
USENIX Association 24th USENIX Security Symposium 643

How the ELF Ruined Christmas

Alessandro Di Federico1,2, Amat Cama1, Yan Shoshitaishvili1, Christopher Kruegel1, and Giovanni
Vigna1

1University of California, Santa Barbara, CA, USA
{amat,yans,chris,vigna}@cs.ucsb.edu

2Politecnico di Milano, Milan, Italy
alessandro.difederico@mail.polimi.it

Abstract
Throughout the last few decades, computer software has

experienced an arms race between exploitation techniques
leveraging memory corruption and detection/protection
mechanisms. Effective mitigation techniques, such as
Address Space Layout Randomization, have significantly
increased the difficulty of successfully exploiting a vul-
nerability. A modern exploit is often two-stage: a first
information disclosure step to identify the memory layout,
and a second step with the actual exploit. However, be-
cause of the wide range of conditions under which memory
corruption occurs, retrieving memory layout information
from the program is not always possible.

In this paper, we present a technique that uses the
dynamic loader’s ability to identify the locations of critical
functions directly and call them, without requiring an
information leak. We identified several fundamental weak
points in the design of ELF standard and dynamic loader
implementations that can be exploited to resolve and
execute arbitrary library functions. Through these, we
are able to bypass specific security mitigation techniques,
including partial and full RELRO, which are specifically
designed to protect ELF data-structures from being co-
opted by attackers. We implemented a prototype tool,
Leakless, and evaluated it against different dynamic loader
implementations, previous attack techniques, and real-
life case studies to determine the impact of our findings.
Among other implications, Leakless provides attackers
with reliable and non-invasive attacks, less likely to trigger
intrusion detection systems.

1 Introduction

Since the first widely-exploited buffer overflow used by the
1998 Morris worm [27], the prevention, exploitation, and
mitigation of memory corruption vulnerabilities have oc-
cupied the time of security researchers and cybercriminals
alike. Even though the prevalence of memory corruption

vulnerabilities has finally begun to decrease in recent years,
classic buffer overflows remain the third most common
form of software vulnerability, and four other memory
corruption vulnerabilities pad out the top 25 [13].

One reason behind the decreased prevalence of mem-
ory corruption vulnerabilities is the heavy investment in
research on their prevention and mitigation. Specifically,
many mitigation techniques have been adopted in two
main areas: system-level hardening (such as CGroups [23],
AppArmor [4], Capsicum [41], and GRSecurity [18]) and
application-level hardening (such as stack canaries [3],
Address Space Layout Randomization (ASLR), and the
No-eXecute (NX) bit [8]).

In particular, Address Space Layout Randomization
(ASLR), by placing the dynamic libraries in a random lo-
cation in memory (unknown to the attacker), lead attackers
to perform exploits in two stages. In the first stage, the
attacker must use an information disclosure vulnerability,
in which information about the memory layout of the appli-
cation (and its libraries) is revealed, to identify the address
of code that represents security-critical functionality (such
as the system() library function). In the second stage, the
attacker uses a control flow redirection vulnerability to
redirect the program’s control flow to this functionality.

However, because of the wide range of conditions under
which memory corruptions occur, retrieving this informa-
tion from the program is not always possible. For example,
memory corruption vulnerabilities in parsing code (e.g.,
decoding images and video) often take place without a
direct line of communication to an attacker, precluding the
possibility of an information disclosure. Without this in-
formation, performing an exploit against ASLR-protected
binaries using current techniques is often infeasible or
unreliable.

As noted in [36], despite the race to harden applications
and systems, the security of some little-known aspects of
application binary formats and the system components
using them, have not received much scrutiny. In particular
we focus on the dynamic loader, a userspace component of

1

644 24th USENIX Security Symposium USENIX Association

the operating system, responsible for loading binaries, and
the libraries they depend upon, into memory. Binaries use
the dynamic loader to support the resolution of imported
symbols. Interestingly, this is the exact behavior that an
attacker of a hardened application attempts to reinvent by
leaking a library’s address and contents.

Our insight is that a technique to eliminate the need for
an information disclosure vulnerability could be developed
by abusing the functionality of the dynamic loader. Our
technique leverages weaknesses in the dynamic loader and
in the general design of the ELF format to resolve and exe-
cute arbitrary library functions, allowing us to successfully
exploit hardened applications without the need for an infor-
mation disclosure vulnerability. Any library function can
be executed with this technique, even if it is not otherwise
used by the exploited binary, as long as the library that it
resides in is loaded. Since almost every binary depends
on the C Library, this means our technique allows us to
execute security-critical functions such as system() and
execve(), allowing arbitrary command execution. We
will also show application-specific library functions can be
re-used to perform sophisticated and stealthy attacks. The
presented technique is reliable, architecture-agnostic, and
does not require the attacker to know the version, layout,
content, or any other unavailable information about the
library and library function in question.

We implemented our ideas in a prototype tool, called
Leakless1. To use Leakless, the attacker must possess
the target application, and have the ability to exploit the
vulnerability (i.e., hijack control flow). Given this infor-
mation, Leakless can automatically construct an exploit
that, without the requirement of an information disclosure,
invokes one or more critical library functions of interest.

To evaluate our technique’s impact, we performed a
survey of several different distributions of Linux (and
FreeBSD) and identified that the vast majority of binaries
in the default installation of these distributions are suscep-
tible to the attack carried out by Leakless, if a memory
corruption vulnerability is present in the target binary. We
also investigated the dynamic loader implementations of
various C Libraries, and found that most of them are sus-
ceptible to Leakless’ techniques. Additionally, we showed
that a popular mitigation technique, RELocation Read-
Only (RELRO), which protects library function calls from
being redirected by an attacker, is completely bypassable
by Leakless. Finally, we compared the length of Leakless’
ROP chains against ROP compilers implementing similar
functionality. Leakless produces significantly shorter ROP
chains than existing techniques, which, as we show, allows
it to be used along with a wider variety of exploits than
similar attacks created by traditional ROP compilers.

1The source code is available at: https://github.com/
ucsb-seclab/leakless

In summary, we make the following contributions:
• We develop a new, architecture- and platform-

agnostic attack, using functionality inherent in ELF-
based system that supports dynamic loading, to en-
able an attacker to execute arbitrary library functions
without an information disclosure vulnerability.

• We detail, and overcome, the challenges of imple-
menting our system for different dynamic loader
implementations and in the presence of multiple
mitigation techniques (including RELRO).

• Finally, we perform an in-depth evaluation, including
a case study of previously complicated exploits that
are made more manageable with our technique, an as-
sessment of the security of several different dynamic
loader implementations, a survey of the applicability
of our technique to different operating system config-
urations, and a measurement of the improvement in
the length of ROP chains produced by Leakless.

2 Related Work:
The Memory Corruption Arms Race

The memory corruption arms race (i.e., the process of
defenders developing countermeasures against known
exploit techniques, and attackers coming up with new
exploitation techniques to bypass these countermeasures)
has been ongoing for several decades. While the history
of this race has been documented elsewhere [37], this
section focuses on the sequence of events that has required
many modern exploits to be two-stage, that is, needing an
information disclosure step before an attacker can achieve
arbitrary code execution.

Early buffer overflow exploits relied on the ability to
inject binary code (termed shellcode) into a buffer, and
overwrite a return address on the stack to point into this
buffer. Subsequently, when the program would return from
its current function, execution would be redirected to the
attacker’s shellcode, and the attacker would gain control
of the program.

As a result, security researchers introduced another
mitigation technique: the NX bit. The NX bit has the effect
of preventing memory areas not supposed to contain code
(typically, the stack) from being executed.

The NX bit has pushed attackers to adapt the concept
of code reuse: using functionality already in the program
(such as system calls and security-critical library functions)
to accomplish their goals. In return-into-libc exploits [30,
39], an attacker redirects the control flow directly to a
sensitive libc function (such as system()) with the proper
arguments to perform malicious behavior, instead of using
injected shellcode.

To combat this technique, a system-level hardening
technique named Address Space Layout Randomization

2

USENIX Association 24th USENIX Security Symposium 645

(ASLR) was developed. When ASLR is in place, the
attacker does not know the location of libraries, in fact,
the program’s memory layout (the locations of libraries,
the stack, and the heap) is randomized at each execution.
Because of this, the attacker does not know where in the
library to redirect the control flow in order to execute
specific functions. Worse, even if the attacker is able to
determine this information, he is still unable to identify
the location of specific functions inside the library unless
he is in possession of a copy of the library. As a result,
an attacker usually has to leak the contents of the library
itself and parse the code to identify the location of critical
functions. To leak these libraries, attackers often reuse
small chunks of code (called gadgets) in the program’s
code segment to disclose memory locations. These gadgets
are usually combined by writing their addresses onto
the stack and consecutively returning to them. Thus,
this technique is named Return Oriented Programming
(ROP) [35].

ROP is a powerful tool for attackers. In fact, it has been
shown that a “Turing-complete” set of ROP gadgets can be
found in many binaries and can be employed, with the help
of a ROP compiler, to carry out exploitation tasks [34].
However, because of their generality, ROP compilers tend
to produce long ROP chains that, depending on the specific
details of a vulnerability, are “too big to be useful” [22].
Later, we will show that Leakless produces relatively
short ROP chains, and, depending on present mitigations,
requires very few gadgets. Additionally, Leakless is able
to function without a Turing-complete gadget set.

In real-world exploits, an attacker usually uses an infor-
mation disclosure attack to leak the address or contents
of a library, then uses this information to calculate the
correct address of a security-critical library function (such
as system()), and finally sends a second payload to the
vulnerable application that redirects the control flow to
call the desired function.

In fact, we observed that that the goal of finding the
address of a specific library function is actually already
implemented by the dynamic loader, an OS component
that facilitates the resolution of dynamic symbols (i.e.,
determining the addresses of library functions). Thus,
we realized that we could leverage the dynamic loader to
remove the information disclosure step, and craft exploits,
which would work without the need of an information
disclosure attack. Since our attack does not require an
information leak step, we call it Leakless.

The concept of using the dynamic loader as part of the
exploitation process was briefly explored in the context of
return-into-libc attacks [15,21,30]. However, existing tech-
niques are extremely situational [30], platform-dependent,
require two stages [21], or are susceptible to current mit-
igation techniques such as RELRO [30], which we will
discuss in future sections. Leakless, on the other hand, is a

single-stage, platform-independent, general technique, and
is able to function in the presence of such mitigations.

In the next section, we will describe how the dynamic
loader works, and afterwards will show how we abuse this
functionality to perform our attack.

3 The Dynamic Loader

The dynamic loader is a component of the userspace
execution environment that facilitates loading the libraries
required by an application at start time and resolving
the dynamic symbols (functions or global variables) that
are exported by libraries and used by the application.
In this section, we will describe how dynamic symbol
resolution works on systems based on the ELF binary
object specification [33].

ELF is a standard format common to several Unix-like
platforms, including GNU/Linux and FreeBSD, and is
defined independently from any particular dynamic loader
implementation. Since Leakless mostly relies on standard
ELF features, it is easily applicable to a wide range of
systems.

3.1 The ELF Object
An application comprises a main binary ELF file (the

executable) and several dynamic libraries, also in ELF
format. Each ELF object is composed of segments, and
each segment holds one or more sections.

Each section has a conventional meaning. For instance,
the .text section contains the code of the program, the
.data section contains its writeable data (such as global
variables), and the .rodata section contains the read-only
data (such as constants and strings). The list of sections is
stored in the ELF file as an array of Elf Shdr structures.

Note that there are two versions of each ELF structure:
one version for 32-bit ELF binaries (e.g., Elf32 Rel) and
one for 64-bit (e.g., Elf64 Rel). We ignore this detail for
the sake of simplicity, except in specific cases where it is
relevant to our discussion.

3.2 Dynamic Symbols and Relocations
In this section, we will give a summary of the data

structures involved in ELF symbol resolution. Figure 1
gives an overview of these data structures and their mutual
relationships.

An ELF object can export symbols to and import sym-
bols from other ELF objects. A symbol represents a
function or a global variable and is identified by a name.

Each symbol is described by a corresponding Elf Sym
structure. This structure, instances of which comprise
the .dynsym ELF section, contains the following fields
relevant to our work:
st name. An offset, relative to the start of the .dynstr

section, where the string containing the name of the
symbol is located.

3

646 24th USENIX Security Symposium USENIX Association

.rel.plt .dynsym .dynstr

...

r offset

r info
...

r offset

r info
...

El
f
Re
l

El
f
Re
l

...

st name

st info
...

...

st name

st info
...

...
El
f
Sy
m

El
f
Sy
m

...

read\0
...

printf\0
...

dl runtime resolve(link map obj, reloc index)

Figure 1: The relationship between data structures involved
in symbol resolution (without symbol versioning). Shaded
background means read only memory.

st value. If the symbol is exported, the virtual address
of the exported function, NULL otherwise.

These structures are referenced to resolve imported
symbols. The resolution of imported symbols is supported
by relocations, described by the Elf Rel structure. In-
stances of this structure populate the .rel.plt section
(for imported functions) and the .rel.dyn section (for
imported global variables). In our discussion we are only
interested to the former section. The Elf Rel structure
has the following fields:
r info. The three least significant bytes of this field are

used as an unsigned index into the .dynsym section
to reference a symbol.

r offset. The location (as an absolute address) in mem-
ory where the address of the resolved symbol should
be written to.

When a program imports a certain function, the linker
will include a string with the function’s name in the
.dynstr section, a symbol (Elf Sym) that refers to it in
the .dynsym section, and a relocation (Elf Rel) pointing
to that symbol in the .rel.plt section.

The target of the relocation (the r offset field of the
Elf Rel struct) will be the address of an entry in a dedi-
cated table: the Global Offset Table (GOT). This table,
which is stored in the .got.plt section, is populated by
the dynamic loader as it resolves the relocations in the
.rel.plt section.

3.3 Lazy Symbol Resolution
Since resolving every imported symbol and applying all

relocations at application startup can be a costly operation,
symbols are resolved lazily. In lazy symbol resolution, the
address of a function (which corresponds to an entry in the
GOT) is only resolved when necessary (i.e., the first time
the imported function is called).

When a program wants to calls an imported function,
it instead calls a dedicated stub of code, located in the
Procedure Linkage Table (the .plt section). As shown in
Listing 1, each imported function has a stub in the PLT that
performs an unconditional indirect jump to the associated

entry in the GOT.
After symbol resolution, this GOT entry contains the

address of the actual function, in the imported library, and
execution continues seamlessly into this function. When
the function returns, control flow returns to the caller of
the PLT stub, and the rest of the PLT stub is not executed.
However, at program startup, GOT entries are initialized
with an address pointing to the second instruction of the
associated PLT stub. This part of the stub will push onto
the stack an identifier of the imported function (in the
form of an offset to an Elf Rel instance in the .rel.plt
section) and jump to the PLT0 stub, a piece of code at
the beginning of the .plt section. In turn, the PLT0 stub,
pushes the value of GOT[1] onto the stack and performs an
indirect jump to the address of GOT[2]. These two entries
in the GOT have a special meaning and the dynamic loader
populates them at application startup:
GOT[1]. A pointer to an internal data structure, of type

link map, which is used internally by the dynamic
loader and contains information about the current
ELF object needed to carry out symbol resolution.

GOT[2]. A pointer to a function of the dynamic loader,
called dl runtime resolve.

In summary, PLT entries basically perform the following
function call:

_dl_runtime_resolve(link_map_obj , reloc_index)

This function uses the link map obj parameter to ac-
cess the information it needs to resolve the desired im-
ported function (identified by the reloc index argument)
and writes the result into the appropriate GOT entry. Af-
ter dl runtime resolve resolves the imported function,
control flow is passed to that function, making the resolu-
tion process completely transparent to the caller. The next
time the PLT stub for the specified function is invoked
execution will be diverted directly to the target function.

Listing 1: Example PLT and GOT.
100 PLT0:
100 push *0x200
106 jmp *0x204
110 printf@plt:
110 jmp *0x208
116 push #0
11B jmp PLT0
120 read@plt:
120 jmp *0x20C
126 push #1
12B jmp PLT0

196 ; .plt.got start
196 ; Empty entry
196 0
200 ; link_map object
200 &link_map_obj
204 ; Resolver function
204 &_dl_runtime_resolve
208 ; printf entry
208 0x116
20C ; read entry
20C 0x126

The link map structure contains all the information
that the dynamic loader needs about a loaded ELF object.
Each link map instance is an entry in a doubly-linked list
containing the information about all loaded ELF objects.

3.4 Symbol Versioning
The ELF standard provides a mechanism to import a

symbol with a specific version associated with it. This
feature is used to require a function to be imported from a

USENIX Association 24th USENIX Security Symposium 647

Table 1: Entries of the .dynamic section. d tag is the
key, while d value is the value.

d tag d value

DT SYMTAB .dynsym

DT STRTAB .dynstr

DT JMPREL .rel.plt

d tag d value

DT PLTGOT .got.plt

DT VERNEED .gnu.version

DT VERSYM .gnu.version r

specific version of a library. For instance, it is possible
to require the fopen C Standard Library function, as
implemented in version 2.2.5 of the GNU C Standard
Library, using the version identifier GLIBC 2.2.5. The
.gnu.version r section contains version definitions in
the form of Elf Verdef structures.

The association between a dynamic symbol and the
Elf Verdef structure that it refers to is kept in the
.gnu.version section, as an array of Elf Verneed struc-
tures, one for each entry in the dynamic symbol table.
These structures have a single field: a 16-bit integer that
represents an index into the .gnu.version r section.

Due to this layout, the index in the r info field of the
Elf Rel structure is used by the dynamic loader as an
index into both the .dynsym and .gnu.version sections.
This is important to understand, as Leakless will later
leverage this fact.

3.5 The .dynamic section and RELRO
The dynamic loader collects all the information that it

needs about the ELF object from the .dynamic section,
which is composed of Elf Dyn structures. An Elf Dyn is
a key-value pair that stores different types of information.
The relevant entries of this section, shown in Table 1, hold
the absolute addresses of specific sections. One exception
is the DT DEBUG entry, which holds a pointer to an internal
data structure of the dynamic loader. This is initialized by
the dynamic loader and is used for debugging purposes.

An attacker able to tamper with these values can pose
a security risk. For this reason, a protection mechanism
known as RELRO (RELocation Read Only) has been
introduced in dynamic loaders. RELRO comes in two
flavors: partial and full.
Partial RELRO In this mode, some sections, including

.dynamic, are marked as read-only after they have
been initialized by the dynamic loader.

Full RELRO In addition to partial RELRO, lazy resolu-
tion is disabled: all import symbols are resolved at
startup time, and the .got.plt section is completely
initialized with the final addresses of the target func-
tions and marked read-only. Moreover, since lazy
resolution is not enabled, the GOT[1] and GOT[2] en-
tries are not initialized with the values we mentioned
in Section 3.3.

As we will see, RELRO poses significant complications
that Leakless must (and does) address in order to operate

in the presence of these countermeasures.
Note that the previously mentioned link map structure

stores in the l info field an array of pointers to most of
entries in the .dynamic section for internal usage. Since
the dynamic loader trusts the content of this field implicitly,
Leakless will later be able to misuse this to its own ends.

4 The Attack

Leakless enables an attacker to call arbitrary library func-
tions, using only their name, without any information
about the memory layout of the vulnerable program’s
libraries. To achieve this, Leakless abuses the dynamic
loader, forcing it to resolve and call the requested func-
tion. This is possible for the same reason that memory
corruption vulnerabilities are so damaging: the mixing
of control data and non-control data in memory. In the
case of a stack overflow, the control data in question is a
stored return address. For the dynamic loader, the control
data is comprised of the various data structures that the
dynamic loader uses for symbol resolution. Specifically,
the name of the function, stored in the .dynstr section, is
analogous to a return address: it specifies a specific target
to execute when the function is invoked.

The dynamic loader makes the assumption that the
parameters it receives and its internal structures are trust-
worthy because it assumes that they are provided directly
by the ELF file or by itself during initialization. However,
when an attacker is able to modify this data, the assump-
tion is broken. Some dynamic loaders (FreeBSD) validate
the input they receive. However, they still implicitly trust
the control structures, which will be readily corrupted by
Leakless.

Leakless is designed to be used by an attacker who is
attempting to exploit an existing vulnerability. The input
to Leakless is comprised of the executable ELF file, a set
of ROP gadgets of the binary (we detail what gadgets an
attacker needs in Section 5.1), and the name of a library
function that the attacker wishes to call (typically, but not
necessarily, execve()). Given this information, Leakless
outputs a ROP payload that executes the needed library
function, bypassing various hardening techniques applied
to the binary in question. This ROP chain is generally very
short: depending on the mitigations present in the binary,
the chain is 3 to 12 write operations. Some examples
of the output produced by Leakless are available in the
documentation of the Leakless code repository [17].

Leakless does not require any information about the
addresses or contents of the libraries; we assume that
ASLR is enabled for all dynamic libraries and that no
knowledge about them is available. However we also
assume that the executable is not position-independent,
and, thus, is always loaded in a specific location in memory.
We discuss this limitation in detail in Section 7.2, and show

5

648 24th USENIX Security Symposium USENIX Association

.dynsym .dynstr

.bss .dynamic

...

st name

st info
...

...

El
f
Sy
m

...

read\0

printf\0
...

...

d tag: DT STRTAB

d val
...

Elf
Dyn

...

read\0

execve\0
...

(a) Example of the attack presented in Section 4.1. The attacker
is able to overwrite the value of the DT STRTAB dynamic entry,
tricking the dynamic loader into thinking that the .dynstr
section is in .bss, where he crafted a fake string table. When the
dynamic loader will try to resolve the symbol for printf it will
use a different base to reach the name of the function and will
actually resolve (and call) execve.

.rel.plt .bss

...

r info

r offset
...

Elf
Rel

r info

r offset

st name

st info
...

execve\0
...

El
f
Re
l

Elf
Sym

dl runtime resolve(l info, reloc index)

(b) Example of the attack presented in Section 4.2. The
reloc index passed to dl runtime resolve overflows the
.rel.plt section and ends up in .bss, where the attacker crafted
an Elf Rel structure. The relocation points to an Elf Sym lo-
cated right afterwards overflowing the .dynsym section. In
turn the symbol will contain an offset relative to .dynstr large
enough to reach the memory area after the symbol, which con-
tains the name of the function to invoke.

Figure 2: Illustration of some of the presented attacks. Shaded background means read only memory, white background
means writeable memory and bold or red means data crafted by the attacker.

how infrequently Position Independent Executables (PIE)
binaries occur in modern OS distributions in Section 6.2.

While in most cases, Leakless works independently of
the dynamic loader implementation and version that the
target system is running, some of our attacks require minor
modifications to accommodate different dynamic loaders.

Note that Leakless’s aim, obtaining the address of a
library function and call it, is similar to what the dlsym
function of libdl does. However, in practice this function
is rarely used by applications and, therefore, its address is
not generally known to the attacker.

4.1 The Base Case
As explained in Section 3 and illustrated in Figure 1, the

dynamic loader starts its work from a Elf Rel structure
in the .rel.plt, then follows the index into the .dynsym
section to locate the Elf Sym structure, and finally uses
that to identify the name (a string in the .dynstr section)
of the symbol to resolve. The simplest way to call an
arbitrary function would be to overwrite the string table
entry of an existing symbol with the name of the desired
function, and then invoke the dynamic loader, but this is
not possible, as the section containing the string table for
dynamic symbols, i.e., .dynstr, is not writeable.

However, the dynamic loader obtains the address of
the .dynstr section from the DT STRTAB entry of the
.dynamic section, which is at a known location and, by
default, writeable. Therefore, as shown in Figure 2a, it
is possible to overwrite the d val field of this dynamic
entry with a pointer to a memory area under the control of
the attacker (typically the .bss or .data section). This
memory area would then include a single string, for ex-

ample execve. At this point, the attacker needs to choose
an existing symbol pointing to the correct offset in the
fake string table and invoke the resolution of relocation
corresponding to that symbol. This can be done by pushing
the offset of this relocation on the stack and then jumping
to PLT0.

This approach is simple, but it is only effective against
binaries in which the .dynamic section is writeable. More
sophisticated attacks must be used against binary compiled
with partial or full RELRO.

4.2 Bypassing Partial RELRO
As we explained in Section 3.3, the second parameter

of the dl runtime resolve function is the offset of an
Elf Rel entry in the relocation table (.rel.plt section)
that corresponds to the requested function. The dynamic
loader takes this value and adds it to the base address of
the .rel.plt to obtain the absolute address of the target
Elf Rel structure. However most dynamic loader imple-
mentations do not check the boundaries of the relocation
table. This means that if a value larger than the size of the
.rel.plt is passed to dl runtime resolve, the loader
will use the Elf Rel at the specified location, despite
being outside the .rel.plt section.

As shown in Figure 2b, Leakless computes an index that
will lead dl runtime resolve to look into a memory
area under the control of the attacker. It then crafts an
Elf Rel structure that contains, in its r offset field, the
address of the writeable memory location where the ad-
dress of the function will be written. The r info field will,
in turn, contain an index that causes the dynamic loader to
look into the attacker-controlled memory. Leakless stores

USENIX Association 24th USENIX Security Symposium 649

a crafted Elf Sym object at this location, which, likewise,
holds a st name field value large enough to point into
attacker-controlled memory. Finally, this location is where
Leakless stores the name of the desired function to call.

In sum, Leakless crafts the full chain of structures
involved in symbol resolution, co-opting the process to
invoke the function whose name Leakless has written into
attacker-controlled memory. After this, Leakless pushes
the computed offset to the fake Elf Rel structure onto the
stack and invokes PLT0.

However, this approach is subject to several constraints.
First, the symbol index in Elf Rel has to be positive,
since the r info field is defined by the ELF standard as an
unsigned integer. In practice, this means that the writable
memory area (e.g., the .bss section) must be located after
the .dynsym section. In our evaluation, this has always
been the case.

Another constraint arises when the ELF makes use of
the symbol versioning system described in Section 3.4.
In this case, the Elf Rel.r info field is not just used
as an index into the dynamic symbol table, but also as
an index in the symbol version table (the .gnu.version
section). In general, Leakless is able to automatically
satisfy these constraints, except for x86-64 small binaries
using huge pages [32]. We detail the additional constraints
introduced by symbol versioning in Appendix A. When the
constraints cannot be satisfied, an alternate approach must
be adopted. This involves abusing the dynamic loader by
corrupting its internal data structures to alter the dynamic
resolution process.

4.3 Corrupting Dynamic Loader Data
We recall that the first parameter to

dl runtime resolve is a pointer to a data struc-
ture of type link map. This structure contains information
about the ELF executable, and the contents of this structure
are implicitly trusted by the dynamic loader. Furthermore,
Leakless can obtain the address of this structure from the
second entry of the GOT of the vulnerable binary, whose
location is deterministically known.

Recall from Section 3.5 that the link map structure,
in the l info field, contains an array of pointers to the
entries of the .dynamic section. These are the pointers
that the dynamic loader uses to locate the objects that are
used during symbol resolution. As shown in Figure 3,
by overwriting part of this data structure, Leakless can
make the DT STRTAB entry of the l info field point to a
specially-crafted dynamic entry which, in turn, points to a
fake dynamic string table. Hence, the attacker can reduce
the situation back to the base case presented in Section 4.1.

This technique has wider applicability than the one
presented in the previous section, since there are no specific
constraints, and, in particular, it is applicable also against
small 64 bit ELF binaries using huge pages. However,

.plt.got

[heap]

.dynamic .dynstr

.bss

got[0]

got[1]

got[2]
...

...
...

l info[DT HASH]

l info[DT STRTAB]

l info[DT SYMTAB]
...

...

li
nk

ma
p

...

d tag: DT STRTAB

d val
...

El
f
Dy
n

...

read\0

printf\0
...

d tag: DT STRTAB

d val
...

read\0

execve\0
...

El
f
Dy
n

Figure 3: Example of the attack presented in Section 4.3.
The attacker dereferences the second entry of the GOT
and reaches the link map structure. In this structure he
corrupts the entry of the l info field holding a pointer
to the DT STRTAB entry in the dynamic table. Its value is
set to the address of a fake dynamic entry which, in turn,
points to a fake dynamic string table in the .bss section.

while in the previous attacks we were relying exclusively
on standard ELF features, in this case (and in the one
presented in the next section) we assume the layout of
a glibc-specific structure (link map) to be known. Each
dynamic loader implements this structure in its own way,
so minor modifications might be required when targeting
a different dynamic loader. Note that link map’s layout
might change among versions of the same dynamic loader.
However, they tend to be quite stable, and, in particular, in
glibc no changes relevant to our attack have taken place
since 2004.

4.4 The Full RELRO Situation
Leakless is able to bypass full RELRO protection.
When full RELRO is applied, all the relocations are

resolved at load-time, no lazy resolving takes place,
and the addresses of the link map structure and of
dl runtime resolve in the GOT are never initialized.

Thus, it is not directly possible to know their addresses,
which is what the general technique to bypass partial
RELRO relies upon.

However, it is possible to indirectly recover these two
values through the DT DEBUG entry in the dynamic table.
The value of the DT DEBUG entry is set by the dynamic
loader at load-time to point to a data structure of type
r debug. This data structure contains information used
by debuggers to identify the base address of the dynamic
loader and to intercept certain events related to dynamic
loading. In addition, the r map field of this structure
holds a pointer to the head of the linked list of link map
structures.

Leakless corrupts the first entry of the list describing the
ELF executable so that the l info entry for DT STRTAB
points to a fake dynamic string table. This is presented in

650 24th USENIX Security Symposium USENIX Association

.dynamic [heap] .plt.got

.dynamic.dynstr .bss

.dynsym

...

d tag: DT DEBUG

d val
...

d tag: DT STRTAB

d val
...

El
f
Dy

n

Elf
Dyn

...

r version

r map
...

...
...

l info[DT STRTAB]
...

l info[DT JMPREL]
...

l next
...

...
...

l info[DT PLTGOT]
...

...

r
de

bu
g

link
map

li
nk

ma
p

...

d tag: DT PLTGOT

d val
...

El
f
Dy

n

GOT[0]

GOT[1]

GOT[2]
...

d tag: DT JMPREL

d val

r info

r offset

reloc target

d tag: DT STRTAB

d val
...

read\0

execve\0
...

El
f
Dy

n

Elf
Dyn

Elf
Rel

...

read\0

printf\0
...

dl runtime resolve(l info, reloc index)

...

st name

st info
...

...

Elf
Sym

Figure 4: Example of the attack presented in Section 4.4. Shaded background means read only memory, white background
means writeable memory and bold or red means data crafted by the attacker. The attacker goes through the DT DEBUG
dynamic entry to reach the r debug structure, then, dereferencing the r map field, he gets to the link map structure of
the main executable, and corrupts l info[DT STRTAB] as already seen in Section 3.
Since the .got.plt section is read-only due to full RELRO, the attacker also have to forge a relocation. To do so, he
corrupts l info[DT JMPREL] making it point to a fake dynamic entry in turn pointing to a relocation. This relocation
refers to the existing printf symbol, but has an r offset pointing to a writeable memory area.
Then the attacker also needs to recover the pointer to the dl runtime resolve function, which is not available in the
GOT of the main executable due to full RELRO, therefore he dereferences the l info field of the first link map structure
and gets to the one describing the first shared library, which is not protected by full RELRO. The attacker accesses the
l info[DT PLTGOT] field and gets to the corresponding dynamic entry (the .dynamic on the right), and then to the
.plt.got section (always on the right), at the second entry of which he can find the address of dl runtime resolve.

Figure 4.

After this, Leakless must invoke dl runtime resolve,
passing the link map structure that it just corrupted as
the first argument and an offset into the new .dynsym as
the second parameter. However, as previously mentioned,
dl runtime resolve is not available in the GOT due to

full RELRO. Therefore, Leakless must look for its address
in the GOT of another ELF object, namely, a library loaded
by the application that is not protected by full RELRO.
In most cases, only ELF executables are compiled with
full RELRO, and libraries are not. This is due to the
fact that RELRO is designed to harden, at the cost of
performance, specific applications that are deemed “risky”.
Applying full RELRO to a shared library would impact the
performance of all applications making use of this library,
and thus, libraries are generally left unprotected. Since the

order of libraries in the linked list is deterministic, Leakless
can dereference the l next entry in link map to reach
the entry describing a library that is not protected by full
RELRO, dereference the entry in l info corresponding
to the DT PLTGOT dynamic entry, dereference its value
(i.e., the base address of that library’s GOT), and read the
address of dl runtime resolve from this GOT.

Leakless must then overcome a final issue:
dl runtime resolve will not only call the target

function, but will also try to write its address to the
appropriate GOT entry. If this happens, the program
will crash, as the GOT is read-only when full RELRO
is applied. We can circumvent this issue by faking the
DT JMPREL dynamic entry in the link map structure
that points to the .rel.dyn section. Leakless points it
to an attacker-controlled memory area and writes an

USENIX Association 24th USENIX Security Symposium 651

Elf Rel structure, with a target (r offset field) pointing
to a writeable memory area, referring to the symbol we
are targeting. Therefore, when the library is resolved,
the address will be written to a writeable location, the
program will not crash, and the requested function will be
executed.

5 Implementation

Leakless analyzes a provided binary to identify which
of its techniques is applicable, crafts the necessary data
structures, and generates a ROP chain that implements the
chosen technique. The discovery of the initial vulnerability
itself, and the automatic extraction of usable gadgets from
a binary are orthogonal to the scope of our work, and have
been well-studied in the literature and implemented in the
real world [6, 16, 19, 20, 34, 38]. We designed Leakless to
be compatible with a number of gadget finding techniques,
and have implemented a manual backend (where gadgets
are provided by the user) and a backend that utilizes
ROPC [22], an automated ROP compiler prototype built
on the approach proposed by Q [34].

We also developed a small test suite, composed of a
small C program with a stack-based buffer overflow com-
piled, alternatively, with no protections, partial RELRO,
and full RELRO. The test suite runs on GNU/Linux with
the x86, x86-64 and ARM architectures and with FreeBSD
x86-64.

5.1 Required Gadgets
Leakless comprises four different techniques that are

used depending on the hardening techniques applied to the
binary. These different techniques require different gadgets
to be provided to Leakless. A summary of the types of
gadgets is presented in Table 2. The write memory gadget
is mainly used to craft data structures at known memory
locations, while the deref write gadget to traverse and
corrupt data structures (in particular link map). The
deref save and copy to stack gadgets are used only
in the full RELRO case. The aim of the former is to
save at a known location the address of link map and
dl runtime resolve, while the latter is used to copy
link map and the relocation index on the stack before
calling dl runtime resolve, since using PLT0 is not a
viable solution.

For the interested reader, we provide in-depth examples
of executions of Leakless in the presence of two different
sets of mitigation techniques in the documentation of the
Leakless code repository [17].

6 Evaluation

We evaluated Leakless in four ways. First, we determined
the applicability of our technique against different dy-

namic loader implementations. We then analyzed the
binaries distributed by several popular GNU/Linux and
BSD distributions (specifically, Ubuntu, Debian, Fedora,
and FreeBSD) to determine the percentage of binaries
that would be susceptible to our attack. Then we applied
Leakless in two real-world exploits against a vulnerable
version of Wireshark and in a more sophisticated attack
against Pidgin. Finally we used a Turing-complete ROP
compiler to implement the approach used in Leakless and
two other previously used techniques, and compared the
size of the resulting chains.

6.1 Dynamic Loaders
To show Leakless’ generality, especially across different

ELF-based platforms, we surveyed several implementa-
tions of dynamic loaders. In particular, we found that
the dynamic loader part of the GNU C Standard Library
(also known as glibc and widely used in GNU/Linux dis-
tributions), several other Linux implementations such as
dietlibc, uClibc and newlib (widespread in embedded sys-
tems) and the OpenBSD and NetBSD implementations are
vulnerable to Leakless. Another embedded library, musl,
instead, is not susceptible to our approach since it does not
support lazy loading. Bionic, the C Standard Library used
in Android, is also not vulnerable since it only supports
PIE binaries. The most interesting case, out of all the
loaders we analyzed, is FreeBSD’s implementation. In
fact, it is the only one which performs boundary checks
on arguments passed to dl runtime resolve. All other
loaders implicitly trust input arguments argument. Fur-
thermore, all analyzed loaders implicitly trust the control
structures that Leakless corrupts in the course of most of
its attacks.

In summary, out of all of the loaders we analyzed, only
two are immune to Leakless by design: musl, which does
not support lazy symbol resolution, and bionic, which
only supports PIE executables. Additionally, because
the FreeBSD dynamic loader performs bounds checking,
the technique explained in Section 4.2 is not applicable.
However, the other techniques still work.

6.2 Operating System Survey
To understand Leakless’ impact on real-world systems,

we performed a survey of all binaries installed in default
installations of several different Linux and BSD distribu-
tions. Specifically, we checked all binaries in /sbin, /bin,
/usr/sbin, and /usr/bin on these systems and classified
the binaries by the applicability of the techniques used
by Leakless. The distributions that we considered were
Ubuntu 14.10, Debian Wheezy, Fedora 20, and FreeBSD
10. We used both x86 and x86-64 versions of these sys-
tems. On Ubuntu and Debian, we additionally installed the
LAMP (Linux, Apache, MySQL, PHP) stack as an attempt
to simulate a typical server deployment configuration.

The five categories that we based our ratings on are as

9

652 24th USENIX Security Symposium USENIX Association

Table 2: Gadgets required for the various approaches. The “Signature” column represents the name of the gadget and the
parameters it accepts, while “Implementation” presents the behavior of the gadget in C-like pseudo code. The last four
columns indicate whether a certain gadget is required for the corresponding approach presented in Section 4. Under
RELRO, “N” indicates RELRO is disabled, “P” means partial RELRO is used, “H” stands for the partial RELRO and
small 64 bit binaries using huge pages, and “F” denotes that full RELRO is enabled.

RELRO
Signature Implementation N P H F

write memory(destination, value) ∗(destination) = value ! ! ! !
deref write(pointer, o f f set, value) ∗(∗(pointer)+o f f set) = value ! !
deref save(destination, pointer, o f f set) ∗(destination) = ∗(∗(pointer)+o f f set) !
copy to stack(o f f set, source) ∗(stack pointer+o f f set) = ∗(source) !

follows:

Unprotected. This category includes binaries that have
no RELRO or PIE. For these binaries, Leakless
can apply its base case technique, explained in Sec-
tion 4.1.

Partial RELRO. Binaries that have partial RELRO, but
lack PIE, fall into this category. In this case, Leakless
would apply the technique described in Section 4.2.

Partial RELRO (huge pages). Binaries in this category
have partial RELRO, use huge pages, and are very
small, therefore, they require Leakless to use the
technique described in Section 4.3. They are included
in this category.

Full RELRO. To attack binaries that use full RELRO,
which comprise this category, Leakless must apply
the technique presented in Section 4.4.

Not susceptible. Finally, we consider binaries that use
PIE to be insusceptible to Leakless (further discussion
on this in Section 7.2).

The results of the survey, normalized to the total number
of binaries in an installation, are presented in Figure 5.
We determined that, on Ubuntu, 84% of the binaries were
susceptible to at least one of our techniques and 16% were
protected with PIE. On Debian, Leakless can be used
on 86% of the binaries. Fedora has 76% of susceptible
binaries. Interestingly, FreeBSD ships no binaries with
RELRO or PIE, and is thus 100% susceptible to Leakless.

Additionally, we performed a survey on the shared
libraries of the systems we considered. We found that,
on average, only 11% of the libraries had full RELRO
protection. This has some interesting implications for
Leakless: for a given binary, the likelihood of finding a
loaded library without full RELRO is extremely high and,
even if a vulnerable binary employs RELRO, Leakless
can still apply its full RELRO attack to bypass this. This
has the effect of making RELRO basically useless as a
mitigation technique, unless it is applied system-wide.

Unprotected Partial RELRO Partial RELRO HP

Full RELRO Not susceptible

Ubuntu Debian Fedora FreeBSD Ubuntu 64 Debian 64 Fedora 64 FreeBSD 64

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

B
in

ar
ie

s

Figure 5: Classification of the binaries in default in-
stallations of target distributions. Binaries marked as
Unprotected, Partial RELRO, Partial RELRO HP and
Full RELRO require, respectively, to the attacks detailed in
Sections 4.1, 4.2, 4.3 and 4.4, while for Not susceptible
binaries, the Leakless approach is not applicable

6.3 Case Study: Wireshark
We carried out a case study in applying Leakless to a

vulnerability in a program that does not present a direct
line of communication to the attacker. In other words, the
exploit must be done in one-shot, with no knowledge of
the layout of the address space or the contents of libraries.

We picked a recent (April 2014) vulnerability [7], which
is a stack-based buffer overflow in Wireshark’s MPEG
protocol parser in versions 1.8.0 through 1.8.13 and 1.10.0
through 1.10.6. We carried out our experiments against a
Wireshark 1.8.2 binary compiled with partial RELRO and
one compiled with full RELRO. Both were compiled for
x86-64 on Debian Wheezy and used the GNU C Library,
without other protections such as PIE and stack canaries.

We used the manual Leakless backend to identify the
required gadgets to construct the four necessary primitives
(described in Section 5.1): write memory, deref write,
deref save and copy to stack. In the case of Wireshark, it
was trivial to find gadgets to satisfy all of these primitives.

10

USENIX Association 24th USENIX Security Symposium 653

Leakless was able to construct a one-shot exploit using
the attacks presented in Section 4.2 and Section 4.4. In
both cases, the exploit leverages the dynamic loader in
order to call the execve function from glibc to launch an
executable of our choice.

6.4 Case Study: Pidgin
We also applied Leakless to Pidgin, a popular multi-

protocol instant-messaging client, to build a more so-
phisticated exploit. Specifically, we wanted to perform a
malicious operation without calling any anomalous sys-
tem call (e.g. execve("/bin/sh")) which could trigger
intrusion detection systems. We used Pidgin 2.10.7, build-
ing it from the official sources with RELRO enabled and
targeting the x86 architecture.

To this end, we crafted an exploit designed to mas-
querade itself in legitimate functionality present in the
application logic: tunneling connections through a proxy.
The idea of the attack is that an IM service provider ex-
ploits a vulnerability such as CVE-2013-6487 [14] to
gain code execution, and, using Pidgin’s global proxy
settings, redirects all IM traffic through a third-party server
to enable chat interception.

Once we identified the necessary gadgets to use Leak-
less with full RELRO protection, it was easy to invoke
functions contained in libpurple.so (where the core of
the application logic resides) to perform the equivalent of
the C code shown in Listing 2.

Listing 2: The Pidgin attack.

void *p, *a;
p = purple_proxy_get_setup (0);
purple_proxy_info_set_host(p, "legit.com");
purple_proxy_info_set_port(p, 8080);
purple_proxy_info_set_type(p, PURPLE_PROXY_HTTP);

a = purple_accounts_find("usr@xmpp", "prpl -xmpp");
purple_account_disconnect(a);
purple_account_connect(a);

Interestingly, some of this library-provided functionality
is not imported into the Pidgin executable itself, and
would be very challenging to accomplish in a single-stage
payload, without Leakless.

6.5 ROP chain size comparison
To prove the effectiveness of the Leakless approach, we

compared it with two existing techniques that allow an
attacker to call arbitrary library functions. The first consists
in scanning a library backwards, starting from an address in
the .plt.got section, until the ELF header is found, and
then scan forward to find a fingerprint of the function the
attacker wants to invoke. This approach is feasible, but not
very reliable, since different versions (or implementations)
of a library might not be uniquely identified with a single
fingerprint. The second technique is more reliable, since
it implements the full symbol resolution process, as it is
carried out by the dynamic loader.

Table 3: Size of the ROP chains generated by ROPC for
each technique presented in Section 6.5, and by Leakless’
manual backend (*). The second column represents the
size in bytes for the setup and the first call, while the
third column shows the additional cost (in bytes) for each
subsequent call. Finally, the fourth column indicates the
percentage of vulnerabilities used in Metasploit that would
be feasible to exploit with a ROP chain of the First call
size.

Technique First call Subsequent Feasibility

ROPC - scan library 3468 bytes +340 bytes 16.38%

ROPC - symbol resolution 7964 bytes +580 bytes 8.67%

Leakless partial RELRO 648 bytes +84 bytes 73.78%

Leakless full RELRO 2876 bytes +84 bytes 17.44%

Leakless* partial RELRO 292 bytes +48 bytes 95.24%

Leakless* full RELRO 448 bytes +48 bytes 88.9%

We implemented these two approaches using a Turing-
complete ROP compiler for x86, based on Q [34], called
ROPC [22]. We compare these approaches against that
of Leakless’ ROPC backend, in partial RELRO and full
RELRO modes. For completeness, we also include the
Leakless’ manual backend, with gadgets specified by the
user.

In fact, the size of a ROP payload is critical, vulnera-
bilities often involve an implicit limit on the size of the
payload that can be injected into a program. To measure
the impact of Leakless’ ROP chain size, we collected the
size limits imposed on payloads of all the vulnerability
descriptions included in the Metasploit Framework [31], a
turn-key solution for launching exploits against known
vulnerabilities in various software. We found that 946 of
the 1,303 vulnerability specifications included a maximum
payload size, with an average specified maximum payload
size of 1332 bytes. To demonstrate the increase in the
feasibility of automatically generating complex exploits,
we include, for each evaluated technique, the percentage
of Metasploit vulnerabilities for which the technique can
automatically produce short enough ROP chains.

The results, in terms of length of the ROP chain gener-
ated for ROPC’s test binaries and feasibility against the
vulnerabilities used in Metasploit, are shown in Table 3.
Leakless outperforms existing techniques, not only in the
absolute size of the ROP chain to perform the initial call,
but also in the cost of performing each additional call,
which is useful in a sophisticated attack such as the one
demonstrated in Section 6.4.

11

654 24th USENIX Security Symposium USENIX Association

7 Discussion

In this section, we will discuss several aspects relating to
Leakless: why the capabilities that it provides to attackers
are valuable, when it is most applicable, what its limitations
are, and what can be done to mitigate against them.

7.1 Leakless Applications
Leakless represents a powerful tool in the arsenal of

exploit developers, aiding them in three main areas: func-
tionality reuse, one-shot exploitation, and ROP chains
shortening.

One-shot exploitation. While almost any exploit can
be simplified by Leakless, we have designed it with the
goal of enabling exploits that, without it, require an infor-
mation disclosure vulnerability, but for which an informa-
tion disclosure is not feasible or desirable. A large class
of programs that fall under this category are file format
parsers.

Code that parses file formats is extremely complex and,
due to the complex, untrusted input that is involved, this
code is prone to memory corruption vulnerabilities. There
are many examples of this: the image parsing library
libpng had 27 CVE entries over the last decade [10], and
libtiff had 53 [11]. Parsers of complex formats suffer
even more: the multimedia library ffmpeg has accumu-
lated 170 CVE entries over the last five years alone [9].
This class of libraries is not limited to multimedia. Wire-
shark, a network packet analyzer, has 285 CVE entries,
most of which are vulnerabilities in network protocol
analysis plugins [12].

These libraries, and others like them, are often used
offline. The user might first download a media or PCAP
file, and then parse it with the library. At the point where
the vulnerability triggers, an attacker cannot count on
having a direct connection to the victim to receive an
information disclosure and send additional payloads. Fur-
thermore, most of these formats are passive, meaning that
(unlike, say, PDF), they cannot include scripts that the
attacker can use to simulate a two-step exploitation. As a
result, even though these libraries might be vulnerable,
exploits for them are either extremely complex, unreliable,
or completely infeasible. By avoiding the information
disclosure step, Leakless makes these exploits simpler,
reliable, and feasible.

Functionality reuse. Leakless empowers attackers
to call arbitrary functions from libraries loaded by the
vulnerable application. In fact, the vulnerable application
does not have to actually import this function; it just needs
to link against the library (i.e., call any other function in
the library). This is brings several benefits.

To begin with, the C Standard Library, which is linked
against by most applications, includes functions that wrap
almost every system call (e.g., read(), execve(), and so

on). This means that Leakless can be used to perform any
system call, in a short ROP chain, even without a system
call gadget.

Moreover, as demonstrated in Section 6.4, Leakless
enables easy reuse of existing functionality present in the
application logic. This is important for two reasons.

First, this helps an attacker perform stealthy attacks by
making it easier to masquerade an exploit as something
the application might normally do. This can be crucial
when a standard exploitation path is made infeasible by the
presence of protection mechanisms such as seccomp [2],
AppArmor [1], or SELinux [25].

Second, depending on the goals of the attacker, reusing
program functionality may be better than simply executing
arbitrary commands. Aside from the attack discussed
in our Pidgin case study, an attacker can, for example,
silently enable insecure cipher-suites, or versions of SSL,
in the Firefox web browser with a single function call to
SSL CipherPrefSetDefault [24].

Shorter ROP chains. As demonstrated in Section 6.5,
Leakless produces shorter ROP chains than existing tech-
niques. In fact, in many cases, Leakless is able to produce
ROP chains less than one kilobyte that lead to the execu-
tion of arbitrary functions. As many vulnerabilities have a
limit as to the maximum size of the input that they will
accept, this is an important result. For example, the vulner-
ability that we exploited in our Pidgin case study allowed
a maximum ROP chain of one kilobyte. Whereas normal
ROP compilation techniques would be unable to create au-
tomatic payloads for this vulnerability, Leakless was able
to call arbitrary functions via an automatically-produced
ROP chain that remained within the length limit.

7.2 Limitations
Leakless’ biggest limitation is the inability to handle

Position Independent Executables (PIEs) without a prior
information disclosure. This is a general problem to any
technique that uses ROP, as the absolute addresses of
gadgets must be provided in the ROP chain. Additionally,
without the base address of the binary, Leakless would be
unable to locate the dynamic loader structures that it needs
to corrupt.

When presented with a PIE executable, Leakless re-
quires the attacker to provide the application’s base ad-
dress, which is presumably acquired via an information
disclosure vulnerability (or, for example, by applying the
technique presented in BROP [5]). While this breaks Leak-
less’ ability to operate without an information disclosure,
Leakless is likely still the most convenient way to achieve
exploitation, as no library locations or library contents
have to be leaked. Additionally, depending on the situation,
the disclosure of just the address of the binary might be
more feasible than the disclosure of the contents of an
entire library. Unlike other techniques, which may need

12

USENIX Association 24th USENIX Security Symposium 655

the latter, Leakless only requires the former.
In practice, PIEs are uncommon due to the associated

cost in terms of performance. Specifically, measurements
have shown that PIE overhead on x86 processors aver-
ages at 10%, while the overhead on x86-64 processors,
thanks to instruction-pointer-relative addressing, averages
at 3.6% [28].

Because of the overhead associated with PIE, most dis-
tributions ship with PIE enabled only for those applications
deemed “risky”. For example, according to their documen-
tation, Ubuntu ships only 27 of their officially supported
packages (i.e., packages in the “main” repository) with
PIE enabled, out of over 27,000 packages [40]. As shown
in Section 6.1, PIE executables comprise a minority of the
executables on all of the systems that we surveyed.

7.3 Countermeasures
There are several measures that can be taken against

Leakless, but they all have drawbacks. In this sections we
analyze the most relevant ones.

Position Independent Executables. A quick counter-
measure is to make every executable on the system position
independent. While this would block Leakless’s automatic
operation (as discussed in Section 7.2), it would still al-
low the application of the Leakless technique when any
information disclosure does occur. For that reason, and the
performance overhead associated with PIE, we consider
the other countermeasures described in this section to be
better solutions to the problem.

Disabling lazy loading. When the LD BIND NOW envi-
ronment variable is set, the dynamic loader will completely
disable lazy loading. That is, all imports, for the program
binary and any library it depends on, are resolved upon
program startup. As a side-effect of this, the address of
dl runtime resolve does not get loaded into the GOT

of any library, and Leakless cannot function. This is
equivalent to enable full RELRO on the whole system,
and consequently, it incurs in the same, non-negligible,
performance overhead.

Disabling DT DEBUG. Finally, Leakless also uses the
DT DEBUG dynamic entry, used by debuggers for inter-
cepting loading-related events, to bypass full RELRO.
Currently, this field is always initialized, opening the doors
for Leakless’ full RELRO bypass. To close this hole, the
dynamic loader could be modified to only initialize this
value when a debugger is present or in the presence of an
explicitly-set environment variable.

Better protection of loader control structures. Leak-
less heavily relies on the fact that dynamic loader control
structures are easily accessible in memory, and their lo-
cations are well-known. It would be beneficial for these
structures to be better protected, or hidden in memory,
instead of being loaded at a known location. For example,
as shown in [29], these structures, along with any sections

that provide control data for symbol resolution, could be
marked as read-only after initialization. Such a develop-
ment would eliminate Leakless’ ability to corrupt these
structures and would prevent the attack from redirecting
the control flow to sensitive functions.

Additionally, modifying the loading procedure
to use a table of link map structure, and letting
dl runtime resolve take an index in this table, instead

of a direct pointer, will break Leakless’ bypass of full
RELRO. However, this change would also break compat-
ibility with any binaries compiled before the change is
implemented.

Isolation of the dynamic loader. Isolating the dy-
namic loader from the address space of the target program
could be an effective countermeasure. For instance, on
Nokia’s Symbian OS, which has a micro-kernel, the dy-
namic loader is implemented in a separate process as a
system server which interfaces with the kernel [26]. This
guarantees that the control structures of the dynamic loader
cannot be corrupted by the program, and, therefore, this
makes Leakless virtually ineffective. However, such a
countermeasure would have a considerable impact on the
overall performance of applications due to the overhead of
IPC (Inter-Process Communication).

In general, the mitigations either represent a runtime
performance overhead (PIE or loader isolation), a load-
time performance overhead (non-lazy loading and system-
wide RELRO), or a modification of the loading process
(DT DEBUG disabling or loader control structure hiding). In
the long run, we believe that a redesign of the dynamic
loader, with security in mind, would be extremely benefi-
cial to the community. In the short term, there are options
available to protect against Leakless, but they all come
with a performance cost.

8 Conclusion

In this paper, we presented Leakless, a new technique that
leverages functionality provided by the dynamic loader to
enable attackers to use arbitrary, security-critical library
functions in their exploits, without having to know where
in the application’s memory these functions are located.
This capability allows exploits that, previously, required
an information disclosure step to function.

Since Leakless leverages features mandated in the ELF
binary format specification, the attacks it implements
are applicable across architectures, operating systems,
and dynamic loader implementations. Additionally, we
showed how our technique can be used to bypass hard-
ening schemes such as RELRO, which are designed to
protect important control structures used in the dynamic
resolution process. Finally, we proposed several counter-
measures against Leakless, discussing the advantages and
disadvantages of each one.

13

656 24th USENIX Security Symposium USENIX Association

References

[1] AppArmor. http://wiki.apparmor.net/.

[2] A. Arcangeli. seccomp. https://www.
kernel.org/doc/Documentation/prctl/
seccomp filter.txt.

[3] A. Baratloo, N. Singh, and T. K. Tsai. Transparent
Run-Time Defense Against Stack-Smashing Attacks.
In USENIX Annual Technical Conference, General
Track, pages 251–262, 2000.

[4] M. Bauer. Paranoid penguin: an introduction to
Novell AppArmor. Linux Journal, 2006(148):13,
2006.

[5] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres,
and D. Boneh. Hacking blind. In Proceedings of
the 35th IEEE Symposium on Security and Privacy,
2014.

[6] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley.
Unleashing mayhem on binary code. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages
380–394. IEEE, 2012.

[7] Common Vulnerabilities and Exposures. CVE-
2014-2299. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-2299.

[8] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacks and defenses for the vul-
nerability of the decade. In DARPA Information
Survivability Conference and Exposition, 2000. DIS-
CEX’00. Proceedings, volume 2, pages 119–129.
IEEE, 2000.

[9] CVEDetails.com. ffmpeg: CVE security vulnera-
bilities. http://www.cvedetails.com/product/
6315/Ffmpeg-Ffmpeg.html.

[10] CVEDetails.com. Libpng: Security Vulnera-
bilities. http://www.cvedetails.com/vendor/
7294/Libpng.html.

[11] CVEDetails.com. Libtiff: CVE security vulnera-
bilities. http://www.cvedetails.com/product/
3881/Libtiff-Libtiff.html.

[12] CVEDetails.com. Wireshark: CVE security vulnera-
bilities. http://www.cvedetails.com/product/
8292/Wireshark-Wireshark.html.

[13] CWE. CWE/SANS Top 25 Most Dangerous Soft-
ware Errors. http://cwe.mitre.org/top25/.

[14] N. V. Database. NVD - Detail - CVE-2013-
6487. http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2013-6487.

[15] A. Di Federico, A. Cama, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Leakless source code
repository. https://github.com/ucsb-seclab/
leakless.

[16] S. Dudek. The Art Of ELF: Analysis and Exploita-
tions. http://bit.ly/1a8MeEw.

[17] T. Dullien, T. Kornau, and R.-P. Weinmann. A
Framework for Automated Architecture-Independent
Gadget Search. In WOOT, 2010.

[18] M. Fox, J. Giordano, L. Stotler, and A. Thomas.
Selinux and grsecurity: A case study comparing
linux security kernel enhancements. 2009.

[19] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for Overflows: A Guided Fuzzer
to Find Buffer Boundary Violations. In USENIX
Security, pages 49–64, 2013.

[20] C. Heitman and I. Arce. BARFgadgets. https:
//github.com/programa-stic/barf-project/
tree/master/barf/tools/gadgets.

[21] inaz2. ROP Illmatic: Exploring Universal
ROP on glibc x86-64. http://ja.avtokyo.org/
avtokyo2014/speakers#inaz2.

[22] P. Kot. A Turing complete ROP compiler. https:
//github.com/pakt/ropc.

[23] P. Menage. Cgroups. Available on-line at:
http://www. mjmwired. net/kernel/Documentation/c-
groups. txt, 2008.

[24] Mozilla. SSL CipherPrefSetDefault.
https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS/SSL functions/
sslfnc.html# SSL CipherPrefSetDefault .

[25] National Security Agency. Security-Enhanced Linux.
http://selinuxproject.org/.

[26] Nokia. Symbian OS Internals - The Loader.
http://developer.nokia.com/community/
wiki/Symbian OS Internals/10. The Loader#
The loader server.

[27] H. Orman. The Morris worm: a fifteen-year per-
spective. IEEE Security & Privacy, 1(5):35–43,
2003.

[28] M. Payer. Too much PIE is bad for performance.
2012. https://nebelwelt.net/publications/
12TRpie/gccPIE-TR120614.pdf.

14

USENIX Association 24th USENIX Security Symposium 657

[29] M. Payer, T. Hartmann, and T. R. Gross. Safe Load-
ing - A Foundation for Secure Execution of Untrusted
Programs. In Proceedings of the 2012 IEEE Sympo-
sium on Security and Privacy, SP ’12, pages 18–32,
Washington, DC, USA, 2012. IEEE Computer Soci-
ety.

[30] Phrack. Phrack - Volume 0xB, Issue 0x3a. http:
//phrack.org/issues/58/4.html.

[31] Rapid7, Inc. The Metasploit Framework. http:
//www.metasploit.com/.

[32] RedHat, Inc. Huge Pages and Transparent
Huge Pages. https://access.redhat.com/
documentation/en-US/Red Hat Enterprise
Linux/6/html/Performance Tuning Guide/
s-memory-transhuge.html.

[33] Santa Cruz Operation. System V Application
Binary Interface, 2013. http://www.sco.com/
developers/gabi/latest/contents.html.

[34] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q:
Exploit Hardening Made Easy. In USENIX Security
Symposium, 2011.

[35] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference
on Computer and communications security, pages
552–561. ACM, 2007.

[36] R. Shapiro, S. Bratus, and S. W. Smith. ”Weird
Machines” in ELF: A Spotlight on the Underappreci-
ated Metadata. In Proceedings of the 7th USENIX
Conference on Offensive Technologies, WOOT’13,
pages 11–11, Berkeley, CA, USA, 2013. USENIX
Association.

[37] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal war in memory. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 48–62. IEEE,
2013.

[38] The Avalanche Project. Avalange - a dynamic de-
fect detection tool. https://code.google.com/p/
avalanche/.

[39] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning. On the Expressiveness of Return-into-
libc Attacks. In Proceedings of the 14th International
Conference on Recent Advances in Intrusion Detec-
tion, RAID’11, pages 121–141, Berlin, Heidelberg,
2011. Springer-Verlag.

[40] Ubuntu. Ubuntu Wiki - Security/Features.
https://wiki.ubuntu.com/Security/
Features#Built as PIE.

[41] R. N. Watson, J. Anderson, B. Laurie, and K. Kenn-
away. Capsicum: Practical Capabilities for UNIX.
In USENIX Security Symposium, pages 29–46, 2010.

A Symbol versioning challenges

In Section 3.4 we introduced the concept of symbol ver-
sioning, and in Section 4.2 we mentioned that its us-
age introduces additional constraints in the value that
Elf Rel.r info can assume. In this Appendix we illus-
trate these constraints, and how Leakless can automatically
verify and satisfy them.

A.1 Constraints due to symbol versioning
In presence of symbol versioning, the Elf Rel.r info

field is used both as an index into the dynamic sym-
bol table and as an index in the symbol version ta-
ble (the .gnu.version section), which is composed by
Elf Verneed values. An Elf Verneed value of zero or
one has a special meaning, and stops the processing of
the symbol version, which is a desirable situation for the
attacker.

To understand the constraints posed by this, we intro-
duce some definitions and naming conventions. idx is
the index in Elf Rel.r info that Leakless has computed,
baseof(x) is the function returning the base address of sec-
tion x, sizeof(y) is the function returning the size in bytes
of structure y, and ∗ is the pointer dereference operator.
We define the following variables:

sym = baseof(.dynsym)+ idx · sizeof(Elf Sym)

ver = baseof(.gnu.version)+
+idx · sizeof(Elf Verneed)

verde f = baseof(.gnu.version r)+

+∗ (ver) · sizeof(Elf Verdef)

To be able to carry on the attack, the following condi-
tions must hold:

1. sym points to a memory area controlled by the at-
tacker, and

2. one of the following holds:
(a) ver points to a memory area containing a zero

or a one, or
(b) ver points to a memory area controlled by the

attacker, which will write a zero value there, or
(c) verde f points to a memory area controlled by

the attacker, which will place there an appropri-
ately crafted Elf Verdef structure.

All the other options result in an access to an unmapped
memory area or the failure of the symbol resolution pro-
cess, both of which result in program termination.

Leakless is able to satisfy these constraints automatically
in most cases. The typical successful situation results in
an idx value that points to a version index with value zero

15

658 24th USENIX Security Symposium USENIX Association

or one in the .text section (which usually comes after
.gnu.version) and to a symbol in the .data or .bss
section. A notable exception, where this is impossible
to achieve, is in the case of small x86-64 ELF binaries
compiled with the support of huge pages [32]. Using huge
pages means that memory pages are aligned to boundaries
of 2 MiB and, therefore, the segment containing the read-
only sections (in particular, .gnu.version and .text) is
quite far from the writeable segment (containing .bss and
.data). This makes it hard to find a good value for idx.

A.2 The huge page issue
The effect of huge pages can be seen in the following

examples:

$ readelf --wide -l elf -without -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x006468 R E 0x1000
LOAD 0x00407480 0x0005d0 RW 0x1000
...

$ readelf --wide -l elf -with -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x00610c R E 0x200000
LOAD 0x00606e10 0x0005d0 RW 0x200000
...

While in the first case the distance between the begin-
ning of the executable and the writeable segments is in
the order of the kilobytes, with huge pages is more than
2 MiB, and a valid value for idx cannot be found.

There are two ways to resolve the problems posed to
Leakless by small 64-bit binaries.

The first option is to find a zero value for Elf Verneed
in the read-only segment (usually .text). Given ro start,
ro end and ro size, as the start and end virtual addresses
and the size of the read-only segment respectively, and
rw start, rw end and rw size as the respective values for
the writeable segment, the following must hold:

ro start ≤ ver < ro end
rw start ≤ sym < rw end

Here, the most difficult case to satisfy is if .dynsym or
.gnu.version start at ro start. If we assume that both
hold true, we can write the following:

idx · sizeof(Elf Verneed) < ro end− ro start
idx · sizeof(Elf Sym) ≥ rw start− ro start

Or, alternatively:

idx · sizeof(Elf Verneed) < ro size
idx · sizeof(Elf Sym) ≥ 2 MiB

Knowing that Elf Verneed and Elf Sym have, respec-
tively, a size of 2 and 24 bytes for 64 bit ELFs, we can
compute the minimum value of ro size to make this sys-
tem of inequalities satisfiable. The result is 170.7KiB. If
the .rodata section is smaller than this size, an alternative
method must be used.

The second option is to position Elf Verneed in the
writeable segment. In this case, the attack requirements
can be described by the following system of inequalities:

rw start ≤ ver < rw end
rw start ≤ sym < rw end

If we, once again, consider the most stringent constraints
and apply the previously mentioned assumptions, we get
the following:

idx · sizeof(Elf Verneed) ≥ rw start− ro start
idx · sizeof(Elf Sym) < rw start− ro start+

+rw size

Or, alternatively:

idx · sizeof(Elf Verneed) ≥ 2 MiB
idx · sizeof(Elf Sym) < 2 MiB+ rw size

We can now put a lower bound on the size of the
writeable segment (rw size) to make the system satisfiable:
22MiB. However, this is unreasonably large, and leads
us to the conclusion that this approach is not viable with
small 64 bit ELF binaries that use huge pages.

16

