
Volume xx (200y), Number z, pp. 1–12

Path-based Monte Carlo Denoising Using a Three-Scale Neural
Network

Weiheng Lin1,2, Beibei Wang1,2, Jian Yang1,2, Lu Wang3,Ling-Qi Yan4

1School of Computer Science and Engineering, Nanjing University of Science and Technology
2Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education

3 Shandong University
4 University of California, Santa Barbara

Ours Input SBMC Ours Ref. (8192 spp)

DSSIM=3.803e-2 DSSIM=3.171e-2

4 spp

4 spp

Figure 1: Comparison between our network and sample-based Monte Carlo denoising network (SBMC) [GLA∗19]. Both methods use the
same dataset for training. Our method preserves details better, thanks to our novel network structure.

Abstract
Monte Carlo rendering is widely used in the movie industry. Since it is costly to produce noise-free results directly, Monte
Carlo denoising is often applied as a post-process. Recently, deep learning methods have been successfully leveraged in Monte
Carlo denoising. They are able to produce high quality denoised results, even with very low sample rate, e.g. 4 spp (sample per
pixel). However, for difficult scene configurations, some details could be blurred in the denoised results. In this paper, we aim
at preserving more details from inputs rendered with low spp. We propose a novel denoising pipeline that handles three-scale
features - pixel, sample and path - to preserve sharp details, uses an improved Res2Net feature extractor to reduce the network
parameters and a smooth feature attention mechanism to remove low-frequency splotches. As a result, our method achieves
higher denoising quality and preserves better details than the previous methods.

CCS Concepts
• Computing methodologies → Neural network; Ray tracing;

1. Introduction

Monte Carlo based rendering methods are widely used in the movie
production, as they are physically based and produce realistic im-

ages. However, they usually have difficulties in generating noise-
free results, especially when using very low sample rate (e.g. 4spp).

submitted to COMPUTER GRAPHICS Forum (9/2020).

2 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

One solution is Monte Carlo denoising, which is performed as a
post-process to remove the noise.

Deep learning based methods ([BVM∗17], [VRM∗18] and
[GLA∗19]) have been successfully exploited for Monte Carlo de-
noising. They are able to produce high-quality denoised results. Re-
cently, Gharbi et al. [GLA∗19] proposed a sample-based method,
calculating the contribution of each sample to nearby pixels, instead
of operating in the image space, which significantly improves the
denoising quality, even when input noisy images have low sample
rate. However, some details could not be preserved well, as seen in
Figure 1.

In this paper, we design a novel deep neural network framework
for Monte Carlo denoising. Specifically, we first introduce path fea-
tures (e.g. lighting, probability density function for each bounce
along the path) and group all the features into three scales: pixel,
sample, and path. Then we design a novel neural network frame-
work that uses a combined structure between Res2Net [GCZ19]
and U-Net to extract features from three scales of buffers and fuse
these features. The smooth features (like G-Buffer) are enhanced
using extra connections. Finally, the network outputs the filter ker-
nel for each path, and calculates the final denoised pixel radiance
by a splatting operation. We also introduced the camera-path light
transport covariance to better preserve high-frequency details. Our
network is suitable for denoising low sample rate (e.g. 4 spp) ren-
dered results, and significantly reduces error and enhances details
as compared to the previous methods. To summarize, our contribu-
tions are:

• a three-scale neural network architecture : pixel, sample and path
to enhance both geometric and lighting details;
• a hybrid feature extractor named Res2U-Net based on Res2Net

and U-Net to improve the multi-scale feature extraction capabil-
ity and reduce the number of network parameters;
• a smooth feature attention mechanism to reduce the low fre-

quency splotches.

In the next section, we review some of the previous work on
Monte Carlo denoising and deep neural networks. Then, we re-
cap the theoretical basis of our method in Section 3. In Section 4,
we present our method. We explain implementation details in Sec-
tion 5. We present our results, compare with previous works and
analyze performances in Section 6, and then conclude in Section 7.

2. Previous work

In this section, we first review the closest work to ours using ma-
chine learning, and then briefly go over general image space de-
noising methods.

2.1. Machine learning based Monte Carlo denoising

Kalantari et al. [KBS15] introduced a multilayer perceptual neu-
ral network to predict the parameters of a fixed-function filter and
then used the filter with learned parameters to denoise Monte Carlo
renderings. [CSS∗17] et al. proposed a recurrent neural network
(RNN) model to denoise under-sampled video renderings. Hassel-
gren et al. [HMS∗20] also presented a deep neural network to en-
sure temporal stability in the context of interactive path tracing in
which they co-train end-to-end over multiple consecutive frames.

Bako et al. [BVM∗17] proposed a nine-layer convolutional neu-
ral network (CNN) model to predict the local weighting kernels
for diffuse and specular components respectively. The network was
further improved by Vogels et al. [VRM∗18], combining with a
number of task-specific modules, e.g. source-aware encoder, re-
sulting in a more robust solution. Yang et al. [YWY∗19] fused
features with a fusion sub-network, fed the fused feature and the
rendered radiance into a Dual-Encoder network and then recon-
structed a clean image by a decoder network. Lin et al. [LWWH20]
also extracted auxiliary features and radiance separately, and in-
cluded light transport covariance from the light source to improve
high-frequency lighting details. Wong et al. [WW19] proposed a
deep residual network to directly map the noisy input pixels to the
smoothed output. Xu et al. [XZW19] introduced a generative ad-
versarial network (GAN) for better perceptual quality.

The prior methods all worked on pixels, which are insufficient
to represent the complexity of local light distribution in low sam-
ple rate. Thus, Gharbi et al. [GLA∗19] proposed a sample-based
denoising method (SBMC), by splatting each sample onto nearby
pixels to produce denoised results, since samples include more
information. SBMC significantly improved the denoising quality,
at low sample rate. However, some details were not well pre-
served. Our method is inspired by SBMC, but pushes further, using
path information, to preserve more details. Munkberg and Hassel-
gren [MH20] proposed a layering embedding approach, separating
samples into different layers, filtering them respectively and then
compositing. Compared to their work, our method separates one
sample into several paths and considers their feature individually,
but we do not denoise the paths / layers separately. Also they aim
at decreasing the computational and memory cost while preserv-
ing similar denoised quality, but our method aims at improving the
denoising quality.

Deep learning has also been utilized for reconstruction in gradi-
ent domain rendering. Kettunen et al. [KHL19] proposed a dense
variant of the U-Net and an additional perceptual loss (E-LPIPS)
to improve the quality of denoised images. Guo et al. [GLL19]
proposed an unsupervised deep neural network to reconstruct
noisy images with the corresponding image gradients generated by
gradient-domain renderers, which avoids the expensive renderings
of ground truth images.

2.2. Image space Monte Carlo denoising

Image space based approaches have achieved impressive results
at a reduced sampling rate [SZR∗15]. They treated denoising
as a regression problem, and used different regression mod-
els for filtering: zero-order linear regression model ([SD12],
[RMZ13], [MJL∗13], [ZRJ∗15]), first-order or higher-order mod-
els ([MCY14], [BRM∗16], [MMMG14]). The zero-order models
have less flexibility, due to the limitations of their explicit filters.
The first order methods have problem dealing with low frequency
noise, and high-order methods might suffer from over-fitting.

Boughida et al. [BB17] proposed a non-local Bayesian collabo-
rative filter, which produced globally high denoising quality, espe-
cially in dark areas.

These traditional methods often have a fixed set of parame-

submitted to COMPUTER GRAPHICS Forum (9/2020).

W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network 3

ters, while our method dynamically selects the parameters, thus is
content-aware, which is the advantage of using our path-based neu-
ral network.

2.3. Path space filtering

Path space filtering approaches [KDB16, DK18] could also reduce
Monte Carlo rendering noises, however, they are different from de-
noising methods. These methods reduce noise during the render-
ing process in a progressive manner, while Monte Carlo denoising
methods reduce noise as a postprocess.

3. Theoretical Background

Monte Carlo denoising aims at finding a reasonable filter Φ and
corresponding parameters θ, given input data x from a rendering
pipeline, to output a noise-free image ĉ:

ĉ = Φ(x;θ). (1)

Where x has different meanings for different denoising approaches.
For example, for pixel-based methods, it consists of pixels’ radi-
ance c and optional auxiliary feature buffers f . For sample-based
method, it consists of the samples’ radiance cs and other buffers
f . Deep learning based Monte Carlo denoising methods utilize a
neural network as the denoising filter Φ.

Most of the prior works [BVM∗17] [VRM∗18] are pixel-based,
as they used the pixel-level features, and reconstructed the denois-
ing result with the image pixels. Gharbi et al. [GLA∗19] presented
a sample-based solution, which splatted the samples to get the de-
noised radiance. We discuss the basic theory behind sample-based
method in Section 3.1, and then present our path-based denoising
in Section 3.2.

3.1. Sample-based Monte Carlo denoising

Gharbi et al. [GLA∗19] proposed a sample-based method with a
kernel-splatting network. They focused on samples instead of pix-
els and built a model to output a kernel indicating how much each
sample contributes to nearby pixels. The reconstruction process of
the method is expressed as the following formula:

Luv =
∑x,y,s KxyuvsLxys

∑x,y,s Kxyuvs
, (2)

where Luv is the denoised result at pixel (u,v), Lxys is the noisy
radiance of the sth sample at pixel (x,y), Kxyuvs is the kernel that
encodes the contribution from Lxys to Iuv.

We briefly review the network of SBMC [GLA∗19]. Each input
sample is a 74-d vector of features which contain sample coordi-
nates, radiance, geometry, materials and lighting data. The network
consists of a sample embedding module and a context propagation
module. The sample embedding model extracts the samples’ fea-
tures with a simplified fully connected network. Then the context
propagation module averages the sample features to per-pixel con-
text features, feeds them into a U-Net model, and concatenates the
U-Net outputs with sample features. After repeating the above pro-
cess twice, the sample splatting is performed to output the kernel
for each sample.

3.2. Path-based Monte Carlo denoising

Camera

Light Source
Sample

Path1

Path2

Path3

Figure 2: From one sample, three different paths are generated
under the NEE configuration.

In this paper, our method uses path-level information. Each sam-
ple corresponds to one path when next event estimation (NEE) is
not used in path tracing, and corresponds to P paths when using
NEE, where P represents the number of bounces. In our paper,
we assume that NEE is used in the rendering process. We aim at
computing a set of weighted kernels through the neural network to
represent the contribution of each path to the final pixel color. Simi-
larly to Gharbi et al. [GLA∗19], we also use the splatting operation.

The final denoised pixel color is obtained by a splatting operation
for path noise radiance:

L̂ =
P

∑
p

∑
N
n Kp,nLp,n

∑
N
n Kp,n

(3)

where L̂ is the denoised result, N is the sample count, Lp,n is the
noisy radiance of path p of sample n, Kp,n is the kernel of path p
from sample n.

Similar to the most previous works based on deep learning, we
cast the Monte Carlo denoising problem as a supervised learning
problem. We calculate the loss relationship between the network
output and ground truth (renderings with high spp), and then use the
learning algorithm to optimize the parameters of the neural network
according to the error.

4. Path-based Monte Carlo denoising using a three-Scale
neural network

We introduce a novel path-based Monte Carlo denoising neural net-
work (Section 4.4), by separating different paths from each sample
and splatting paths for denoised radiance. More specifically, we ex-
ploit three-scale features (Section 4.1) – pixel, sample and path,
extract features from three-scale buffers separately with two hybrid
feature extractors (Section 4.2 and Section 4.3).

4.1. Three-scale features

Inspired by the sample-based Monte Carlo denoising, we propose
to exploit path related information in our network. Our method is
positioned in the framework of path tracing with NEE, thus each
sample involves several paths (see Figure 2). The key insight of
the separation of the paths from a single sample is that the energy

submitted to COMPUTER GRAPHICS Forum (9/2020).

4 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

(a) Framework

Res2Net module

Res2Net module

pixel featuresaverage to pixel

shallow network

splat to pixel

concatenate

(b) Pixel Feature Extractor

(c) Path & Sample Feature Extractor

path
embeddings

FE2 sample
features

FE2 path
features

100

100

100 100

100

100

100 100

100 100

100100 100

100100 100100 100 100

100

100

100

100

100

100 200

100

Path & Sample
Feature
Extractor

FE1 pixel
features

path buffers

sample buffers

pixel buffers Pixel Feature
Extractor

FE1 pixel
features

sample
embeddings

Path & Sample
Feature
Extractor

Path & Sample
Feature
Extractor

fusion
features

Path & Sample
Feature
Extractor

kernel for
path radiance

denoised
image

7 100

100

100

100 100

100 100

100100 100

100100 100

Pixel Feature
Extractor

path noise radiance

conv + relu

conv + relu

Figure 3: (a) Our framework. Firstly, we encode the pixel buffers with the pixel feature extractor (FE1), filter the path & sample buffers with
a shallow 3-layer network (SN), and then fed them to the path & sample feature extractor (FE2) respectively together with pixel features.
Next, we filter the path & sample features from two FE2 with SN and concatenate them to fusion features which are later processed by FE2
and SN to output kernels for denoising path radiance images. Finally, we apply kernel-splatting operation to path radiance images to get
the denoised result. (b) The architecture of pixel feature extractor (FE1). (c) The architecture of path & sample feature extractor (FE2). The
number on the feature map indicates the channel count.

distribution tends to decrease as the path length increases. There-
fore, both the high frequency illumination from short paths and low
frequency illumination from long paths could benefit from the sep-
aration. In our implementation, we denote each path using the last
vertex before connecting to the light source.

In addition to the path information, we also keep both the sample
and pixel information. Thus, the inputs can be grouped into three
scales: pixels, samples and paths. Each group is stored in a buffer
named correspondingly, pixel buffer Bpx, sample buffer Bsp and
path buffer Bpt .

• Pixel buffer consists of the G-Buffer data, e.g. normal and
albedo.

• Sample buffer consists of the diffuse color, specular color, co-
ordinates and the light transport covariance of each sample. The
light transport covariance [BBS14] is evaluated from the pixel to
the light source, to represent features’ frequency.

• Path buffer consists of radiance for each path, the direction of in-
coming light from the light source, the material properties of the
vertices. Similar to the sample buffer, we calculate the camera-
path light transport covariance of each path to identify the high-
frequency features.

submitted to COMPUTER GRAPHICS Forum (9/2020).

W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network 5

The detailed content of each group is described in Section 5.

4.2. Feature extractor with Res2U-Net

Input

100

25 25 25 25

25

25

25

25

100

100

+

+

+

1

3

3

3

3

1

1 1X1 convolution & relu

3 3X3 convolution & relu

split operation

concatenate operation

+ skip connection (sum)

Figure 4: The structure of Res2Net in our implementation.

The above-mentioned buffers can be obtained during the ren-
dering pipeline, so the next step is to extract information from
these buffers. We designed two types of feature extractors. We
propose a pixel feature extractor for pixel buffer, combining
Res2Net [GCZ19] and U-Net (Figure 3(b)). For path buffer and
sample buffer, we use a path & sample feature extractor with a fea-
ture attention mechanism (Figure 3(c)).

The pixel feature extractor (FE1) network (Figure 3(b)) is a sim-
plified U-Net. In each of the first five layers, convolution & Relu
is applied to the previous layer’s output, and in the other layers, a
Res2Net [GCZ19] module is applied to the output, and skip con-
nections are made between the symmetric layers of the FE1 net-
work. The output of each layer is calculated by:

f 1
i+1 =

CR(f 1

i),0≤i < 5

R2([f
1
i , f 1

8−i]),others.
(4)

Where f 1
i is the feature of layer i in FE1, [] means concatenating

operation, CR is the convolution & Relu activation function and R2
is a Res2Net module. In the Res2Net module (Figure 4), the input
is first split into four small features. Then, convolution and skip
connection are applied to the small features one by one, so each
small feature has a different size of receptive field, and finally they
are merged into a feature with the original size.

Res2Net reduces the parameters of network, and extracts multi-
scale features, thus improves the training efficiency of the network
and the quality of the results. U-Net has deep network layers, and
it also has a high ability to reuse low-dimensional features, thanks

to its symmetric skip connections. Combining Res2Net and U-Net
can extract multi-scale information of both low-dimensional and
high-dimensional features, which greatly improves the network’s
sensitivity to sharp features. In our method, this combination helps
to better identify the feature information in various auxiliary feature
buffers. And we name our combined module as Res2U-Net.

4.3. Feature extractor with Res2U-Net considering pixel
attention

Ixys

e.g. s=3
=

shallow network (SN) = equivalence

Ixy1

Ixy2

Ixy3 Exy3

Exy2

Exy1

Exys

(a) Sample Embeddings Generation

(b) Path Embeddings Generation

Ixyps

e.g.
p=2, s=3

=

Ixy11

Ixy12

Ixy13 Exy13

Exy12

Exy11

Exyps

Ixy01

Ixy02

Ixy03 Exy03

Exy02

Exy01

Figure 5: A shallow network takes a sample buffer (a) or path
buffer (b) into an embedding. Given a sample count or path count,
the SN processes each buffer repeatedly, thus our model is able to
handle arbitrary sample count or path count.

We first encode the sample / path buffers to embeddings, sim-
ilar to Gharbi et al. [GLA∗19] to support arbitrary input sample
count or path length, and then process the embeddings with our
novel feature extractor. Then on top of the Res2U-Net, we further
proposed a Res2U-Net with pixel attention as the path & sample
feature extractor (FE2). The insight behind it is that: the path and
sample buffer contain high-frequency information, and processing
them explicitly can effectively solve the over-blur; in contrast, the
pixel buffers, like normal and albedo, are smooth compared to other

submitted to COMPUTER GRAPHICS Forum (9/2020).

6 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

features (radiance or color). The previous method [GLA∗19] suf-
fers from low frequency splotches, which could be reduced by en-
hancing the impact of pixel features.

Similar to Gharbi et al. [GLA∗19], we also use sample or path
embeddings which are non-linear feature space for individual sam-
ples or paths. More specifically, we used a shallow network (SN,
Section 4.4) with path buffers, sample buffers or embeddings as in-
put (Ixys or Ixyps), and path or sample embeddings as output (Exys
or Exyps), as shown in Figure 5, where x and y represent the width
and height of the input, and s represents the number of samples and
the p represents the path count. In Figure 3(a), we have five shal-
low networks: top left one with sample buffers as input, bottom left
with path buffers as input, and the right three with embeddings as
input.

Exys

e.g. s=3 Exy0

average Cxy

average

average

+e.g.
p=2, s=3

Exy1

Exy2

Exy00

Exy01

Exy02

Exy10

Exy11

Exy12

Exy1

Exy0

Cxysum

(a) From Exys to Cxy

(b) From Exyps to Cxy

Exyps

Exy0s

Exy1s

Figure 6: The per-pixel context feature generation for sample em-
beddings (a) and path embeddings (b). The sample embeddings
for one pixel are averaged into a pixel feature. The path embed-
dings with the same path length for one pixel are averaged and
then summed into a pixel feature.

After encoding the path and sample buffers to embeddings,
the embeddings are fed to path & sample feature extractor (Fig-
ure 3(c)). In the feature extractor, we first turn path or sample em-
beddings into per-pixel context features. For sample embeddings
Exys (Figure 6(a)), we average them to the per-pixel context fea-
tures Cxy across the sample axis s:

Cxy = reduce_means(Exys) (5)

For path embeddings (Figure 6(b)), we average the path embed-
dings Exyps which belong to the same sample across the sample
axis s and then take the sum across the path axis p to obtain the
per-pixel context features Cxy:

Cxy = sump(reduce_means(Exyps)) (6)

The per-pixel context features inform samples or paths about
their neighborhood and represents the relevance of information be-
tween samples or paths. Then we feed per-pixel context features
into a simplified U-Net with similar structure to FE1. The differ-
ence to FE1 is that, the inputs of each layer are concatenated with
pixel features, to make full use of the smoothness and shape infor-
mation in the pixel buffer:

f 2
i+1 =

CR([f 2

i , fpx]),0≤i < 5

R2([f
2
i , f 2

8−i, fpx]),others.
(7)

Where f 2
i is feature of layer i in FE2. Finally the feature of final

layer is concatenate with each input embedding at the end of path
& sample feature extractor.

4.4. Network architecture

With our feature extractors (FE1 and FE2) defined, now we de-
scribe our full network architecture. As shown in Figure 3(a), the
pixel, sample and path buffers are the inputs to the neural network,
and then are processed separately. The pixel buffers are encoded
with the pixel feature extractor (FE1) to get the pixel features fpx:

fpx = FE1(Bpx). (8)

Sample buffers and path buffers are first filtered with a shallow
network (SN) respectively. The SN consists of three convolutional
layers, where each layer contains 3×3 convolution, a constant bias
and Relu activation function, and each layer outputs a feature map
with 100 channels. The outputs of the SN are path or sample em-
beddings, which are the features obtained by the SN filtering each
individual path or sample input. Then we average the path or sam-
ple embeddings to per-pixel context features and extract the path
and sample features with the path & sample feature extractor:

fsp = FE2sp(SN(Bsp), fpx), (9)

fpt = FE2 pt(SN(Bpt), fpx), (10)

where FE2sp and FE2 pt are the feature extractors for sample buffer
and path buffer, SN is the shallow network, fsp is the output of
FE2sp , fpt is the output of FE2 pt .

The output features fsp and fpt are filtered by SN again and con-
catenated to form the fusion features:

f p,n
f s = [SN(f n

sp),SN(f p,n
pt)] (11)

where f p,n
f s is the fusion feature of path p from sample n, f n

sp is the
sample feature of sample n, f p,n

pt is the path feature of path p from
sample n. The fusion features are sent to FE2 and SN, then output
kernels for each path noisy radiance image:

Kp,n = SN(FE2(f p,n
f s)) (12)

submitted to COMPUTER GRAPHICS Forum (9/2020).

W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network 7

In the end, we get the denoised pixel result according to Equa-
tion 3.

5. Implementation details

5.1. Data creation

We use Tungsten renderer [Bit] to generate our training and vali-
dation dataset with a fixed path length of 5. We organize our three-
scale buffers as follows:

• The pixel buffer contains G-buffers: normal (3 channels), albedo
(3 channels) and depth (1 channel).
• The sample buffer contains diffuse radiance (3 channels), spec-

ular radiance (3 channels), visibility (1 channel), light-path light
transport covariance (1 channel) and sample coordinates (the
sub-pixel sample position and coordinates of the ray’s intersec-
tion with the camera lens, 4 channels).
• We consider a connection from the camera to the light source

as one path. In the context of path tracing with next event esti-
mation, there are several paths for one sample. The path buffer
contains radiance (3 channels), camera path light transport co-
variance per path (1 channel), conditional log-probabilities of
sampling this light direction according to the BRDF and the di-
rect light sampling algorithm (4 channels), light’s direction in the
camera’s spherical coordinates (2 channels), and boolean fea-
tures of the last vertex along the path (reflection, transmission,
diffuse, glossy, specular, 5 channels).

As a preprocess, we scale the all depth and light transport covari-
ance buffer to the range [0,1], and apply logarithm transform to all
color buffers. We modify publicly available scenes [Bit16] (see Fig-
ure 7) by varying camera parameters, materials, and light sources.
In the training dataset, the noisy images are rendered with 4 spp,
and the reference images are rendered with 4096 spp. The resolu-
tion of these images is 1280×720. We rendered 483 images as our
training set and 22 images as our validation set.

Although we use a fixed length 5, our network is able to handle
either longer or shorter lengths. In both cases, thanks to our design,
our model does not require retraining, while SBMC needs to be
retrained, although more running time is required for longer path.
If some paths do not reach the fixed path length, the value of the
unused buffers has the initial value 0.

Figure 7: Example images from our dataset.

Table 1: Error comparison between our method, SBMC and KPCN
on the validation set with varying sample rate. All the models were
trained with the same training dataset.

Ours SBMC KPCN

4spp RMSE 2.219e-2 2.341e-2 2.752e-2
DSSIM 6.145e-2 6.535e-2 7.065e-2

8spp RMSE 1.949e-2 2.037e-2 2.259e-2
DSSIM 5.654e-2 5.924e-2 6.259e-2

16spp RMSE 1.787e-2 1.868e-2 1.962e-2
DSSIM 5.288e-2 5.611e-2 5.905e-2

32spp RMSE 1.653e-2 1.698e-2 1.761e-2
DSSIM 5.051e-2 5.211e-2 5.310e-2

64spp RMSE 1.532e-2 1.547e-2 1.598e-2
DSSIM 4.805e-2 4.904e-2 4.923e-2

128spp RMSE 1.466e-2 1.477e-2 1.474e-2
DSSIM 4.658e-2 4.675e-2 4.605e-2

5.2. Training details

The loss function in our network is RelMSE, the same as Gharbi et
al. [GLA∗19]:

l = RelMSE(t(Î)− t(Igt)) (13)

where Î is the denoised result of our method, Igt is the correspond-
ing ground truth, and t(x) = x

1+x is the tonemapping operator.

We split the processed data into 128× 128 patches, then shuf-
fle and feed them into the network. We use TensorFlow [AAB15]
to implement our network and use ADAM [PB14] optimizer to
optimize the parameters. Weights are initialized using the Xavier
method [GB10]. Our network is trained for approximately 4.5 days
on a RTX 2080Ti graphics card with learning rate 10−4 and batch
size 1.

The memory consumption for both training and validating is
about 11 GB. For validating, we stream the samples or paths be-
tween the GPU and the main RAM or disk to bound the memory
usage as the same as Gharbi et al. [GLA∗19]. The streaming oper-
ation applies to the per-sample or per-path processing steps.

6. Result

We use RMSE (relative mean squared error) and structural dissim-
ilarity, DSSIM (1 - SSIM) as metrics to evaluate quality of the re-
sults. Same as in training, the input images are rendered with 4 spp,
and the references are rendered with 4096 spp.

6.1. Comparison to previous work

We compare our method with KPCN [BVM∗17], AD-
VMCD [XZW19] and SBMC [GLA∗19]. We implemented
SBMC and KPCN with TensorFlow. The input data structure and
training parameters of the two networks are set according to the

submitted to COMPUTER GRAPHICS Forum (9/2020).

8 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

RMSE 3.150e-2 2.874e-2 2.399e-2 2.178e-2

Input KPCN ADVMCD SBMC Ours Ref. (8192 spp)

DSSIM 4.512e-2 5.735e-2 3.077e-2 2.738e-2

RMSE 3.123e-2 3.378e-2 3.091e-2 2.811e-2
DSSIM 5.572e-2 5.610e-2 5.369e-2 4.426e-2

RMSE 2.828e-2 2.405e-2 2.380e-2 2.234e-2
DSSIM 4.013e-2 1.264e-1 3.880e-2 3.473e-2

4 spp

4 spp

4 spp

4 spp

4 spp

4 spp

Figure 8: Comparison of our method to other state-of-the-art methods KPCN, ADVMCD, SBMC and reference images.

Table 2: Error comparison between our method, SBMC and KPCN
in two scenes with 4 spp.

Scene Ours SBMC KPCN

The Wooden RMSE 1.822e-2 1.887e-2 2.406e-2
Staircase DSSIM 4.361e-2 4.686e-2 6.250e-2

Modern Hall RMSE 2.156e-2 2.491e-2 2.916e-2
DSSIM 7.279e-2 8.228e-2 8.843e-2

descriptions in their papers. Both methods are trained with our
training set. SBMC is trained for 4 days and KPCN was trained for

1.5 days. For ADVMCD, we use the provided trained model to test
on our validation data.

As shown in Figure 1 and 8, our method produces the high-
est quality both perceptually and quantitatively, compared to the
other three methods. KPCN and ADVMCD suffers from noise and
aliases, e.g. the edge of the vase. SBMC produces higher quality
than KPCN, but overblurs some geometric details (e.g. the bed
frame in the bottom row) and specular highlights (e.g. the glossy
handle in the middle row). In contrast, our method preserves both
the geometric details and the highlights. Thanks to the feature ex-
traction of the pixel buffer and the dense connection with subse-
quent modules, our network is more sensitive to geometric and tex-
ture details, thus it is able to preserve sharper geometric details and
restore texture information better. Using the light transport covari-

submitted to COMPUTER GRAPHICS Forum (9/2020).

W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network 9

Table 3: The sampling rates for three methods (Ours, SBMC and
KPCN) at equal time in Figure 9.

Time (s) 20 40 60 80 100 120 140 160 180

Ours 4 8 12 16 20 24 28 32 36

SBMC 4 8 16 20 24 28 32 40 44

KPCN 4 12 20 28 34 42 50 57 64

ance to the sample and path buffer also helps to improve the quality
of high-frequency effects.

We compare the quality quantitatively between our method,
SBMC and KPCN in Table 1 over varying sampling rates on several
scenes chosen from the validation dataset. For almost all the sam-
pling rates, our method produces the highest quality. As the sam-
pling rate increases, the difference between our method and others
becomes smaller. When the sampling rate reaches 128 spp, the er-
ror with DSSIM of KPCN is the smallest. Therefore, our method
is suitable for denoising renderings with very low sampling rates.
In Table 2, we show the error of our method, SBMC and KPCN in
two scenes from the validation dataset. The Staircase scene is al-
most diffuse materials dominant, and the Hall scene contains more
high-frequency effects. In both cases, our method has the lowest
error compared to the other two methods.

Figure 9: Error (RMSE) curves of three methods (our method,
SBMC and KPCN) over varying time budgets. The corresponding
sampling rate of each method are shown in Table 3.

Sample-based denoising methods have expensive computational
cost, thus we compare our method with other methods (SBMC,
KPCN) with the same time budget, which includes both the ren-
dering and denoising time. In Figure 9, we show the error (RMSE)
curves of three methods (our method, SBMC and KPCN) over
varying time budgets. The error is the average of three scenes. To
ensure equal time, different sampling rates are applied for different
methods, shown in Table 3. With small time budget (e.g. 20s), our

results have the highest quality. Thus, our method is suitable for
low sampling rates. As the time budget increases, KPCN produces
results with the highest quality, since its performance overhead is
irrelevant to the sampling rate. We also compared with path trac-
ing with equal time. As expected, the error of path tracing is much
larger than others. We provide this comparison in the supplemental
material.

6.2. Ablation study

Input without PFA with PFA Ref. (4096 spp)

RMSE 2.178e-2 1.813e-2

RMSE 6.271e-3 4.416e-3

RMSE 1.837e-2 1.363e-2

DSSIM 4.509e-2 3.278e-2

DSSIM 8.965e-3 4.489e-3

DSSIM 5.750e-2 2.745e-2

4 spp

4 spp

4 spp

Figure 10: Comparison of our method trained with and without
pixel buffer attention mechanism.

There are several important components in our network: pixel
feature attention mechanism, Res2Net based feature extractor and
light transport covariance. We validate the impacts of these compo-
nents.

Pixel feature attention mechanism. In order to validate the influ-
ence of the pixel feature attention mechanism (PFA), we implement
a solution without pixel feature attention, removing the pixel fea-
ture extractor and adding the g-buffer in the pixel buffer to the sam-
ple buffer. We compare the results with / without PFA in Figure 10.
The results with PFA mechanism are better: in the first row, the re-
sult with PFA keeps the sharp geometric details; in the second row,
the low-frequency area is smoother with PFA; the third row shows
the improvement of the texture details, thanks to the attention of
the albedo feature.

Res2Net module validation. We replace the Res2Net module
with a traditional convolutional layer and retrained with the same
dataset, and compare this simplified version with our full method in
Figure 11. The details are preserved much better with the Res2Net.
Res2Net decomposes the feature map into small feature maps for

submitted to COMPUTER GRAPHICS Forum (9/2020).

10 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

Input without Res2Net with Res2Net Ref. (4096 spp)

RMSE 3.222e-2 2.713e-2

RMSE 6.020e-2 4.809e-2

RMSE 7.312e-2 7.045e-2

DSSIM 7.874e-2 5.905e-2

DSSIM 1.033e-1 7.545e-2

DSSIM 8.406e-2 7.443e-2

4 spp

4 spp

4 spp

Figure 11: Comparison of our method trained with and without
Res2Net module.

Figure 12: RelMSE as a function of training iterations for our
method with and without Res2Net.

processing, and performs skip-connection one by one, therefore in-
creases the receptive field. The Res2Net structure also allows multi-
scale feature extraction, thereby enhancing the sensitivity to the de-
tails from various auxiliary features and improving the sharpness of
the details of the results.

In Figure 12, we compare the RMSE of our network trained with
and without the Res2Net module as a function of iterations. At the
beginning of the training, the error reduction rate of the network
trained with the Res2Net module is faster, and it reaches the quasi-
convergent state faster. After converging, the difference between

the two models becomes smaller. Thus, Res2Net speeds up the net-
work training process.

Input without cov. with cov. Ref. (4096 spp)

RMSE 2.115e-2 2.005e-2

RMSE 2.654e-2 2.572e-2

RMSE 6.106e-2 5.384e-2

DSSIM 3.268e-2 3.062e-2

DSSIM 4.134e-1 3.723e-2

DSSIM 1.014e-1 9.391e-2

4 spp

4 spp

4 spp

Figure 13: Comparison of our method trained with and without
light transport covariance.

Light transport covariance validation. We validate the impact of
the light transport covariance for scenes with complex lighting. In
Figure 13, we compare denoised results with models trained with
/ without light transport covariance. The light transport covariance
improves the highlight details significantly. Light transport covari-
ance faithfully represents the frequency of the light transport, so
the neural networks can learn more detailed features from high fre-
quency illumination.

Sample buffer validation. In our network, we keep both the sam-
ple buffers and the path buffers. The sample buffers store common
features for the paths, e.g. diffuse radiance, specular radiance and
visibility. If we remove the sample buffers, these features have to
be stored repeatedly in the path buffers, which is more redundant.
Otherwise, if we simply drop all the features in the sample buffers,
the denoising quality will degrade significantly. In Table 4, we com-
pare the error between "with sample buffers" and "without sample
buffers" over a variety of scenes. "With sample buffers" results in
higher quality, as the sample buffers include important features.

6.3. Performances

We compare the runtime performance between our method and
other methods in Table 5. Both our method and SBMC have an
increasing cost, as the sampling rate increases. Compared with
SBMC, our denoising cost is slightly higher than SBMC over all
the sample rates, since our method has to process more images.

submitted to COMPUTER GRAPHICS Forum (9/2020).

W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network 11

Table 4: RMSE comparison between our method with and without
sample buffers (sam. means sample buffer). All the input images in
the table are rendered with 4 spp.

Scene With sam. Without sam. Improvement

bathroom 1.511e-2 1.636e-2 7.6%

bedroom 1.998e-2 2.096e-2 4.7%

kitchen 2.396e-2 2.480e-2 3.4%

classroom 2.987e-2 3.081e-2 3.1%

Table 5: Runtime cost of different methods (in seconds) to denoise
a 1280×720 image.

spp 4 8 16 32 64 128

Rendering 10.9 21.3 42.3 83.9 168.9 332.5

Ours 12.1 21.7 38.1 72.4 133.9 254.5
SBMC 8.6 15.48 27.1 52.3 94.1 178.9
KPCN N/A N/A N/A N/A N/A 11.2

6.4. Limitation

Input KPCN SBMC Ours Ref. (4096 spp)

RMSE 7.060e-2 6.593e-2 6.188e-2

RMSE 8.966e-2 1.148e-1 1.157e-1

DSSIM 1.329e-1 1.306e-1 1.065e-1

DSSIM 1.658e-1 2.047e-1 2.094e-1

2 spp

1 spp

Figure 14: Comparison between our method, KPCN, and SBMC
on input images rendered with very low sampling rate (2 and 1
spp).

We also applied our method at extremely low sampling rates,
e.g. 1 spp and 2 spp, and compared our results with other methods
(KPCN and SBMC) in Figure 14. With 2 samples per pixel, our
method still produces the highest denoising quality and preserves
the sharp details compared to other methods. However, at 1 spp,
both our method and SBMC have obvious artifacts near the spec-
ular regions. Also, our method inherits the limitations of sample-
based methods: missing scalability with sample count in terms of
computation time (Table 5)

7. Conclusions

We have proposed a novel path space network architecture for
Monte Carlo denoising. We designed a three-scale network frame-

work considering three-scale features (pixel, sample and path),
introduced a hybrid feature extractor based on Res2Net and U-
Net, and further proposed a pixel feature attention mechanism
to enhance the impact of smooth features. Our proposed method
achieves higher denoising quality and preserves better details than
the previous methods.

In the future, we will try to combine our method with unsuper-
vised learning model to avoid the expensive ground-truth images
rendering. It is also useful to solve the scalability issue with em-
bedding layers, is also interesting to consider temporal denoising.

References
[AAB15] ABADI M., AGARWAL A., BARHAM P.: Tensorflow:

Large scale machine learning on heterogeneous systems. http://
tensorflow.org/, 2015. 7

[BB17] BOUGHIDA M., BOUBEKEUR T.: Bayesian collaborative denois-
ing for Monte Carlo rendering. Computer Graphics Forum (Proc. EGSR
2017) 36, 4 (2017), 137–153. 2

[BBS14] BELCOUR L., BALA K., SOLER C.: A local frequency analysis
of light scattering and absorption. ACM Transactions on Graphics (TOG)
33, 5 (2014), 163. 4

[Bit] BITTERLI B.: Tungsten renderer. http://noobody.org/
tungsten.html. 7

[Bit16] BITTERLI B.: Rendering resources. https:
//benediktbitterli.me/resources/, 2016. 7

[BRM∗16] BITTERLI B., ROUSSELLE F., MOON B., A.IGLESIAS-
GUITIÁN J., ADLER D., MITCHELL K., JAROSZ W., NOVÁK J.: Non-
linearly weighted first-order regression for denoising Monte Carlo ren-
derings. Computer Graphics Forum 35, 4 (2016), 107–117. 2

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising Monte Carlo renderings.
ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH
2017) 36, 4 (July 2017). 2, 3, 7

[CSS∗17] CHAITANYA C. R., S.KAPLANYAN A., SCHIED C., SALVI
M., LEFOHN A., NOWROUZEZAHRA D., AILA T.: Interactive recon-
struction of Monte Carlo image sequences using a recurrent denoising
autoencoder. ACM Trans. Graph. 36, 4 (July 2017), 98:1–98:12. 2

[DK18] DAHM K., KELLER A.: Learning light transport the reinforced
way. In Monte Carlo and Quasi-Monte Carlo Methods (Cham, 2018),
Owen A. B., Glynn P. W., (Eds.), Springer International Publishing,
pp. 181–195. 3

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In International conference on
artificial intelligence and statistics (2010), 249–256. 7

[GCZ19] GAO S H., CHENG M M., ZHAO K.: Res2net: A new multi-
scale backbone architecture. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019). 2, 5

[GLA∗19] GHARBI M., LI T.-M., AITTALA M., LEHTINEN J., DU-
RAND F.: Sample-based Monte Carlo denoising using a kernel-splatting
network. ACM Trans.Graph. 38, 4 (2019), 125:1–125:12. 1, 2, 3, 5, 6, 7

[GLL19] GUO J., LI M., LI Q.: Gradnet: Unsupervised deep screened
poisson reconstruction for gradient-domain rendering. ACM Transac-
tions on Graphics 38, 6 (2019), 1–13. 2

[HMS∗20] HASSELGREN J., MUNKBERG J., SALVI M., PATNEY A.,
LEFOHN A.: Neural temporal adaptive sampling and denoising. Com-
puter Graphics Forum 39, 2 (2020), 147–155. 2

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A machine learning ap-
proach for filtering Monte Carlo noise. ACM Transactions on Graphics
(TOG) (Proceedings of SIGGRAPH 2015) 34, 4 (2015). 2

submitted to COMPUTER GRAPHICS Forum (9/2020).

http://tensorflow.org/
http://tensorflow.org/
http://noobody.org/tungsten.html
http://noobody.org/tungsten.html
https://benediktbitterli.me/resources/
https://benediktbitterli.me/resources/

12 W. Lin & B. Wang & J. Yang & L. Wang & L. Yan / Path-based Monte Carlo Denoising Using a Three-Scale Neural Network

[KDB16] KELLER A., DAHM K., BINDER N.: Path space filtering. In
Monte Carlo and Quasi-Monte Carlo Methods (Cham, 2016), Cools R.,
Nuyens D., (Eds.), Springer International Publishing, pp. 423–436. 3

[KHL19] KETTUNEN M., HRKNEN E., LEHTINEN J.: Deep convolu-
tional reconstruction for gradient-domain rendering. ACM Transactions
on Graphics 38, 4 (2019), 1–12. 2

[LWWH20] LIN W., WANG B., WANG L., HOLZSCHUCH N.: A detail
preserving neural network model for monte carlo denoising. Computa-
tional Visual Media Journal (2020). 2

[MCY14] MOON B., CARR N., YOON S.-E.: Adaptive rendering based
on weighted local regression. ACM Trans. Graph 33, 5 (2014), 170:1–
170:14. 2

[MH20] MUNKBERG J., HASSELGREN J.: Neural denoising with layer
embeddings. Computer Graphics Forum 39, 4 (2020), 1–12. 2

[MJL∗13] MOON B., JUN J. Y., LEE J., KIM K., HACHISUKA T.,
YOON S.-E.: Robust image denoising using a virtual flash image for
Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139–
151. 2

[MMMG14] MOON B., MCDONAGH S., MITCHELL K., GROSS M.:
Adaptive polynomial rendering. ACM Trans. Graph (2014), 10. 2

[PB14] P.KINGMA D., BA J.: Adam:a method for stochastic optimiza-
tion. http://arxiv.org/abs/1412.6980, 2014. 7

[RMZ13] ROUSSELLE F., MANZI M., ZWICKER M.: Robust denoising
using feature and color information. Computer Graphics Forum 32, 7
(2013), 121–130. 2

[SD12] SEN P., DARABI S.: On filtering the noise from the random pa-
rameters in Monte Carlo rendering. ACM Transactionson Graphics 31,
3 (2012), 15. 2

[SZR∗15] SEN P., ZWICKER M., ROUSSELLE F., YOON S.-E.,
KALANTARI N.: Denoising your Monte Carlo renders: Recent advances
in image-space adaptive sampling and reconstruction. ACM SIGGRAPH
2015 Courses (2015). 2

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018), 124:1–
124:15. 2, 3

[WW19] WONG K.-M., WONG T.-T.: Deep residual learning for denois-
ing monte carlo renderings. Computational Visual Media 5, 3 (2019),
239–255. 2

[XZW19] XU B., ZHANG J., WANG R.: Adversarial monte carlo denois-
ing with conditioned auxiliary feature modulation. ACM Transactions on
Graphics 38, 6 (2019), 1–12. 2, 7

[YWY∗19] YANG X., WANG D., YIN B., WEI X., HU W., ZHAO L.,
ZHANG Q., FU H.: Demc: A deep dual-encoder network for denoising
monte carlo rendering. Journal of Computer Science and Technology 34,
5 (2019), 1123–1135. 2

[ZRJ∗15] ZIMMER H., ROUSSELLE F., JAKOB W., WANG O., ADLER
D., JAROSZ W., SORKINE-HORNUNG O., SORKINE-HORNUNG A.:
Path-space motion estimationand decomposition for robust animation fil-
tering. Computer Graphics Forum 34, 4 (2015), 131–142. 2

submitted to COMPUTER GRAPHICS Forum (9/2020).

http://arxiv.org/abs/1412.6980

