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rches the set of feasible solutions to a combinatorial optimization
optimal solution is found without necessarily examining all feasible

solutions. The feasible solutions are not given. They can be generated from the problem description.

However, doing so usually is computationally infeasible: the number of feasible solutions typically grows

exponentially as a function of the size of the problem input. For example, the set of feasible tours in a

symmetric Traveling Salesman Problem (TSP) of a complete graph with 23 nodes is 22!/2 or around

8!1014 tours. The space of feasible solutions is progressively partitioned (branching), forming a search

tree. Each tree node has a partial feasible solution. The node represents the set of feasible solutions that

are extensions of its partial solution. For example, in a TSP branch and bound, a search tree node has a

partial tour, representing the set of all tours that contain that partial tour. As branching continues

(progresses down the problem tree), each search node has a more complete partial solution and thus

represents a smaller set of feasible solutions. For example, in a TSP branch and bound, a tree node’s
589—XML MODEL CRC12a – pp. 1–12.
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children each represent an extension of the partial tour to a more complete tour (e.g., one additional city

or one additional edge). As one progresses down the search tree, each node represents a larger partial

tour. As the size of a partial tour increases, the number of full tours containing the partial tour

clearly decreases.

In traversing the search tree, one may come to a node that represents a set of feasible solutions, all of

which are provably more costly than a feasible solution already found. When this occurs, this node of the

search tree is pruned, therefore discontinuing further exploration of this set of feasible solutions. In the

example of the TSP problem, the cost of any feasible tour that has a given partial tour surely can be

bounded from below by the cost of the partial tour: the sum of the edge weights for the edges in the

partial tour. (These experiments use a Held–Karp lower bound, which is stronger but more

computationally complex.) If the lower bound for a node is higher than the current upper bound

(i.e., best known complete solution), then the cost of all complete solutions (e.g., tours) represented by

the node is higher than a complete solution that is already known: the node is pruned. Please see

Papadimitriou and Steiglitz [1] for a more complete discussion of branch-and-bound. Figure 41.1 gives a

basic, sequential branch-and-bound algorithm.

Branch-and-bound algorithms may be easily modified to generate suboptimal solutions. The total

search time decreases as the desired accuracy decreases.

The framework that is presented here is designed for deployment in a distributed setting. Moreover,

the framework supports adaptive parallelism, which means that during the execution, the set of compute

servers can grow (if new compute servers become available) or shrink (if compute servers become

unavailable or fail). The branch and bound computation thus cannot assume a fixed number of

compute servers.

The branch and bound computation is decomposed into tasks, each of which is executed on a compute

server. Each element of the active set (please see Figure 41.1) is a task that, in principle, can be scheduled

for execution on any compute server. Indeed, parallel efficiency requires load balancing of tasks among

compute servers. This distributed setting implies the following compute server requirements:

† Tasks (activeset elements) are generated during the computation—they cannot be scheduled a

priori;

† When a compute server discovers a new best cost, it must be propagated to the other compute

servers;

† Detecting termination requires “knowing” when all branches (children) have been either fully

examined or pruned. In a distributed setting, the implied communication must not be

a bottleneck.
activeSet = { originalTask };
u = infinity;  //u = the cost of the best solution known
currentBest = null;
while ( ! activeSet. isEmpty() ) {

k = remove some element of the activeSet;
children = generate k’s children;
for each element of children {

if ( element’s lower bound <= u )
if ( element is a complete solution ) {

u = element’s cost;
currentBest = element;

}
else

add element to activeSet;
}

}

FIGURE 41.1 A sequential algorithm for branch and bound.

5505—Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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The goal here is to facilitate the development of branch and bound computations for deployment as a

distributed computation. There is a development–deployment infrastructure provided that requires the

developer to write code for only the particular aspects of the branch and bound computation under

development, primarily the branching rule, the lower bound computation, and the upper bound

computation. This framework and some experimental results of its application to a medium complexity

TSP code running on a beowulf cluster are presented.

41.2 Related Work

Held, Hoffman, Johnson, and Wolfe give a short history of the TSP [2]. In it, they note that, in 1963,

Little, Murty, Sweeney, and Karel [3] were the first to use the term “branch and bound” to describe their

enumerative procedure for solving TSP instances. Thus, Little et al. and Land and Doig [4] independently

discovered the technique of branch and bound. This discovery led to “a decade of enumeration.”

Parallel branch and bound has also been widely studied. (See, for example, [5,6].) Rather early on it was

discovered that there are speedup anomalies in parallel branch and bound [7]. Completion times are not

monotonically non-increasing as a function of the number of processors. In the discussion that follows, let

T denote the search tree, c* denote the cost of a minimum cost leaf in T, T*4T denote the subtree of

Twhose nodes cost less than or equal to c*, n denote the number of nodes in T*, and h denote the height

of T*. In [8], Karp and Zhang present a universal randomized method called Local Best-First Search for

parallelizing sequential branch-and-bound algorithms. When executing on a completely connected,

message-passing multiprocessor, the method’s computational complexity is asymptotically optimal

with high probability: O(n/pCh), where p is the number of processors. The computational complexity

of maintaining the local data structure and the communication overhead are ignored in their analysis.

When nOp2 log p, Liu, Aiello, and Bhatt [9] give a method for branch and bound that is asymptotically

optimal with high probability, assuming that interprocessor communication is controlled by a central

FIFO arbiter. Herley, Pietracaprina, and Pucci [10], give a deterministic parallel algorithm for branch and

bound based on the parallel heap selection algorithm of Frederickson [11], combined with a parallel

priority queue. The complexity of their method is O(n/pCh log2(np)) on an EREW-PRAM, which is

optimal for hZO(n/(plog2(np))). This bound includes communication costs on a EREW-PRAM.

Distributed branch and bound also has been widely studied. Tschöeke, Lüeling, and Monien

contributed experimental work on distributed branch and bound for TSP [12] using over 1000

processors. When the number of processors gets large, fault tolerance becomes an issue. Yahfoufi and

Dowaji [13] present perhaps the first distributed fault-tolerant branch and bound algorithm.

There also has been a lot of work on what might be called programming frameworks for distributed

branch and bound computation. This occurs for two reasons: (1) branch and bound is best seen as a

meta-algorithm for solving large combinatorial optimization problems: It is a framework that must be

completed with problem-specific code; and (2) programming a fault tolerant distributed system is

sufficiently complex to motivate a specialization of labor: distributed systems research vs. operations

research. In 1995, Shinano et al. [14] presented PUBB, a Parallel Utility for Branch-and-Bound, based on

the C programming language. They illustrate the use of their utility on TSP and 0/1 ILP. They also

introduce the notion of a Logical Computing Unit (LCU). Although in parts of their paper, an LCU

sounds like a computational task, the reader is persuaded that it most closely resembles a processor, based

on their explanation of its use: “The master process maintains in a queue, all the subproblems that are

likely to lead to an optimal solution. As long as this queue is not empty and an idle LCU exists, the master

process selects subproblems and assigns them to an idle LCU for evaluation one after the other.” When

discussing their experimental results, they note “The results indicate that, up to using about 10 LCUs, the

execution time rapidly decreases as more LCUs are added. When the number of LCUs exceeds about 20,

the computing time for one run, remains almost constant.” Indeed, from their Figure 9 (in [14]), one can

see that PUBB’s parallel efficiency steadily goes down when the number of LCUs is above 10, and is well

below 0.5, when the number of LCUs is 55. Aversa et al. [15] report on a the Magda project for mobile
5505—Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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agent programming with parallel skeletons. Their divide-and-conquer skeleton is used to implement

branch and bound, which they provide experimental data for on up to 8 processors. Moe [16] reports on

GRIBB and infrastructure for branch and bound on the Internet. Experimental results on an SGI Origin

2000 with 32 processors machines shows good speedups when the initial bound is tight, and about 67%

of ideal speedup, when a simple initial bound is used. Dorta et al. [17] present CCC skeletons for

divide-and-conquer and branch-and-bound, where deployment is intended for clusters. Their experi-

ments, using a 0/1 Knapsack problem of size 1000. On a Linux cluster with 7 processors, the average

speedup was 2.25. On an Origin 3000 with 16 processors, the average speedup was 4.6. On a Cray T3E

with 128 processors, the average speedup was 5.02. They explain “Due to the fine grain of the 0/1

knapsack problem, there is no lineal increase in the speed up when the number of processor increase. For

large numbers of processors the speed up is poor.”

Neary, Phipps, Richman, and Cappello [18,19] present an infrastructure/framework for distributed

computing, including branch and bound, that tolerates faulty compute servers and is in pure Java,

allowing application codes to run on a heterogeneous set of machine types and operating systems. They

experimentally achieved about 50% of ideal speedup for their TSP code, when running on 1000

processors. Their schemes for termination detection and fault tolerance of a branch and bound

computation both exploit its tree-structured search space. The management of these schemes is

centralized. Iamnitchi and Foster [20] build on this idea of exploiting branch and bound’s tree-

structured search space, producing a branch and bound-specific fault tolerance scheme that is

distributed, although they provide only simulation results.

41.3 The Deployment Architecture

JICOS, a Java-centric network computing service that supports high-performance parallel computing, is

an ongoing project that: virtualizes compute cycles, stores/coordinates partial results—supporting fault-

tolerance, is partially self-organizing, may use an open grid services architecture [21,22] front end for

service discovery (not presented), is largely independent of hardware/OS, and is intended to scale from a

LAN to the Internet. JICOS is designed to: support scalable, adaptively parallel computation (i.e., the

computation’s organization reduces completion time, using many transient compute servers, called hosts,

that may join and leave during a computation’s execution, with high system efficiency, regardless of how

many hosts join/leave the computation); tolerate basic faults—JICOS must tolerate host failure and

network failure between hosts and other system components; hide communication latencies, which may

be long, by overlapping communication with computation. JICOS comprises 3 service component

classes.

Hosting Service Provider (HSP): JICOS clients (i.e., processes seeking computation done on their
5505—
behalf) interact solely with the hosting service provider component. A client logs in, submits

computational tasks, requests results, and logs out. When interacting with a client, the hosting

service provider thus acts as an agent for the entire network of service components. It also

manages the network of task servers described below. For example, when a task server wants to

join the distributed service, it first contacts the hosting service provider. The HSP tells the task

server where it fits in the task server network.
Task Server: This component is a store of Task objects. Each Task object that has been spawned but has
not yet been computed, has a representation on some task server. Task servers balance the load of

ready tasks among themselves. Each task server has a number of hosts associated with it. When a

host requests a task, the task server returns a task that is ready for execution, if any are available.

If a host fails, the task server reassigns the host’s tasks to other hosts.
Host: A host (aka compute server) joins a particular task server. Once joined, each host repeatedly
requests a task for execution, executes the task, returns the results, and requests another task. It is

the central service component for virtualizing compute cycles.
Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.



Hosting
service
provider

Client

FIGURE 41.2 A JICOS system that has 9 task servers. The task server topology, a 2D torous, is indicated by the

dashed lines. In the figure, each task server has 4 associated hosts (the little black discs). An actual task server might

serve about 40 hosts (although our experiments indicate that 128 hosts/task server is not too much). The client

interacts only with the HSP.
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When a client logs in, the HSP propagates that login to all task servers, who in turn propagate it to all

their hosts. When a client logs out, the HSP propagates that logout to all task servers, which aggregate

resource consumption information (execution statistics) for each of their hosts. This information, in

turn, is aggregated by the HSP for each task server, and returned to the client. Currently, the task server

network topology is a torous. However, scatter/gather operations, such as login and logout, are

transmitted via a task server tree: a subgraph of the torous (See Figure 41.2).

Task objects encapsulate computation. Their inputs and outputs are managed by JICOS. Task

execution is idempotent, supporting the requirement for host transience and failure recovery.

Communication latencies between task servers and hosts are reduced or hidden via task caching, task

pre-fetching, and task execution on task servers for selected task classes.
41.3.1 Tolerating Faulty Hosts

To support self-healing, all proxy objects are leased [23,24]. When a task server’s lease manager detects an

expired host lease and the offer of renewal fails, the host proxy: (1) returns the host’s tasks for

reassignment, and (2) is deleted from the task server. Because of explicit continuation passing,

recomputation is minimized. Systems that support divide-and-conquer but which do not use explicit

continuation passing [25], such as Satin [26], need to recompute some task decomposition compu-

tations, even if they completed successfully. In some applications, such as sophisticated TSP codes,

decomposition can be computationally complex. On JICOS, only the task that was currently being

executed needs to be recomputed. This is a substantial improvement. In the TSP problem instance that

we use for our performance experiments, the average task time is 2 s. Thus, the recomputation time for a

failed host is, in this instance, a mere 1 s, on average.

41.4 Performance Considerations

JICOS’s API includes a simple set of application-controlled directives for improving performance by

reducing communication latency or overlapping it with task execution.

† Task caching: When a task constructs subtasks, the first constructed subtask is cached on its host,

obviating its host’s need to ask the TaskServer for its next task. The application programmer thus

implicitly controls which subtask is cached.
5505—Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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† Task pre-fetching: The application can help hide communication latency via task pre-fetching:

— Implicit: A task that never constructs subtasks is called atomic. The Task class has a boolean

method, isAtomic. The default implementation of this method returns true, if and only if the

task’s class implements the marking interface, Atomic. Before invoking a task’s execute method,

a host invokes the task’s isAtomic method. If it returns true, the host pre-fetches another task

via another thread before invoking the task’s execute method.

— Explicit: When a task object whose isAtomic method returned false (it did not know prior to

the invocation of its execute method that it would not generate subtasks) nonetheless comes to

a point in its execute method when knows that it is not going to construct any subtasks, it can

invoke its environment’s pre-fetch method. This causes its host to request a task from the task

server in a separate thread.

Task pre-fetching overlaps the host’s execution of the current task with its request for the next task.

Application-directed pre-fetching, both implicit and explicit, thus motivates the programmer to (1)

identify atomic task classes, and (2) constitute atomic tasks with compute time that is at least as long as a

Host—TaskServer round trip (on the order of 10 s of milliseconds, depending on the size of the returned

task, which affects the time to marshal, send, and unmarshal it).

† Task server computation: When a task’s encapsulated computation is little more complex than

reading its inputs, it is faster for the task server to execute the task itself than to send it to a host

for execution. This is because the time to marshal and unmarshal the input plus the time to

marshal and unmarshal the result is less than the time to simply compute the result (not to

mention network latency). Binary boolean operators, such as min, max, sum (typical linear-time

gather operations) should execute on the task server. All Task classes have a boolean method,

executeOnServer. The default implementation returns true, if and only if the task’s class

implements the marking interface, ExecuteOnServer. When a task is ready for execution, the

task server invokes its executeOnServer method. If it returns true, the task server executes the task

itself: the application programmer controls the use of this important performance feature.

Taken together, these features reduce or hide much of the delay associated with Host—

TaskSever communication.

41.5 The Computational Model

Computation is modeled by an directed acyclic graph (DAG) whose nodes represent tasks. An arc from

node v to node u represents that the output of the task represented by node v is an input to the task

represented by node u. A computation’s tasks all have access to an environment consisting of an

immutable input object and a mutable shared object. The semantics of “shared” reflects the envisioned

computing context—a computer network: the object is shared asynchronously. This limited form of

sharing is of value in only a limited number of settings. However, branch and bound is one such setting,

constituting a versatile paradigm for coping with computationally intractable optimization problems.

41.6 The Branch and Bound API

Tasks correspond to nodes in the search tree. Each task gives rise to a set of smaller subtasks, until it

represents a node in the search tree that is small enough to be explored by a single compute server. Such a

task is referred to as atomic; it does not decompose into subtasks.
41.6.1 The Environment

For branch and bound computations, the environment input is set to the problem instance. For example,

in a TSP, the input can be set to the distance matrix. Doing so materially reduces the amount
5505—Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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of information needed to describe a task, which reduces the time spent to marshal and unmarshal

such objects.

The cost of the least cost known solution at any point in time is shared among the tasks: it is

encapsulated as the branch and bound computation’s shared object. (Please see IntUpperBound below.)

In branch and bound, this value is used to decide if a particular subtree of the search tree can be pruned.

Thus, sharing the cost of the least cost known solution enhances the pruning ability of concurrently

executing tasks that are exploring disjoint parts of the search tree. Indeed, this improvement in pruning is

essential to the efficiency of parallel branch and bound. When a branch and bound task finds a complete

solution whose cost is less than the current least cost solution, it sets the shared object to this new value,

which implicitly causes JICOS to propagate the new least cost throughout the distributed system.
41.6.2 The JICOS Branch and Bound Framework

The classes comprising the JICOS branch and bound framework are based on two assumptions:

† The branch and bound problem is formulated as a minimization problem. Maximization

problems typically can be reformulated as minimization problems.

† The cost can be represented as in int.

Should these two assumptions prove troublesome, then this framework will be generalized.

Before giving the framework, there is a description of the problem-specific class that the application

developer must provide: a class that implements the Solution interface. This class represents nodes in the

search tree: a Solution object is a partial feasible solution. For example, in a TSP, it could represent a partial

tour. Since it represents a node in the search tree, its children represent more complete partial feasible

solutions. For example, in a TSP, a child of a Solution object would represent its parent’s partial tour, but

including[excluding] one more edge (or including one more city, depending on the branching rule).

The Solution interface has the following methods:

† getChildren returns a queue of the Solution objects that are the children of this Solution. The

queue’s retrieval order represents the application’s selection rule, from most promising to least

promising. In particular, the first child is cached (please see § 41.4 for an explanation of task

caching).

† getLowerBound returns the lower bound on the cost of any complete Solution that is an extension

of this partial Solution.

† getUpperBound returns an upper bound on the cost of any complete Solution, and enables an

upper bound heuristic for incomplete solutions.

† isComplete returns true if and only if the partial Solution is, in fact, complete.

† reduce omits loose constraints. For example, in a TSP solution, this method may omit edges

whose cost is greater than the current best solution, and therefore cannot be part of any better

solution. This method returns void, and can have an empty implementation.

The classes that comprise the branch and bound framework—provided by JICOS to the application

programmer—are described below:

† BranchAndBound

This is a Task class, which resides in the JICOS.applications.branchandbound package, whose objects

represent a search node. A BranchAndBound Task either:

† constructs smaller BranchAndBound tasks that correspond to its children search nodes, or

† fully searches a subtree, returning:

— null, if it does not find a solution that is better than the currently known best solution

— the best solution it finds, if it is better than the currently known best solution.
5505—Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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IntUpperBound. A object that represents the minimum cost among all known complete solutions. This
5505—
class is in the JICOS.services.shared package. It implements the Shared interface (for details about

this interface, please see the JICOS API), which defines the shared object. In this case, the shared

object is an Integer that holds the current upper bound on the cost of a minimal solution.

Consequently, IntUpperBound u “is newer than” IntUpperBound v when u!v.
MinSolution This task is included in the JICOS.services.tasks package. It is a composition class whose
execute method:

† receives an array of Solution objects, some of which may be null;
† returns the one whose cost is minimum, provided it is less than or equal to the current best

solution. Equality is included to ensure that the minimum cost solution is reported. It is not

enough just to know the cost of the minimum cost solution.

† From the standpoint of the JICOS system (not a consideration for application programming), the

compose tasks form a tree that performs a gather operation, which, in this case, is a min operation

on the cost of the Solution objects it receives. Each task in this gather tree is assigned to some task

server, distributing the gather operation throughout the network of task servers. (This task is

indeed executed on a task server, not a compute server—please see Section 41.4.)

Q A queue of Solution objects.

Using this framework, it is easy to construct a branch and bound computation. The JICOS web site

tutorial [27] illustrates this, giving a complete code for a simple TSP branch and bound computation.

41.7 Experimental Results

41.7.1 The Test Environment

The experiments were run on a Linux cluster. The cluster consists of 1 head machine, and 64 compute

machines, composed of two processor types. Each machine is a dual 2.6 GHz (or 3.0 GHz) Xeon

processor with 3 Gb (2 Gb) of PC2100 memory, two 36 Gb (32 Gb) SCSI-320 disks with on-board

controller, and an on-board 1 Gigabit ethernet adapter. The machines are connected via the gigabit link

to one of 2 Asante FX5-2400 switches. Each machine is running CentOS 4 with the Linux smp kernel

2.6.9–5.0.3.ELsmp, and the Java j2sdk1.4.2. Hyperthreading is enabled on most, but not all, machines.
41.7.2 The Test Problem

The researchers ran a branch-and-bound TSP application, using kroB200 from TSPLIB, a 200 city

euclidean instance. In an attempt to ensure that the speedup could not be super-linear, the initial upper

bound was set for the minimal-length tour with the optimum tour length. Consequently, each run

explored exactly the same search tree: exactly the same set of nodes is pruned regardless of the number of

parallel processors used. Indeed, the problem instance decomposes into exactly 61,295 BranchAndBound

tasks whose average execution time was 2.05 s, and exactly 30,647 MinSolution tasks whose average

execution time was less than 1 ms.
41.7.3 The Measurement Process

For each experiment, a hosting service provider was launched, followed by a single task server on the

same machine. When additional task servers were used, they were started on dedicated machines. Each

compute server was started on its own machine. Except for 28 compute servers in the 120 processor case

(which were calibrated with a separate base case), each compute server thus had access to 2

hyperthreaded processors which are presented to the JVM as 4 processors (we report physical CPUs

in our results). After the JICOS system was configured, a client was started on the same machine as the

HSP (and task server), which executed the application. The application consists of a deterministic
Chapter41—30/8/2006—12:32—BSARAVANAN—14589—XML MODEL CRC12a – pp. 1–12.
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workload on a very unbalanced task graph. Measured times were recorded by JICOS’s invoice system,

which reports elapsed time (wall clock, not processor) between submission of the application’s source

task (aka root task) and receipt of the application’s sink task’s output. JICOS also automatically computes

the critical path using the obvious recursive formulation for a DAG. Each test was run 8 times (or more)

and averages are reported.

One processor in the OS does not correspond to 1 physical processor. It therefore is difficult to get

meaningful results for 1 processor. Consequently only 1 machine, which is 2 physical CPUs, was used as the

base case. For the 120 processor measurements, the researchers used the speedup formula, a heterogeneous

processor set [28]. Thus there were 3 separate base cases for computing the 120 processor speedup.

For the fault tolerance test, a JICOS system with 32 processors as compute servers was launched. A kill

command was issued to various compute servers after 1500 s, approximately 3/4 through the

computation. The completion time for the total computation was recorded and was compared to the

ideal completion time: (1500C(T32K1500)!32/Pfinal), where Pfinal denotes the number of compute

servers that did not fail.

To test the overhead of running a task server on the same machine as a compute server, a 22 processor

experiment was run both with a dedicated task server and with a task server running on the same

machine as one of the compute server. The researchers recorded the completion times and reported the

averages of 8 runs.
41.7.4 The Measurements

TP denotes the time for P physical processors to run the application. A computation’s critical path time,

denoted TN, is a maximum time path from the source task to the sink task. The critical path time was

captured for this problem instance—it was 37 s. It is well known [25] that max{TN,T1/P}%TP. Thus,

0%max{TN,T1/P}TP%1 is a lower bound on the fraction of perfect speedup that is actually attained.

Figure 41.3 presents speedup data for several experiments. The ordinate in the figure is the lower bound of

fraction of perfect speedup. As can be seen from the figure, in all cases, the actual fraction of perfect

speedup exceeds 0.94; it exceeds 0.96, when using an appropriate number of task servers. Specifically,
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FIGURE 41.3 Number of processors vs. % of ideal speedup.
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TABLE 41.1 Efficiency of Compute Server Fault Tolerance

Processors (final) 30 26 12 8 6 4

Theoretical time (s) 2119.43 2214.73 3048.58 3822.87 4597.16 6145.74

Measured time (s) 2194.95 2300.92 2974.35 4182.62 4884.86 6559.91

Percent overhead 3.6% 3.9% K2.4% 9.4% 6.3% 6.7%

Each experiment started with 32 processors. The experiment in which 30 processors finished had 2 fail; the experiment in

which 4 finished had 28 fail.
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the 2-processor base case ran in 9 h and 33 min; whereas the 120-processor experiment (2 processors per

host) ran in just 11 min!

Superlinear speedups resulted for 4, 8, 16, and 32 processors. The standard deviation was less than

1.6% of the size of the average. As such, the superlinearity cannot be explained by statistical error.

However, differences in object placement in the memory hierarchy can have impacts greater than the gap

in speedup observed [29]. So, within experimental factors beyond control, JICOS performs well.

The researchers are very encouraged by these measurements, especially considering the small average

task times. Javelin, for example, was not able to achieve such good speedups for 2 s tasks. Even CX [28,30]

is not capable of such fine task granularity.

PNZT1/TN is a lower bound on the number of processors necessary to extract the maximum

parallelism from the problem. For this problem instance, pNZ1857 processors. Thus, 1857 processors

is a lower bound on the number of processors necessary to bring the completion time down to TN,

namely, 37 s.

The fault tolerance data is summarized in Table 41.1. Overhead is caused by the rescheduling of tasks

lost when a compute server failed as well as some time taken by the TaskServer to recognize a faulty

compute server. Negative overhead is a consequence of network traffic and thread scheduling preventing

a timely transfer of the kill command to the appropriate compute server.

When measuring the overhead of running a task server on a machine shared with a compute server,

there were averages of 3115.1 s for a dedicated task server and 3114.8 s for the shared case. Both of these

represent 99.7% ideal speedup. This is not too surprising. There is a slight reduction in communication

latency having the task server on the same machine as a compute server, and the computational load of

the task server is small due to the simplicity of the compose task (it is a comparison of two upper

bounds). It therefore appears beneficial to place a compute server on every available computer in a JICOS

system without dedicating machines to task servers.

41.8 Conclusion

The chapter presented a framework, based on the JICOS API, for developing distributed branch and

bound computations. The framework allows the application developer to focus on the problem-specific

aspects of branch and bound: the lower bound computation, the upper bound computation, and the

branching rule. Reducing the code required to these problem-specific components reduces the likelihood

of programming errors, especially those associated with distributed computing, such as threading errors,

communication protocols, and detecting, and recovering from, faulty compute servers.

The resulting application can be deployed as a distributed computation via JICOS running, for

example, on a beowulf cluster. JICOS [31] scales efficiently as indicated by our speedup experiments. This

may be due to the fact there was provision for: (1) divide-and-conquer computation; (2) an environment

that is common to all compute servers for computation input (e.g., a TSP distance data structure, thereby

reducing task descriptors) and a mutable shared object that can be used to communicate upper bounds

as they are discovered; (3) latency hiding techniques of task caching and pre-fetching; and (4) latency

reduction by distributing termination detection on the network of task servers.
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Faulty compute servers are tolerated with high efficiency, both when faults occur (as indicated by our

fault tolerance performance experiments), and when they do not (as indicated by our speedup

experiments, in which no faults occur). Finally, the overhead of task servers is shown to be quite

small, further confirming the efficiency of JICOS as a distributed system.

The vast majority of the code concerns JICOS, the distributed system of fault tolerant compute servers.

The Java classes comprising the branch-and-bound framework are few, and easily enhanced, or added to,

by operations researchers; the source code is cleanly designed and freely available for download from the

JICOS web site [27]. This branch-and-bound framework may be used for almost any divide-and-conquer

computation. JICOS may be easily adapted to solve in a distributed environment any algorithm which

can be defined as a computation over directed acyclic graph, where the nodes refer to computations and

the edges specify a precedence relation between computations.
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