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Abstract

In this paper, we investigate and characterize the behavior of “big” and “fast”
data analysis frameworks, in multi-tenant, shared settings for which computing
resources (CPU and memory) are limited. Such settings and frameworks are
frequently employed in both public and private cloud deployments. Resource
constraints stem from both physical limitations (private clouds) and what the user
is willing to pay (public clouds). Because of these constraints, users increasingly
attempt to maximize resource utilization and sharing in these settings.

To understand how popular analytics frameworks behave and interfere with
each other under such constraints, we investigate the use of Mesos to provide fair
resource sharing for resource constrained private cloud systems. We empirically
evaluate such systems using Hadoop, Spark, and Storm multi-tenant workloads.
Our results show that in constrained environments, there is significant
performance interference that manifests in multiple ways. First, Mesos is unable
to achieve fair resource sharing for many configurations. Moreover, application
performance over competing frameworks depends on Mesos offer order and is
highly variable. Finally, we find that resource allocation among tenants that
employ coarse-grained and fine-grained framework scheduling, can lead to a form
of deadlock for fine-grained frameworks and underutilization of system resources.

Keywords: Big data; multi-tenancy; performance interference; Hadoop; Spark

Introduction
Data-driven actuation, decision support, and adaptive control is experiencing ex-

plosive growth as a result of recent technological advances in environmental and

personal monitoring, sensing, and data analytics (e.g. Internet of Things (IoT))

coupled with the wide availability of low cost compute, storage, and networking

(e.g. cloud computing). As a result, there is significant demand by software engi-

neers, data scientists, and analysts with a variety of backgrounds and expertise,

for extracting actionable insights from this data. Such data has the potential for

facilitating beneficial decision support for nearly every aspect of our society and

economy, including social networking, health care, business operations, the auto-

motive industry, agriculture, Information Technology, education, and many others.

To address this need, a number of open source technologies have emerged that

make effective, large-scale data analytics accessible to the masses. These include

“big data” and “fast data” analysis systems such as Hadoop [1], Spark [2], and

Storm [3] from the Apache foundation, which are used by analysts to implement
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a variety of applications for query support, data mining, machine learning, real-

time stream analysis, statistical analysis, and image processing [4–7]. As complex

software systems, with many installation, configuration, and tuning parameters,

these frameworks are often deployed under the control of a distributed resource

management system [8, 9] to decouple resource management from job scheduling

and monitoring, and to facilitate resource sharing between multiple frameworks.

Each of these analytics frameworks tends to work best (e.g. most scalable, with

the lowest turn-around time, etc.) for different classes of applications, data sets,

and data types. For this reason, users are increasingly tempted to use multiple

frameworks, each implementing a different aspect of their analysis needs. This new

form of multi-tenancy (i.e. multi-analytics) gives users the most choice in terms of

extracting potential insights, enables them to fully utilize their compute resources

and, when using public clouds, manage their fee-for-use monetary costs.

Multi-analytics frameworks have also become part of the software infrastructure

available in many private data centers and, as such, must function when deployed

on a private cloud [10–12]. With private clouds, resources are restricted by physical

limitations. As a result, these technologies are commonly employed in shared set-

tings in which more resources (CPU, memory, local disk) cannot simply be added

on-demand in exchange for an additional charge (as they can in a public cloud

setting).

Because of this trend, in this paper, we investigate and characterize the perfor-

mance and behavior of big/fast data systems in shared (multi-tenant), moderately

resource constrained, private cloud settings. While these technologies are typically

designed for very large scale deployments such as those maintained by Google,

Facebook, and Twitter they are also common and useful at smaller scales [13–15].

We empirically evaluate the use of Hadoop, Spark, and Storm frameworks in

combination, with Mesos [9] to mediate resource demands and to manage sharing

across these big data tenants. Our goal is to understand
• How these frameworks interfere with each other in terms of performance when

they are deployed under resource pressure,
• How Mesos behaves when demand for resources exceeds resource availability,

and
• The degree to which Mesos is able to achieve fair sharing using Dominant

Resource Fairness (DRF) [16] in resource restricted cloud settings.

From our experiments and analyses, we find that even though Spark outperforms

Hadoop when executed in isolation for a set of popular benchmarks, in a multi-

tenant system, their performance varies significantly depending on their respective

scheduling policies and the timing of Mesos resource offers. Moreover, for some

combinations of frameworks, Mesos is unable to provide fair sharing of resources

and/or avoid deadlocks. In addition, we quantify the framework startup overhead

and the degree to which it affects short-running jobs.

Background
In private cloud settings, where users must contend for a fixed set of data center

resources, users commonly employ the same resources to execute multiple analytics

systems to make the most of the limited set of resources to which they have been

granted access. To understand how these frameworks interfere in such settings, we
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Figure 1: Mesos Architecture. Each distributed computing framework imple-

ments a Mesos scheduler which negotiates with the Mesos Master for Slave resource

allocation, and a Mesos executor inside which framework tasks are spawned. Frame-

works launch tasks in Coarse-Grained (CG) mode (1 Mesos task corresponds to 1+

framework tasks) or Fine-Grained (FG) mode (1 Mesos task corresponds to 1 frame-

work task). Spark can use either CG or FG modes; Hadoop and Storm use CG.

investigate the use of Mesos to manage them and to facilitate fair sharing. Mesos is a

cluster manager that can support a variety of distributed systems including Hadoop,

Spark, Storm, Kafka, and others [9, 17]. The goal of our work is to investigate the

performance implications associated with Mesos management of multi-tenancy for

medium and small scale data analytics on private clouds.

We first overview the implementation of Mesos and its support for the analytics

frameworks that we consider in this study: Hadoop, Spark, and Storm. Figure 1

provides a high level overview of the Mesos software architecture. Mesos provides

two-level, offer-based, resource scheduling for frameworks. The Mesos Master is a

daemon process that manages a distributed set of Mesos Slaves. The Master also

makes offers containing available Slave resources (e.g. CPUs, memory) to registered

frameworks. Frameworks accept or reject offers based on their own, local scheduling

policies and control execution of their own tasks on Mesos Slaves that correspond

to the offers they accept.

When a framework accepts an offer, it passes a description of its tasks and the

resources it will consume to the Mesos Master. The Master (acting as a single

contact point for all framework schedulers) passes task descriptions to the Mesos

Slaves. Resources are allocated on the selected Slaves via a Linux container (the

Mesos executor). Offers correspond to generic Mesos tasks, each of which consumes

the CPU and memory allocation specified in the offer. Each framework uses a Mesos

Task to launch one or more framework-specific tasks, which use the resources in the

accepted offer to execute an analytics application.
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Each framework can choose to employ a single Mesos task for each framework task,

or use a single Mesos task to run multiple framework tasks. We will refer to the

former as “fine-grained mode” (FG mode) and the later as “coarse-grained mode”

(CG mode). CG mode amortizes the cost of starting a Mesos Task across multiple

framework tasks. FG mode facilitates finer-grained sharing of physical resources.

The Mesos Master is configured so that it executes on its own physical node and

with high availability via shadow Masters. The Master makes offers to frameworks

using a pluggable resource allocation policy (e.g. fair sharing, priority, or other). The

default policy is Dominant Resource Fairness (DRF) [16]. DRF attempts to fairly

allocate combinations of resources by prioritizing the framework with the minimum

dominant share of resources.

The dominant resource of a framework is the resource for which the framework

holds the largest fraction of the total amount of that resource in the system. For

example, if a framework has been allocated 2 CPUs out of 10 and 512MB out of 1GB

of memory, its dominant resource is memory (2/10 CPUs < 512/1024 memory).

The dominant share of a framework is the fraction of the dominant resource that

it has been allocated (512/1024 or 1/2 in this example). The Mesos Master makes

offers to the framework with the smallest dominant share of resources, which results

in a fair share policy with a set of attractive properties (share guarantee, strategy-

proofness, Pareto efficiency, and others) [16]. We employ the default DRF scheduler

in Mesos for this study.

The framework implementations that we consider include the open source analyt-

ics systems Apache Hadoop [1], Apache Spark [2], and Apache Storm [3]. Hadoop

implements the popular MapReduce programming model via a scalable, fault tol-

erant and, distributed batch system. Spark extends this model and system with an

in-memory data-structure for Resilient Distributed Datasets (RDDs) [18]. Finally,

Storm provides distributed, fault tolerant, real-time processing of streaming data.

All frameworks leverage the Hadoop Distributed File System (HDFS) [19] for data

persistence and durability. Each of these frameworks makes different design and im-

plementation trade-offs (which result in different strengths and weaknesses), each

is amenable to varying types of big data processing, analysis, and programming

models, and each have had numerous applications written for them by develop-

ers [20–22]. For example, other studies show that Spark is much faster than Hadoop

under normal conditions [23,24], but that Hadoop has better fault-tolerance charac-

teristics [23]. Moreover, Spark is using Resilient Distributed Datasets that make it

a better choice compared to Hadoop for iterative algorithms, as it avoids repeated

and costly reads and writes to/from HDFS, but this same mechanism is what slows

it down compared to Hadoop when there is no data re-use on the workflow [6] or

when data shuffling efficiency determines the performance [23].

In a Mesos deployment, each framework implements the Mesos scheduler inter-

face and the Mesos executor interface. For Hadoop, the scheduler corresponds to

the Hadoop JobTracker and the executor is a Hadoop TaskTracker. For Spark, the

scheduler corresponds to the Spark Driver and there is a Spark extension that

implements the executor for task management. For Storm, the scheduler is called

Nimbus and the Mesos executors correspond to the Storm Supervisors. Storm Su-

pervisors spawn one or more Storm workers, each of which executes one or more

application tasks as process threads.
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Each framework creates one Mesos executor and one or more Mesos Tasks on each

Slave in an accepted Mesos offer. In CG mode, frameworks release resources back to

Mesos when all tasks complete or when the application is terminated. In FG mode,

frameworks execute one application task per Mesos task. When a framework task

completes, the framework scheduler releases the resources associated with the task

back to Mesos. The framework then waits until it receives a new offer with sufficient

resources from Mesos to execute its next application task. In our experiments we

consider Spark, which provides both FG and CG modes as options, and Hadoop

and Storm, which employ CG mode.

Throughout this paper, we use the term “tenant” to refer to a framework (e.g.

Spark, Hadoop, Storm, etc., that uses Mesos for cluster management. Thus, in single

tenant scenarios, one framework submits a job and makes use of all the available

cloud resources. Multi-tenancy refers to more than one framework running jobs at

the same time, while sharing the same cluster resources managed by Mesos. Mesos

applies its DRF policy to share the cluster resources and does not differentiate based

on the number of frameworks that use the cluster.

Mesos supports Roles [25] to statically separate resources between multiple frame-

works. There is no dynamic sharing of resources between different roles, but instead

the total cluster capacity has to be divided across the frameworks. A static assign-

ment of resources limits the peak capacity a cluster can support and wastes the

resources when a frameworks is idle. These disadvantages are important in resource

constrained environments, where the peak capacity and the available resources are

already limited. Therefore, we did not make use of Mesos roles and instead investi-

gate dynamic resource allocation sharing among frameworks.

Experimental Methodology
We next describe the experimental setup that we use for this study. We detail our

hardware and software stack, overview our applications and data sets, and present

the framework configurations that we consider.

We employ two, resource-constrained, Eucalyptus [11] private clouds, each with

nine virtual servers (nodes). We use three nodes for Mesos Masters that run in high

availability mode (similar to typical fault-tolerant settings of most real systems) and

six for Mesos Slaves in each cloud. The Slave nodes on the first cloud (Eucalyptus

v3.4.1), to which we refer to as development, each have 2x2.5GHz CPUs, 4GB of

RAM, and 60GB disk space. The Slave nodes on the second, production cloud

(Eucalyptus v4.1), have 4x3.3GHz CPUs, 8GB of RAM, and 60GB of SSD disk.

Both clouds use Gigabit Ethernet switches.

Our nodes run Ubuntu v12.04 Linux with Java 1.7, Mesos 0.21.1 [26] which uses

Linux containers by default for isolation, the CDH 5.1.2 MRv1 [27] Hadoop stack

(HDFS, Zookeeper, MapReduce, etc.), Spark v1.2.1 [28], and Storm v0.9.2 [29]. We

configure Mesos Masters (3), HDFS Namenodes, and Hadoop JobTrackers to run

with High Availability via three Zookeeper nodes co-located with the Mesos Masters.

HDFS uses a replication factor of three and 128MB block size. In addition, we found

and fixed a number of bugs that prevented the Hadoop stack from executing in our

environment. Our modifications are available at [30].
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Our batch processing workloads and data sets come from the BigDataBench and

the Mahout projects [4, 31]. We have made minor modifications to update the al-

gorithms to have similar implementations across frameworks (e.g. when they read-

/write data, perform sorts, etc.). These modifications are available at [32]. In this

study, we employ WordCount, Grep, and Naive Bayes applications for Hadoop and

Spark and a WordCount streaming topology for Storm. WordCount computes the

number of occurrences of each word in a given input data set, Grep produces a

count of the number of times a specified string occurs in a given input data set, and

Naive Bayes performs text classification using a trained model to classify sentences

of an input data set into categories.

We execute each application 10 times after three warmup runs to eliminate vari-

ation due to dynamic compilation by the Java Virtual Machine and disk caching

artifacts. We report the average and standard deviation of the 10 runs. We keep

the data in place in HDFS across the system for all runs and frameworks to avoid

variation due to changes in data locality. We measure performance and interrogate

the behavior of the applications using a number of different tools including Gan-

glia [33], ifstat, iostat, and vmstat available in Linux, and log files available from

the individual frameworks.

Development
Cloud

Production
Cloud

CPU MEM CPU MEM

Available
Slave 2 2931 4 6784
Total 12 17586 24 40704

Min
Required

Hadoop 1 980 1 980
Spark 2 896 2 896
Storm 2 2000 2 2000

Max Used
Per Slave

Hadoop 2 2816 4 5888
Spark 2 896 4 896
Storm 2 2000 4 4000

Max Used
Total

Hadoop 12 16896 24 35328
Spark 12 5376 24 5376
Storm 6 6000 6 6000

Table 1: CPU and Memory availability, minimum framework requirements to run 1

Mesos Task and maximum utilized resources per slave and in total.

Table 1 shows the available resources in our two private cloud deployments, the

minimum required resources that should be available on a slave for a framework to

run at least one task on Mesos and, the maximum resources that can be utilized

when the framework is the only tenant on the cloud. We configure the Hadoop

TaskTracker with 0.5 CPUs and 512MB of memory and each slot with 0.5 CPUs,

768MB of memory, and 1GB of disk space. We set the minimum and maximum

map/reduce slots to 0 and 50, respectively. We configure Spark tasks to use 1 CPU

and 512MB of memory, which also requires an additional 1 CPU and 384MB of

memory for each Mesos executor container. We enable compression for event logs

in Spark and use the default MEMORY ONLY caching policy. Finally, we configure

Storm to use 1 CPU and 1GB memory for the Mesos executor (a Storm Supervisor)

and 1 CPU and 1GB memory for each Storm worker.

This configuration allows Hadoop to run 3 and 7 tasks per Mesos executor for

the development and production cloud, respectively. Hadoop spawns one Mesos

executor per Mesos Slave and Hadoop tasks can be employed as either mapper
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(a) Development Cloud (b) Production Cloud

Figure 2: Single Tenant Performance: Benchmark execution time in seconds for

Hadoop and Spark on Mesos for different input sizes. In this experiment, we execute

each job using Hadoop, Spark in coarse grained mode (SparkCG), and Spark in fine

grained mode (SparkFG), using the development cloud (Figure 2a) and production

cloud (Figure 2b).

or reducer slots. Spark in FG mode runs 1 Mesos/Spark task per executor on the

development cloud and 3 Mesos/Spark tasks per executor on the production cloud.

In CG mode, Spark allocates its resources to a single Mesos task per executor that

runs all Spark tasks within it. In both modes, Spark runs one executor per Mesos

Slave. We configure the Storm topology to use 3 workers. On the development

cloud 1 Supervisor (Mesos executor) that runs 1 worker fits per slave and therefore

3 Slaves are needed in total. On the production cloud up to 3 workers can fit in the

same Supervisor and therefore the Storm topology can be deployed in 1 Slave or

distributed in multiple Supervisors across Slaves. We consider three different input

sizes for the applications to test for small, medium and long running jobs. As the

number of tasks per job is determined by the HDFS block size (which is 128MB),

the 1GB input size corresponds to 8 tasks, the 5GB input size to 40 tasks and, the

15GB input size to 120 tasks.

Results
For the first set of experiments, we use this experimental setup to measure the

performance of Hadoop and Spark when they run in isolation (single tenancy) on

our Mesos-managed private clouds. Throughout the remainder of this paper, we

refer to Spark when configured to use FG mode as SparkFG and when configured

to use CG mode as SparkCG.

Figure 2 presents the execution time for the three applications for different data set

sizes (1GB, 5GB, and 15GB) for the development cloud (left graph) and production

cloud (right graph). These results serve as a reference for the performance of the

applications when there is no resource contention (no sharing) across frameworks

in our configuration.

The performance differences across frameworks are similar to those reported

in other studies, in which Spark outperforms Hadoop (by more than 2x in our

case) [23, 24]. One interesting aspect of this data is the performance difference be-

tween SparkCG and SparkFG. SparkCG outperforms SparkFG in all cases and by
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(a) Development Cloud (b) Production Cloud

Figure 3: Multi-tenant Performance: Benchmark execution time in seconds for

Hadoop and SparkCG using different input sizes deployed on the development cloud

(Figure 3a) and the production cloud (Figure 3b). In this setting, SparkCG receives

offers from Mesos first because it is able to setup the application faster than Hadoop

is able to.

up to 2x in some cases. The reason for this is that SparkFG starts a Mesos Task

for each new Spark task to facilitate sharing. Because SparkFG is unable to amor-

tize the overhead of starting Mesos Tasks across Spark tasks as is done for coarse

grained frameworks, overall performance is significantly degraded. SparkCG out-

performs SparkFG in all cases and Hadoop outperforms SparkFG in multiple cases.

In particular, for the small 1GB input size on the development cluster, for which

the increased latencies of Spark fine-grained correspond to a significant overhead

on the total job runtimes, Spark performance is worse than Hadoop. This is also

true for the Naive Bayes benchmark. In this case Spark first collects the classifier’s

model from HDFS in a separate stage with one running task on a sigle executor

and it proceeds with staging the executors for the other tasks of the job only after

completion of this stage. This delayed staging of executors on Mesos leads to slower

runtimes for Spark Fine-Grained.

In the next experiment, we investigate the performance impact of multi-tenancy

in a resource constrained setting. For this study, we execute the same application

in Hadoop and SparkCG and start them together on Mesos. In this configuration,

Hadoop and SparkCG share the available Mesos Slaves and access the same data sets

stored on HDFS. Figure 3 shows the application execution time in seconds (using

different input sizes) over Hadoop and SparkCG in this multi-tenant scenario. As in

the previous set of results, SparkCG outperforms Hadoop for all benchmarks and

input sizes.

Multi-tenant Performance

We observe in the logs from these experiments that SparkCG is able to setup its

application faster than Hadoop is able to. As a result, SparkCG wins the race to

acquire resources from Mesos first. To evaluate the impact of such sequencing, we

next investigate what happens when Hadoop receives its offers from Mesos ahead of

SparkCG. To enable this timing of offers, we delay the Spark job submission by 10
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(a) Development Cloud (b) Production Cloud

Figure 4: Multi-tenant Performance (Spark receives offers first): Benchmark

execution time in seconds for Hadoop and SparkCG using different input sizes de-

ployed on the development cloud (Figure 4a) and the production cloud (Figure 4b),

when we delay Spark to ensure that Hadoop receives Mesos offers first.

seconds. We present these results in Figure 4. In this case, SparkCG outperforms

Hadoop for only the 1GB input size.

To understand this effect better, we summarize (i.e. we zoom in) the performance

differences between Hadoop and SparkCG for different Mesos offer orders. Figure 5

shows execution time for WordCount and the 15GB input size using the production

cloud. The first pair of bars shows the total time for the benchmark when each

framework has sole access to the entire cluster (for reference from Figure 2b). The

second pair of bars is the total time when Hadoop receives its resource offers from

Mesos first. The third pair shows total time when SparkCG receives Mesos offers

first (for reference from Figure 3b).

The data shows in this case that even though Spark is more than 160 seconds

faster than Hadoop in single-tenant mode, it is more than 85 seconds slower than

Hadoop when the Hadoop job starts ahead of the Spark job. Whichever framework

starts first, executes with time similar to that of the single tenancy deployment.

This behavior results from the way that Mesos allocates resources. Mesos offers

all of the available resources to the first framework that registers with it, since it is

unable to know whether or not there will be a future framework to register. Mesos is

incapable to change system-wide allocation when a new framework arrives, since it

does not implement resource revocation. SparkCG and Hadoop will block all other

frameworks until they complete execution of a job. In Hadoop, such starvation can

extend beyond a single job, since Hadoop jobs are submitted on the same Hadoop

JobTracker instance. That is, a Hadoop instance will retain Mesos resources until

its job queue (potentially holding multiple jobs) empties.

These experiments show that when an application requires resources that exceed

those available in the cloud (input sizes 5GB and above in our experiments), and

when frameworks use CG mode, Mesos fails to share cloud resources fairly among

multiple tenants. In such cases, Mesos serializes application execution limiting both

parallelism and utilization significantly. Moreover, application performance in such

cases becomes dependent upon framework registration order and as a result is highly

variable and unpredictable.
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Figure 5: Performance Implications of Multi-tenancy and Mesos Offer

Order: Hadoop and SparkCG. This graph shows WordCount execution time in

seconds for input size 15GB using the production cloud (single-tenant, multi-tenant

with Hadoop ahead of Spark, and multi-tenant with Spark ahead of Hadoop). The

framework that receives Mesos offers first performs best.

Fine-Grained Resource Sharing

In this section, we investigate the operation of the Mesos scheduler for frameworks

that employ fine grained scheduling. For such frameworks (SparkFG in our study),

the framework scheduler can release and acquire resources throughout the lifetime

of an application.

For these experiments, we measure the impact of interference between Hadoop

and SparkFG. As in the previous section, we consider the case when Hadoop starts

first and when SparkFG starts first. We present a representative subset of the re-

sults for clarity and brevity. Figure 7 shows the total execution time in seconds for

WordCount and its 15GB input on the production cloud when we run Hadoop and

SparkFG together and alter the Mesos offer order. As for Figure 5, we present three

pairs of bars. The first, for reference, is the single-tenant performance. The second

is the performance when Hadoop receives offers from Mesos ahead of SparkFG. For

the third, SparkFG receives Mesos offers ahead of Hadoop.

As we expect, when Hadoop receives offers from Mesos first, it acquires all of the

available resources, blocks SparkFG from executing, and outperforms SparkFG.

Similarly, when SparkFG receives its offers ahead of Hadoop, we expect it to block

Hadoop. However, from the performance comparison, this starvation does not oc-

cur. That is, Hadoop outperforms SparkFG (the far right pair of bars) even when

SparkFG starts first and can acquire all of the available resources.

We further investigate this behavior in Figure 6. In this set of graphs, we present

a timeline of multi-tenant activities over the lifetime of two WordCount/5GB ap-

plications (one over Hadoop, the other over SparkFG). In the top graph, we present

the number of Mesos Tasks allocated by each framework. Mesos Tasks encapsulate
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(a) Number of active (staging or running) Mesos Tasks

(b) Memory allocation per framework

(c) CPU cores allocation per framework

Figure 6: Multi-tenancy and Resource Utilization: The timelines

show active Mesos Tasks, memory, and CPU allocation in Mesos for

the development cloud. Hadoop and Spark in FG mode compete for

resources. Hadoop gradually takes over, running Tasks on its executors

(Figure 6a), while memory (Figure 6b) and CPU cores (Figure 6c)

previously assigned to Spark remain idle until Hadoop completes.
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Figure 7: Performance Implications of Multi-tenancy and Mesos Offer

Order: Hadoop and SparkFG. This graph shows WordCount execution time in

seconds for input size 15GB using the production cloud (single-tenant, multi-tenant

with Hadoop ahead of Spark, and multi-tenant with Spark ahead of Hadoop).

the execution of one (SparkFG) or many (Hadoop) framework tasks. The middle

graph shows the memory consumption by each framework and the bottom graph

shows the CPU resources consumed by each framework.

In this experiment, SparkFG receives first the offers from Mesos and acquires all

the available resources of the cloud (all resources across the six Mesos Slaves are

allocated to SparkFG). SparkFG uses these resources to execute the application and

Hadoop is blocked waiting on SparkFG to finish. Because SparkFG employs a fine

grained resource use policy, it releases the resources allocated to it for a framework

task back to Mesos when each task completes. Doing so enables Mesos to employ its

fair sharing resource allocation policy (DRF) and allocate these released resources

to other frameworks (Hadoop in this case) – and the system achieves true multi-

tenancy.

However, such sharing is short lived. As we can observe in the graphs, over time

as SparkFG Mesos Tasks are released, they are allocated to Hadoop until only

Hadoop is executing (SparkFG is eventually starved). The reason for this is that

even though SparkFG releases its task resources back to Mesos, it does not release

all of its resources back, in particular, it does not release the resources allocated to

it for its Mesos executors (one per Mesos Slave).

In our configuration, SparkFG executors require 768MB of memory and 1CPU

per Slave. Mesos DRF considers these resources part of the SparkFG dominant

share and thus gives Hadoop preference until all resources in the system are once

again consumed. This results in SparkFG holding onto memory and CPU (for its

Mesos executors) that it is unable to use because there are insufficient resources for

its tasks to execute but for which Mesos is charging under DRF. Thus, SparkFG

induces a deadlock and all resources being held by SparkFG executors in the system
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are wasted (and system resources are underutilized until Hadoop completes and

releases its resources).

In our experiments, we find that this scenario occurs for all but the shortest lived

jobs (1GB input sizes). The 1GB jobs include only 8 tasks and so SparkFG will

execute 6 out of its 8 task after getting all the resources on the first round of

offers. Moreover, Hadoop doesn’t require all the Slaves to run 8 tasks for this job

as explained on Section leaving sufficient space to Spark to continue executing the

remaining two tasks uninterrupted.

Deadlock in Mesos in resource constrained settings is not limited to the SparkFG

scheduler. The fundamental reason behind this type of deadlock is a combination

of (i) frameworks “hanging on” to resources and, (ii) the way Mesos accounts for

resource use under its DRF policy. In particular, any framework scheduler that

retains resources across tasks, e.g. to amortize the startup overhead of the support

services (like Spark executors), will be charged for them by DRF, and thus may

deadlock. Moreover, any Mesos system for which resource demand exceeds capacity

can deadlock if there is at least one framework with a fine grained scheduler and at

least one framework with a coarse grained scheduler.

Batch and Streaming Tenant Interference

We next evaluate the impact of performance interference in Mesos under resource

constraints, for batch and streaming analytics frameworks. This combination of

frameworks is increasingly common given the popularity of the lambda architec-

ture [34] in which organizations combine batch processing to compute views from

a constantly growing dataset and stream processing to compensate for the high

latency between subsequent iterations of batch jobs and to complement the batch

results with newly arrived unprocessed data [35–37].

We perform two types of experiments. In the first, we execute a streaming applica-

tion using a Storm topology continuously, while we introduce batch applications. In

the second, we submit batch and streaming jobs simultaneously to Mesos. Figure 8

illustrates the performance results for the former. We present execution time in sec-

onds for the applications and input sizes using Hadoop, SparkFG, and SparkCG,

when Storm executes in the background. The results show that the performance

degradation introduced by the Storm tenant varies between 25% to 80% across

frameworks and inputs, and is insignificant for the 1GB input.

The reason for this variation is that Storm accepts offers from Mesos for three

Mesos Slaves to run its job on the development cloud. This leaves three Slaves

for Hadoop, SparkFG, and SparkCG to share. The degradation is limited because

fewer Slaves impose less startup overhead on the framework executors per Slave. The

overhead of staging new Mesos Tasks and spawning executors is so significant that it

is not amortized by the additional parallelization that results from additional Mesos

Slaves. We omit results for the production cloud for brevity. The results are similar

but show less degradation (insignificant for 1GB, and 5% to 35% across frameworks

and other inputs) due to the additional resources available in the production cloud.

Figure 9 shows the impact of interference from batch systems on Storm throughput

in tuples per second (Results for latency are similar and we omit them for brevity).

We find that the interference is insignificant and Storm performance is the same
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Figure 8: Hadoop and Spark performance on Mesos-managed cloud shared

with Storm: Execution time in seconds for Hadoop and Spark applications in CG

and FG mode, for different input sizes and benchmarks on the development cloud.

as that when it executes in single-tenant mode, since Storm receives its offers and

allocates the resources it needs ahead of the batch frameworks. When a coarse-

grained batch system receives its resource offers from Mesos ahead of Storm, Storm

execution is blocked until the batch system finishes. Figure 10 shows the timing

diagram and this effect on Storm when executed with a SparkCG tenant in Mesos

for the development cloud. Each line type shows a different stage of execution

for each framework for each Mesos Task. Results with Hadoop and SparkFG are

not shown for brevity. Hadoop has the exact same effect on Storm as SparkCG,

while with SparkFG this depends on the cloud size. On the development cloud the

released resources from SparkFG are not sufficient for Storm to deploy its executors

and therefore Storm is blocked, while in the production cloud Storm will acquire

some of the resources released by SparkFG as described previously, without however

deadlocking SparkFG because Storm does not consume all of the cloud resources

to run its tasks.

Startup Overhead of Mesos Tasks

We next investigate Mesos Task startup overhead for the batch frameworks under

study. We define the startup delay of a Mesos Task as the elapsed time between

when a framework issues the command to start running an application and when

the Mesos Task appears as running in the Mesos user interface. As part of startup,

the frameworks interact with Mesos via messaging and access HDFS to retrieve

their executor code. This time includes that for setting up a Hadoop or Spark job,

for launching the Mesos executor (and respective framework implementation, e.g.

TaskTracker, Executor), and launching the first framework task.
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Figure 9: Impact of Multi-tenancy on Storm in Mesos: When Storm receives

its offers from Mesos ahead of the batch frameworks, there is no interference impact

on Storm, i.e. Storm throughput is the same in multi-tenant and single tenant

deployments.

Figure 11a shows the average startup time in seconds for each Mesos Slave across

applications for Hadoop, SparkFG, and SparkFG when running the WordCount

application with input size 15GB. Our experiments indicate that other applications

perform similarly. The data shows that as new tasks are launched (each on a new

Mesos Slave), the startup delay increases and each successive Slave takes longer

to complete the startup process. Our measurements show that this increase is due

to network and disk contention. Slaves that start earlier complete the startup pro-

cess earlier and initiate application execution (execution of tasks). Task execution

consumes significant network and disk resources (for HDFS access) which slows

down the startup process of later Slaves. This interference grows with the size of

application input as shown in Figure 11b. The graph shows the Mesos Task startup

overhead in seconds for each Slave for different input sizes for WordCount over

Hadoop (other frameworks exhibit similar behavior).

Our results show that startup overhead impacts the overall performance of appli-

cations and can significantly degrade the performance of short running jobs: 30% for

Hadoop and 55% for SparkFG for the 1GB experiments. Given that short running

jobs account for an increasingly large portion of big data workloads today [13–15],

such overheads can cause significant under-utilization and widely varying applica-

tion performance in constrained settings.

Discussion
In this study, we use three different applications to expose the challenges to fair

sharing in multi-tenant, resource constrained cluster settings. Regardless of ap-

plication, the root cause of framework interference is how resources are allocated

and shared. The applications we include are those used in previous performance
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Figure 10: Multi-tenant Interference between Storm and SparkCG in

Mesos, broken down by stage of execution: When SparkCG receives its Mesos

offers first, Storm blocks until SparkCG finishes.

studies [6, 23, 24]. WordCount and Grep are core components in text processing

applications, and Naive Bayes Classification is a popular algorithm used in social

network and e-commerce analytics.

Number of tenants

To study multi-tenancy, we consider two and three tenant scenarios. Our experience

has been that these scenarios capture much of the interference behavior represen-

tative of higher numbers of tenants. The reason for this is fundamental to Mesos

resource allocation. The framework that submits a job first, receives Mesos offers

and therefore acquires all available resources. If the framework is coarse-grained it

will keep these resources and block the other frameworks until it completes its job.

If the first job that arrives is from a fine-grained framework, then the fine-grained

framework will release the resources related to its tasks while keeping the resources

related to its executors regardless of the number of tenants in the system.

Key Insights

Performance interference occurs when the available cluster resources is less than

the peak demand of the jobs running on the cluster which can occur on clusters

of any size, but becomes the common case when resources are constrained. Static

allocation of resources in constrained settings only exacerbates the problem. To

reduce the impact of framework interference, Mesos must perform dynamic resource

allocation and be extended to provide either intelligent admission control, a resource

revocation capability, or both, to avoid the performance degradations revealed in

this paper.

In particular, we can extend the resource manager to identify problematic be-

havior and revoke resources when fair sharing is violated. This requires the imple-

mentation of a pre-emption mechanism in each framework in order to avoid costly
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(a) Task startup delays across frameworks (b) Task startup delays across input sizes

Figure 11: Task Startup Delays Across Frameworks (Figure 11a) and Input

Sizes (Figure 11b) for the Development Cloud: The data shows the time in

seconds required for each Mesos Task to finish its startup process.

re-computations. Such a solution, however, will degrade performance of the frame-

work from which the resources are revoked, but would enable a more predictable

behavior of all the frameworks and guarantee continue progress of all the jobs.

Another way to address these issues is through job admission control. The resource

manager can be extended to record historic information about job behavior or to

support deadlines [38–40]. Mesos could then offer frameworks only the necessary

resources required to meet a deadline to give the system more flexibility in achieving

fair sharing. Deadline-driven admission control does not preclude all deadlock, but

it can reduce its frequency.

We can also overcome framework interference in multi-tenant scenarios by forcing

all frameworks to use fine-grained allocation in which they release all the resources

related to their tasks and executors every time a task completes its execution. This

way, even if the resource manager offers all the available resources to the framework

that submits its job first, the framework will release resources upon task completion

and these resources will be offered to the frameworks waiting. Such a requirement

comes with a performance penalty as the overheads of creating executors and new

Mesos tasks are significant but has the potential to increase performance stability

and fair sharing in multi-tenant scenarios.

Related Work
This paper is an extended version of a conference publication [41]. Our extensions

include results from experiments using a second private cloud system (called pro-

duction) and a study of the impact of multi-tenancy when different resource-offer

orders are considered. We also provide additional analysis on fine-grained resource

sharing and on the impact of multi-tenancy consisting of combinations of big data

and fast data (streaming) frameworks.

Cluster managers like Mesos [9] and YARN [42] enable the sharing of cloud and

cluster resources by multiple, data processing frameworks. YARN uses a classic

resource request model in which each framework asks for the resources it needs

to run its jobs. Mesos as described herein, implements an offer-based model in



Dimopoulos et al. Page 18 of 21

which frameworks can accept or reject offers for resources based on whether the

offers satisfy the resource requirements of the application. Our work focuses on fair-

sharing and deadlock issues that occur on Mesos due to lack of admission control and

resource revocation. However, Mesos is not the only cluster manager that suffers

from such problems. Other work [43] shows that, when the amount of required

resources exceeds that which is available, deadlocks also occur on YARN.

Recently, new big data workflow managers that support multiple execution engines

have emerged. Musketeer [6] dynamically maps a workflow description to a variety

of execution engines, including Hadoop and Spark to select the best performing

engine for the particular workflow. Similarly, [7] optimizes end-to-end data flows,

by specializing and partitioning the original flow graph into sub flows that are

executed over different engines. The advent of these higher-level managers calls for

an increase in the combined use of data processing systems in the near future. Our

work focuses on understanding system design limitations that will emerge under

these new conditions.

The performance differences of MapReduce and Spark on very large clusters, with

an emphasis on the architectural components that contribute to these differences

is studied in [23]. [44] evaluates the memory and time performance of Spark and

MapReduce on Mesos, for the PageRank algorithm. The authors in [24] extend

MPI to support Big Data jobs and compare performance and resource utilization

of Hadoop and Spark. Ousterhout et al [45] suggest using blocked-time analysis to

quantify performance bottlenecks in big data frameworks and apply it to analyze

Spark’s performance. In a recent work, Li et al [46] extend incremental Hadoop [47]

to support low latency stream queries and compare the performance of their system

to Spark streaming [48] and Storm. The key aspect that differentiates our work is

our investigation and characterization of the performance of Hadoop, Spark and

Storm applications, when run over Mesos cluster manager, in resource constrained

and multi-tenant settings.

There are numerous studies that characterize the performance of MapReduce

workloads. Many show that these workloads consist of many jobs (if not the major-

ity) that have small input sizes and that have short execution times. Chen et al [13]

observe that most jobs have input, shuffle and, output sizes in the MB to GB range

and that 90% of the jobs have input datasets less than few GBs. Similarly, authors

of [14] find that over 40% of jobs have less than 10 tasks, while about 50% of jobs

have between 10 to 2000 tasks and, 80% of the jobs have duration less than 2 min-

utes. Lastly, the authors in [15] observe that small jobs dominate their workloads

and that more than 90% of jobs touch less than 20GB of data, and their duration

is less than 8 minutes.

Other researchers (e.g. [49,50]) have shown the significant impact of startup over-

head on MapReduce jobs that run on large cluster systems (hundreds to thousands

of nodes). Our work differs from this past work in that we investigate the perfor-

mance impact of multi-tenant interference on short running applications and analyze

the overhead of job startup under moderate resource constraints. Such scenarios are

increasingly common yet are not those for which large scale analytics systems were

originally designed, warranting further study.
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Conclusions
The goal of our work is to characterize the behavior of “big data” analytics frame-

works in shared settings for which computing resources (CPU and memory) are

limited. Such settings are increasingly common in both public and private cloud

systems in which cost and physical limitations constrain the number and size of

resources that are made available to applications. In this paper, we investigate the

performance and behavior of distributed batch and stream processing systems that

share resource constrained, private clouds managed by Mesos. We examine how

these systems interfere with each other and Mesos, to evaluate the effect on sys-

tems performance, overhead, and fair resource sharing.

We find that in such settings, the absence of an effective resource revocation

mechanism supported by Mesos and the corresponding data processing systems

running on top of it, leads to violation of fair sharing. In addition, the naive al-

location mechanism of Mesos benefits significantly the framework that submits its

application first. As a result coarse-grained framework schedulers cause resource

starvation for later tenants. Moreover, when systems (either batch or streaming)

with different scheduling granularities (fine-grained or coarse-grained) co-exist on

the same Mesos-managed cloud, resource underutilization and resource deadlocks

can occur. Finally, the overhead introduced during application startup on Mesos

affects all frameworks and significantly degrades the performance of short running

applications.
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