending methods of the example patches are possible,

from simple linear blending (prone to łghostingž artifacts), to more

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.
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Fig. 2. Top left: Flatland visualization of a position-normal distribution, fitted

using Gaussian elements. Others: Different levels of min-max hierarchy

over the normal map bound the sets of normals within spatial ranges.

advanced variance preserving [Yu et al. 2011] and histogram preserv-

ing [Heitz and Neyret 2018] methods. These methods are procedural

andwe demonstrate that they can be adapted to our needs, by design-

ing a suitable point and range query for normals and their Jacobians.

Our method does not depend on a specific blending method, and

we will show different appearances in Sec. 6 for different choices.

Other procedural appearance. Many efforts have focused on

designing procedural noise functions, such as Perlin noise [Perlin

1985] and Gabor noise [Lagae et al. 2009], which give non-repeating

values over the entire 2D or 3D space. The noise can be later thresh-

olded and post processed in other ways to produce appearance

variations that mimic terrain, rust, marble, etc. The noise functions

often provide the functionality of point query (the value at any po-

sition) and approximate range average query (approximate average

value in a given range) for anti-aliasing, but do not support range

min-max query (exact minimum and maximum values in a given

range), which is a crucial property needed by our method (Sec. 4.3).

3 BACKGROUND

3.1 Rendering details from microstructure

Our method builds upon the framework of microstructure rendering

by Yan et al. [2016], where the microstructure is defined using a

high resolution normal map. The normal map is bicubically inter-

polated, specifying a continuous function that returns a 2D normal

n(u) = (nx ,ny ) (dropping the implicit z-coordinate) for any given

2D texture coordinate u = (u,v).

During rendering, a spatial footprint P (i.e. coverage on the tex-

ture) can be approximated by the renderer as a Gaussian GP ; this

footprint can be as large as the pixel projection onto the surface, but

is typically smaller (leaving some work to pixel multi-sampling). To

evaluate the surface BRDF for the footprint P, we need to query the

distribution of the surface normals within the footprint, a.k.a. the

patch normal distribution function (P-NDF). To do that, for every

position within P, we check whether its normal is close enough to

a query direction s, where the closeness is defined using another

Gaussian Gr specifying an łintrinsic roughnessž of the microstruc-

ture. The query can be written formally as

DP (s) =

∫

GP (u)N(u, s) du, (1)

where N(u, s) = Gr (n(u) − s) is a 4D function of u and s called

position-normal distribution. Fig. 2 illustrates the position-normal

distribution in a simplified flatland case (1D position, 1D normal).

Using this definition, the resulting DP becomes a replacement of

the smooth NDF in the classic microfacet model.

Since the 4D position-normal distribution N(u, s) is complicated,

Yan et al.[2016] approximate it with a mixture of k Gaussian el-

ements in 4D, such that N(u, s) ≈
∑k
i=1Gi (u, s). Each Gaussian

element is defined as

Gi (u, s) = ci exp

(

−
1

2
(x − xi )

T Σ−1i (x − xi )

)

, (2)

where ci is a constant for normalization, x = (u, s)T is a 4D column

vector, and Σ is the covariance matrix computed from the Jacobian

of the normal n at the position u; see Equation 3 in Yan et al.[2016].

The query of the P-NDF at s thus becomes

DP (s) ≈

k
∑

i=1

∫

GP (u)Gi (u, s) du, (3)

where each term of the sum has been simplified to calculating the

product integral of two 2D Gaussians (since the two dimensions of

s are given as a query and are constant with respect to integration),

which results in an analytical solution.

It has been demonstrated in Yan et al. [2016] that converting each

texel of the normal map to a single Gaussian element gives good

results in practice. Therefore, the number of Gaussian elements

k is usually in the millions. To avoid calculating every Gaussian

element’s contribution to every query, Yan et al. [2014] build a

min-max hierarchy over the normal map. The hierarchy is a tree

structure, where each node stores the range of normals in its child

nodes. With the hierarchy, a group of Gaussian elements can be

pruned together if the bounding box of the normals if far from the

query s, meaning its contribution is negligible. The idea was later

extended [Yan et al. 2016] to a 4D acceleration structure over both

positions and normals, which is essentially multiple hierarchies for

the Gaussian elements contributing to certain ranges of normals.

3.2 Procedural by-example noise

The key idea of by-example noise generation is to create a new

image patch by blending multiple patches, picked up from different

places on a given example. To make this process procedural, at any

place on the synthesized noise, we need to know which patches are

selected to blend. This is usually done by partitioning the infinite

planar domain into regular regions (triangles, quads, etc.), where

each region is associated with a unique random seed that is used

to pick random patches from the example. Within each region, the

blending weights vary linearly. We will describe these weights along

with our choice of regions in more detail in Sec. 4.2.

During the noise generation, differences emerge in different choices

of patch blending methods. Here, we introduce three representative

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.
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methods: linear blending, variance preserving blending [Yu et al.

2011], and histogram preserving blending [Heitz and Neyret 2018].

Linear blending is themost straightforward. It is a simpleweighted

average of all K inputs:

Il =

K
∑

i=1

wi Ii , (4)

wherewi is the weight of the i-th input Ii at a specific position.

Variance preserving blending builds on top of the linear blending:

Iv = (Il − Ī )/W + Ī , (5)

whereW =

√

∑K
i=1w

2
i is the L2-norm of all the weights, and Ī is

the (uniform-weighted) average of all the inputs.

Histogram preserving blending considers an additional operation

and its inverse to the variance preserving blending. That is, it com-

putes a mapping G that maps the histogram of the example into a

1D Gaussian distribution. There are three steps: apply the mapping

G to łGaussianizež the example, then perform variance preserving

blending, and finally apply the inverse mapping of G to obtain the

blended result. This can be written as

Ih = G
−1[G(I )v ]. (6)

Determining which of these blending methods gives the best

visual effects in which scenarios is beyond the scope of our paper.

Our method works with all blending methods, as long as they satisfy

a monotonicity property, as will be analyzed in Sec. 4.3.

4 PROCEDURAL MICROSTRUCTURE RENDERING

In this section, we describe our method to dynamically generate

an infinitely large normal map from a given example input, and

show how this method is applicable in microstructure rendering

with minimum storage and performance overhead.

4.1 Problem analysis and motivation

Our goal is to generate non-repeating microstructure on an infinite

domain. As discussed, we need a dynamic method, so that the value

at any specific point can be looked up in constant time. The by-

example blending methods solve the storage issue, but their naive

application introduces heavy computational overhead: for a given

pixel footprint P, every Gaussian element inside it has to be com-

puted, regardless of whether it contributes to the querying direction

s. Clearly, we need some pruning scheme.

In previous methods, an acceleration structure is built as a pre-

process with the knowledge of the entire normal map. This is a

significant obstacle ś even if a normal map can be generated and

queried on the fly, there are no existing algorithms to dynamically

build an acceleration structure along with the normal map.

Moreover, to define a Gaussian element, we need the normal at

its center as well as its covariance matrix, which is computed from

its Jacobian. This immediately implies that during the lookups, we

need to query not only a value, but also its derivative.

We describe our solutions to these two main problems. Before

we proceed, we first define the terminology we are going to use:

• example ś the given input normal map (not necessarily

tileable),

Example

Target Patch

Example Patch Example Patch

Example Patch
Example Patch

Target

Target Patch

Target PatchTarget Patch

Target Patch

Fig. 3. The target patch (pink square) is the blended result of four different

example patches (squares with different color). Each example patch has a

deterministic random location in the example, which is specified by the

target patch index. Each point in the target patch has one blending weight

(represented as opacity of the small red dot, where higher opacity represents

more weight) for each blending example patch. These blending weights vary

across the target patch.

• example patch ś a square patch from the example,

• target ś the infinitely large planar domain on which we

synthesize the microstructure, and

• target patch ś a square patch on the target that is formed

by blending several example patches.

We specify our goals formally as:

(1) point query ś given a texture coordinate u ∈ [−∞,∞]2,

query the normal map value n(u) and its Jacobian J(u) of the

implicitly synthesized microstructure at a time complexity of

O(1), and

(2) range query ś given a target patch [u1, u2] (top-left and

bottom right corners), query the interval that tightly bounds

the values within the patch, [nmin
x ,n

max
x ,nmin

y ,nmax
y ], also at

a time complexity of O(1).

In the next subsections, we will introduce the point query and

the range query, then describe how these two operations are used

together for fast P-NDF queries during the rendering process.

4.2 Point query

The point query operation consists of two different parts. First, based

on the point query’s location, find the target patch it stays in and

the corresponding example patches. Second, perform blending from

different points on different example patches.

The first part is similar to the by-example texture synthesis meth-

ods introduced in Sec. 3. As Fig. 3 shows, we assume that the target

is covered by overlapping example patches. The example patches

are squares, and they overlap each other by half the edge length.

Thus, any target patch is the blended result of four different example

patches. The blending weights are bilinearly interpolated within

the patch.

We partition the target into a square grid of target patches. Each

target grid vertex is assigned a random number (seed) computed

by hashing its index (i, j). This random number is used to locate a

specific example patch. Based on the relative position of the point

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.
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query inside the target patch, we immediately know the correspond-

ing position in each of the four example patches corresponding to

the vertices of the patch.

Once we have found the normals at the four points on the example

patches, the second step is to get the value n and its Jacobian J at u

on the implicitly synthesized microstructure. It is straightforward

to calculate the blended normal value n. Since we already know the

four positions on the example patches, we can immediately get n by

applying the blending methods using Eqns. 4, 5 and 6 or any other

methods.

We also need to compute the blended Jacobian J. One immediate

way is to perform the same point query of normals at four adjacent

locations, then compute the Jacobian using central finite differences.

However, this method is slower due to multiple queries, and depends

on the fixed step size of the numerical differentiation. Instead, we use

a fast and accurate solution. We start from the individual Jacobians

on the four positions located on example patches. Since blending

the normals essentially means that the normals go through a series

of functions, it is straightforward to keep track of their individual

Jacobians for each function using the chain rule, i.e.

J = J[fn fn−1 . . . f2 f1(n)]

← Jfn · Jfn−1 · . . . Jf2 · Jf1 · J(n), (7)

where Jfi is the Jacobian of the i-th function.

We note that previous by-example noise generation methods are

all combinations of linear operations Fl = An + B (such as the

weighting operation in linear blending) and non-linear operations

Fnl (such as the Gaussianization function G). When the normals

go through linear operations, their Jacobians can be updated easily:

JFl = J[Fl (n)] = J[An + B] = AJ. (8)

For non-linear operationsFnl , computing the Jacobian is also straight-

forward if Fnl is analytical. If not, these functions or mappings must

have been precomputed and tabled, thus the same can be done with

their derivatives. In the Appendix, we elaborate the calculation of

Jacobians for commonly used blending methods.

4.3 Range query

As analyzed in Sec. 4.1, apart from the functionality to perform

point queries, we also need to design a pruning scheme. Specifically,

suppose a pixel footprintP is given on themicrostructure.Wewould

like to perform subdivision of the pixel footprint to prune areas with

non-contributing normals as if an acceleration hierarchy has been

provided (like in previous methods). Essentially, the pruning scheme

needs to answer the question: is the queried normal value contained

within the interval of normals of a given patch, i.e. between its

minimum and maximum values?

Our insight is that we do not need to explicitly build any hierar-

chy, as long as we are able to answer the query for minimum and

maximum normal values, given any positional range on the implicit

microstructure. Since any target range is blended from four patches

on the example texture, our range query problem becomes two

sub-problems. First, querying the minimum and maximum values

on the example texture. Second, computing the combined min-max

interval as we blend the four query results from the example.

Fig. 4. Top: 1D version of RMQ. For an arbitrary 1D query (here, [2, 7],

marked in red), we first find two precomputed range queries ([2, 5] and [4, 7])

with length 22; then the minimum of the query [2, 7] is the minimum of

the two precomputed minima. Bottom: 2D version of RMQ. For an arbitrary

2D query (here, [2, 0] to [6, 3], marked in red rectangle)), we find four

precomputed range queries: [2, 1] to [5, 2] (light purple), [3, 1] to [6, 2] (light

blue), [2, 2] to [5, 3] (light green) and [3, 2] to [6, 3] (light yellow), with size

22 ×21. The minimum of the query is the minimum of the four precomputed

minima.

4.4 Range minimum query

The first task is a classic algorithmic problem known as the Range

Minimum Query (RMQ). In 1D, the RMQ problem has been proven

to be solvable within O(1) runtime and O(n logn) precomputation

time and storage, using the sparse-table algorithm [Bender and

Farach-Colton 2000]. As Fig. 4 shows, the key idea is to precompute

the answers to all possible range queries of length 2K , where K is a

positive integer. For a general query from the i-th element to the

j-th element, it takes constant time to find two precomputed range

queries, such that (1) one starts at i and the other ends at j, (2) they

are of the same length and (3) their union covers the entire range

[i, j]. Then the minimum of the general query [i, j] is the minimum

of the two precomputed minima. Note this algorithm gives the exact

minimum (not a conservative approximation); the same approach

can be used for a range maximum query.

Extending this 1D algorithm to arbitrary 2D queries is straight-

forward. As illustrated in Fig. 4, we precompute the answers to all

possible 2D range queries of sizes 2K1 × 2K2 , where K1 and K2 are

both positive integers. For an arbitrary query, we can immediately

locate four precomputed range queries of the same size and covers

the entire query range, each staying in one of the fours corners of

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

6 • Anon.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

Algorithm 1 Precomputation of RMQ table.

Input:

N(u, s): Gausian mixture of example

n: example width / height

Output: T = RMQ precomputed table

functionqeryExam(u0, u1)

if u0.x == u1.x then

nmin
,nmax ← N(u0, s)

else

um ← ⌈(u0 + u1) × 0.5⌉

um−1 ← um − 1

um,0 ← vec2(u0.x, um.y)

um,1 ← vec2(um−1.x, u1.y)

um,2 ← vec2(um .x, u0.y)

um,3 ← vec2(u1.x, um−1.y)

nmin
0 ,n

max
0 ←qeryExam(u0, um−1)

nmin
1 ,n

max
1 ←qeryExam(um,0, um,1)

nmin
2 ,n

max
2 ←qeryExam(um,2, um,3)

nmin
3 ,n

max
3 ←qeryExam(um , u1)

nmin ← min(nmin
0 ,n

min
1 ,n

min
2 ,n

min
3 )

nmax ← max(nmax
0 ,nmax

1 ,nmax
2 ,nmax

3 )

k ← log2(u1.x − u0.x + 1)

T [k] [u0.x] [u0.y] ← packingTo64Bit(nmin
,nmax)

end if

return nmin
,nmax

end function

function RMQPrecomputation

l = n ÷ 4

// size of target patch

k ← log2(l)

//logarithm of target patch size

for all u < n do

for all v < n do

u0 ← vec2(u,v)

u1 ← u0 + vec2(l − 1)

qeryExam(u0, u1)

//compute themin. andmax. normal recursively

end for

end for

return T

end function

the query range. The minimum of the general query is the minimum

of the four precomputed minima. Then the 2D RMQ problem can be

solved within O(1) runtime and O(mn logm logn) precomputation

time and storage, wherem × n is the resolution of the 2D array.

Despite its fast performance, the additionalO(logm logn) storage

is still costly. We further decrease the storage cost using the insight

that, if the shapes of the range queries are restricted to be squares

rather than arbitrary rectangles, we are able to omit one dimension

from the precomputed data. That is, the precomputed data now

Algorithm 2 Query the RMQ table.

Input:

T = RMQ precomputed table

umin = min uv value of the query

umax = max uv value of the query

Output:

nmin = min normal of the query

nmax = max normal of the query

h ← umax.x − umin.x

k ← log2(h + 1)

Npacked ← T [k] [umin.x] [umin.y]

//read the RMQ precomputation table

nmin
,nmax ← unpackingFrom64Bit(Npacked )

return nmin
,nmax

Example

Example Patch

Target Patch

Target Patch

Target

Fig. 5. We perform the range query in the target patch instead of the

footprint. We find the tightest square bounding the pixel’s footprint P, and

start the traversal from the square (blue square).

costs only O(n2 logn), where n × n is the resolution of the example

texture and the logn term accounts for different side lengths of the

precomputed queries.

To guarantee square range queries, we consider each target patch

that intersects the pixel footprint (see Fig. 5). Since each target patch

is perfectly square, any query from a regularly subdivided target

patch will also be square. We will describe this in more detail along

with our traversal scheme in the next subsection. We further know

that the target patch itself has a size of 2K , so that we are able to

find one precomputed square that covers it exactly (see details in

Sec. 5).

Note that the precomputed data in our 2D sparse-table algorithm

is different from a mip-map style tree structure. Taking the 1D

case as an example, a precomputed query in a tree structure must

start at multiples of its length. However, the sparse-table algorithm

precomputes for all possible starting points. The difference indicates

why a tree structure only supports range queries within O(logn)

time.

With these tools, we are able to solve the first sub-problem to

perform a range query within each example patch. We list the pseu-

docode for algorithms that build our optimized 2D sparse-table in

Algorithm 1 and the pseudocode to use it for our range queries in

Algorithm 2. The next step is to combine the four queried min-max
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intervals into one for the target patch, as the normals within these

intervals on the example patches are blended.

4.5 Blending range queries

The problem of accurately combining the range queries from the

patches being blended still remains. The union of the four queries

may not be a conservative bound, since more advanced blending

methods may not satisfy the convex-hull property; that is, the

blended minimum value could be smaller than any of the input

minima.

Our goal is to correctly bound the blended min-max intervals, and

make them as tight as possible. To achieve this, we find that all the

operations in the by-example noise methods we use, whether linear

or non-linear, aremonotonically increasing with respect to the values

being blended. A 1D function f is monotonically increasing if it

satisfies the property

if x1 ≤ x2, then f (x1) ≤ f (x2). (9)

A multi-dimensional function is monotonically increasing if it satis-

fies the property with respect to every input variable.

One can verify that this monotonically increasing property holds

for all our blending methods. Elementary operations used in the

methods, such as additions/subtractions andmultiplications/divisions

by positive values, as well as linear operations with positive weights,

clearly satisfy the property. The Gaussianize operation in histogram-

preserving blending is essentially equivalent to 1D optimal transport

[Monge 1781] (recall that we blend the x and y components of nor-

mals separately); therefore, it is also guaranteed to be monotonically

increasing [Bonneel et al. 2011].

The monotonically increasing property allows us to apply the

same blending method to the endpoints of the min-max intervals

from the four source example locations being blended, producing a

guaranteed conservative bound. For example, if values x1, · · · ,x4
are bounded from above by u1, · · · ,u4 respectively, then the blend

of the former will be upper-bounded by the same blend of the latter.

However, one additional issue is that the blending weights them-

selves can vary over the queried range. This means we also need

to bound the range of blending weights over a query region. This

is straightforward to do within the traversal scheme that uses our

range query, which will be introduced in the next subsection. The

resulting min-max interval of the blended normal is no longer guar-

anteed to be tight, but is always correct (conservatively bounding)

and works efficiently in practice.

4.6 Implicit hierarchy traversal

As mentioned in subsection 4.3, we subdivide from the target patch

instead of the pixel’s footprint. Given the pixel’s footprint P, we

find its overlap with target patch, and then get the tightest square

bounding with length as a power of two, and start the traversal

from the square (see Alg. 3). The square is subdivided in smaller

squares until their content overlaps entirely with the bounding box

(red dash rectangle) of the footprint.

For all these squares, if there are more than one texels, we perform

a range query to get their min-max normal interval. If the half vector

locates in the normal range, we subdivide the square into four small

squares and continue the traversal. If the half vector is not included

Algorithm 3 Build a hierarchy for a given foot print.

Input:

T = RMQ precomputed table

N(u, s) = GMM of example

s = half vector

umin = min uv value of a pixel’s footprint P

umax = max uv value of a pixel’s footprint P

Output:

D = contribution to the pixel’s footprint

function travSqare(u0, u1)

N ← u1.x − u0.x

inside← true

if N > 0 then

inside←include(T(u0, u1), s)

else

inside←include(N(u0, s), s)

end if

if !inside then

return 0;

end if

if N == 0 then

n, J← blendNormalJacobian(u0)

D+ = gaussianContribution(n, J)

else

uc0[4], u
c
1[4] ← subdivide(u0, u1)

for all i < 4 do

D += travSqare(uc0[i], u
c
1[i])

end for

end if

return D

end function

function traversal(umin, umax)

x ← umax.x − umin.x

y ← umax.y − umin.y

l2max ← 2int (log2(max(x,y)))+1

u
′

min ← umin

u
′

max ← umin + l
2
max

//get the starting square for traversal

return travSqare(u
′

min, u
′

max)

end function

in the range, then all the texels in the square are discarded. The

traversal continues until there is only one texel in the square. If the

half vector is located in the min-max interval of the texel, we blend

the normal and the Jacobian to get a Gaussian element. If there is

an intersection with the pixel’s footprint and the Gaussian element,

we gather the contribution from the Gaussian element.

The min-max interval for the top levels might not be tight in the

beginning. However, as the traversal proceeds until lower levels,

min-max interval becomes more and more accurate, and converges

to the tightest boundary on the finest level.
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Fig. 6. Normal distribution function visualizations with binning the im-

portance sampled directions and with per-pixel evaluation provide closely

matching results.

5 IMPLEMENTATION DETAILS

5.1 Example range precomputation and packing

Given an example range, the minimum and maximum normals

need to be quickly computed. In our implementation, we use a 3D

precomputed table to represent the minimum and maximum normal:

two dimensions represent corner location in the example, and the

third dimension represents the logarithm of query size. The table is

computed recursively, starting from the finest level.

To save memory, we further pack four values (two for minimum

normal and two for maximum normal) into 64 bits. The four values

are normalized into [0, 1], converted into 16-bit integers and then

combined into a 64 bit value. In the end, our precomputed range

query table is compact, about 14 MB for a 512× 512 example texture.

5.2 Footprint coverage and multiple target patches

Each footprint might cover multiple target patches. We bound the

footprint with each covering target patch and generate several small

sub-footprints. We call these sub-footprints footprints, for simplicity.

5.3 Range query

In the range query, we query and blend the min-max normal inter-

vals from four different example patches. To locate these example

patches, we first need their size. We always use square examples of

edge length 2K , and assume that example patches are also squares

with an edge length exactly half of the example. Note that neither

of these two choices are required. Our RMQ algorithms will work

as long as the example patches are guaranteed to be squares of edge

length 2K .

Then we determine the individual starting positions of the exam-

ple patches on the example. This is the same for both point query

and range query. We start from the random seed associated with

each target patch, and uniformly select four random positions on

the target. To guarantee that no example patch will extend outside

of the example, valid coordinates of the starting positions are con-

strained to be smaller than the difference between the edge length

of the example and the edge length of an example patch.

With the example patches selected, given a range inside a target

patch, we immediately know its four corresponding ranges in the

example. We compute their min-max normal intervals for each of

the four ranges using the RMQ precomputed table (see Section 4.3).

The four min-max normal from the four example patched are

then blended (see Section 4.3).

5.4 Importance sampling

For a given shading point, we get its corresponding uv-coordinate,

and then we find the normal and Jacobian of the four texels around

it to get four GMM elements. By picking an element proportional

to its contribution to the footprint, then picking a normal from that

element, we get the sampled direction. We validate the correctness

of our importance sampling in Figure 6.

6 RESULTS AND COMPARISON

We have implemented our algorithm inside the Mitsuba renderer

[Jakob 2010]. We compared our algorithm against Yan et al. [2016]

for quality validation. All timings in this section are measured on

a 2.20GHz Intel i7 (40 cores) with 32 GB of main memory. Unless

otherwise specified, all timings correspond to pictures with 1280 ×

720 pixels, except the BentQuad scene with 512 × 512. In all of our

results, we use histogram preserving blending [Heitz and Neyret

2018] as the blending method, except in Figure 10.

In Table 1, we report all the scene settings, computation time

and memory costs for our test scenes. Figure 6 illustrates the NDF

images with sampling (binning) and with evaluation. The images

are the equivalent, which confirms the correctness of our method.

Chair scene. This scene shows a chair with two leather pillows

(75cm wide), rendered using environment lighting. The leather pil-

lows have a macro-level normal map and detailed microstructure

bumps. The macro map covers 75cm × 75cm. The micro example

normal map with resolution 512 × 512 covers 75mm × 75mm. In

Yan et al. [2016], we synthesize an equivalent large normal map

(5K × 5K) offline and use it for rendering. Compared to Yan et al.

[2016], our method produces exactly the same results, with only

a fraction (0.44%) of memory cost. Regarding the time cost, our

method has a small overhead (13%).

Macbook.This scene shows a laptopwith a roughened aluminum

matte finish. It is rendered using a point light and environment

lighting. The laptop is about 30cmwide. The input example 512×512

covers 3mm × 3mm. In Yan et al. [2016], we use the same input

texture and tile it. In Figure 9, We can observe the obvious repeating

patterns in the results of Yan et al. [2016]. In Table 1, we report

the memory cost of both methods. Our method costs 35 MB, while

Yan et al. [2016] costs 62 MB for the same (small) normal map, as

our range query tables are slightly more space-efficient than their

hierarchy.

In Figure 10, we compare the results of our method with differ-

ent blending methods: linear, variance preserving and histogram

preserving blending. Our method does not rely on any specific blend-

ing method. We observe both variance preserving and histogram

preserving blending provide acceptable quality.

Kettle scene. Figure 8 illustrates a Kettle with brushed metal on

the body under two small area lights and environment lighting. The

kettle is about 30cm high. The input brushed metal normal map

with 512 × 512 resolution covers about 9mm × 9mm. For Yan et

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.



913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Example-Based Microstructure Rendering with Constant Storage • 9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Scene #Triangle Intrinsic Rough. Normal map (ours) Normal map (Yan[2016]) Time (min.) Memory (MB)

K Res. Tile Res. Tile Ours Yan[2016] Ours Yan[2016]

Chair 303.0 0.01 5122 10 5K2 1 3.93 3.48 35.0 7896.0

Macbook 18.4 0.005 5122 100 5122 100 6.71 4.38 35.0 62.0

Kettle 175.3 0.005 5122 32 2K2 8 3.90 3.50 35.0 1119.9

BentQuad 19.6 0.005 1K2 2 1K2 2 1.26 ś 148.0 ś

Shoe 13.3 0.01 5122 20 5122 20 3.43 3.33 35.0 62.0

Table 1. Scene settings, computation time and memory costs for our test scenes. #Triangle is the count of triangles in the scene. Intrinsic Rough. presents

the intrinsic roughness of the material. Normal map (ours) and Normal map (Yan[2016]) represent the input normal map setting for our method and Yan et

al. [2016].

(a) orange plastic, spherical bumps (b) coated al. + blue diffuse, scratches

(c) copper, brushed metal (d) al., isotropic noise

(e) coated al. + red diffuse, metallic flakes (f) brown plastic, leather

Fig. 7. Rendered results of different normal maps.

al. [2016], we used a 2K ×2K tillable input texture and tiled it. There

are no visible differences between our results and those of Yan et

Ours, 3.90 min, 

mem. cost: 35.0 MB

Yan [2016], 3.50 min

mem. cost: 1.12 GB

Fig. 8. Comparison between our method and Yan et al. [2016] with a tiled

texture on the Kettle Scene. Normal map: brushed metal. The results are

similar, but the memory cost of our method in only a small fraction (about

3%) of theirs.

al. [2016] (see Figure 8). The memory cost for our method is only a

small fraction (about 3 %) of theirs.

BentQuad scene. Figures 7 and 11 show a simple scene with a

5cm× 5cm bent quad with a scratched normal map illuminated by a

textured light. The resolution of input isotropic noise normal map is

1K ×1K , and covers 2.5cm×2.5cm. In Figure 11 we show the results

with BRDF sampling only, evaluation only and their combination

under the multiple importance sampling framework. We also show

the result with environment lighting in the right image.

In Figure 7, we show the results of BentQuad with different BRDF

types with different normal maps used as examples.

Shoe scene. This scene shows a shoe with coated metallic flakes

under environment lighting. We found that no existing blending

method works well with flakes. However, we can easily fix this by

using our method without blending (choosing each point from a

single patch); the rest of the framework is unchanged. The blended

normal maps will have visible seams. However, since every flake

has a constant normal, its Jacobian is always zero and does not have

to be re-computed from a normal map. Thus, discontinuities in the

blended normal maps will not introduce any discontinuous artifacts

during rendering. As shown in Figure 12, even though without

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.



1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

10 • Anon.

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Ours, 6.71 min Yan et al. [2016], 4.38 min

Fig. 9. Comparison between our method and Yan et al. [2016] with a tiled texture on the Macbook Scene. The repeated pattern is visible in Yan et al. [2016].

Normal map: isotropic noise.

Linear Blending, 8.62 min Variance Preserving Blending,  9.66 min Histogram Preserving Blending, 8.94 min

Fig. 10. Comparison between different blending method (linear, variance preserving and histogram preserving on the Macbook Scene. Normal map: isotropic

noise.Linear blending has artifacts issues. Both variance preserving and histogram preserving blending provide acceptable quality.

(a) sampling (b) evaluation (c) combined (d) with envmap, 1,26 min

Fig. 11. Our material model can be used inside a standard BRDF sampling/evaluation framework with multiple importance sampling. BRDF sampling alone (a)

captures only a small fraction of scratches. Light sampling (b) captures illumination from the high-intensity parts of the HDR light texture onto the scratches.

The combined result (c) has the benefits of both estimators. (d) shows the result with extra environment lighting.

blending the method produces boundary artifacts in the synthesized

normal maps, this problem does not exist in the rendering results.

7 CONCLUSION AND FUTURE WORK

We have presented a method that allows rendering of specular glints

from an arbitrarily large, non-repeating synthesized microstructure.

Our method has constant storage cost and a small performance

overhead. By designing point query and range query schemes for

general by-example texture synthesis methods, we are able to dy-

namically and implicitly generate an infinite normal map, together

with the required Jacobians and range queries. We demonstrate

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2019.
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Ours (with blending), 3.43 min Yan et al. [2016], 3.33 minOurs (without blending), 3.46 min

Fig. 12. Comparison between our method (with blending), our method (without blending) and Yan et al. [2016] with a tiled texture on the Shoe scene. The

normal map depicts metallic flakes as small constant regions. Our method (with blending) has an over-smoothing issue on the metallic flake normal map.

However, using synthesis with no blending fixes this issue: while it produces normal maps with boundary artifacts, it will not affect the rendering results, both

theoretically and practically.

that our method produces plausible and controllable details, sup-

ports inputs from any source, and fits into a Monte Carlo rendering

framework with multiple importance sampling. Our method can

be treated as a standard BRDF, much like the common microfacet

BRDF but replacing its smooth NDF with our solution.

In the future, it would be interesting to optimize our method

for real-time implementation on GPUs. Extending our method for

rendering with wave optics could also be a worthwhile direction.
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A APPENDIX

We use chain rule to compute the blended Jacobian J. Starting from

the individual Jacobians on the four positions located on example

patches, we keep track of their individual Jacobians for each function
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using chain rule (Equation 7). We consider three different blend-

ing methods: linear, variance preserving and histogram preserving

blending.

LinearBlending. Since the normals in linear blending go through

a set of linear operations (see Equation 4), the formula of the blended

Jacobian with chain rule is:

Jl =
∑

wi Jn , (10)

wherewi represents the weight of each example during blending,

and Ji is the Jacobian associated with normal n of the ith input.

Variance PreservingBlending. In the variance preserving blend-

ing, extra linear operations are performed (see Equation 5) after

linear blending, resulting in:

Jv = Jl /W , (11)

whereW =
√

∑K
i=1w

2
i is the L2-norm of all the weights.

HistogramPreserving Blending.Additional łGaussianizež (G)

and łinverse Gaussianizež (G−1
′
) operations are performed in his-

togram preserving blending, which are non-linear operations. Since

these two operations are precomputed in a table, we compute their

derivatives along with the precomputed values. During blending,

the Jacobian is then computed as follows:

Jh = G
−1′ [G(n)v ] ·

[

G
′

(n) ⊗ J

]

v
, (12)

where G−1
′
and G

′
represent the inverse Gaussianize and Gaus-

sianize derivatives, and they should be diagonal matrices, since we

blend the two components of normal, nx and ny , separately. G(n)v

is the variance blended normal (see Equation 11).
[

G
′
(n) ⊗ J

]

v
repre-

sents performing the łGaussianizež operation on the input Jacobian,

which is an element-wise matrix multiplication, and then followed

by a variance preserving operation.
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