
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Memory Management

UC Santa Barbara

Overall: Runtime Memory

Typical subdivision of run-time memory into code and data areas

• Compiler writer: The executing target program
runs in its own continuous logical address
space in which each program value has a
location

• The operating system then maps the logical
addresses into physical addresses, which are
usually spread throughout memory

UC Santa Barbara

Static Storage Allocation
We say that a storage allocation decision is static
if it is made by the compiler looking only at the text
of the program

Static allocation
• Code: generated target code is fixed at compile

time, so the compiler can place the executable
target code in a statically determined Code,
area usually in the low end of memory

• Static data, such as globals. These data objects
can be placed in another statically determined
area called Static.
– Benefits: the addresses of these objects

can be compiled into the target executable.

UC Santa Barbara

Dynamic Storage Allocation

For dynamic space, whose size can change as
the program executes

• Stack
– centering around procedures (activation records)

• Heap
– dynamic but not local: data that may outlive the call

to the procedure that created it is usually allocated
on a “heap” of reusable storage

UC Santa Barbara

Examples: Stack and Heap Memory
(Both at Runtime)

UC Santa Barbara

Recall: Stack Used By Procedures

• When a procedure is called, a block is reserved on the top of the
stack for local variables and some bookkeeping data

• When that procedure returns, the block becomes unused and can
be used the next time a function is called

• The stack is always reserved in a LIFO (last in, first out) order; the
most recently reserved block is always the next block to be freed

• This makes it simple to keep track of the stack; freeing a block
from the stack is nothing more than adjusting one pointer

UC Santa Barbara

Address of Local Variables

How does the compiler represent memory location for a specific
instance of variable x for a procedure?

• Name is translated into a static coordinate: < level, offset >
– “level” is lexical scoping level
– “offset” is unique within that scope
– “offset” is assigned at compile time and it is used to generate code that

executes at run-time

• Static distance coordinate is used to generate addresses
– For each lexical scope level, we generate a base address
– offset gives the location of a variable relative to that base address

UC Santa Barbara

Memory Alignment and Padding
• The storage layout for data is influenced by the addressing

constraints of the target machine

• On many machines, instructions to add integers may expect
integers to be aligned that is placed at an address divisible by 4

UC Santa Barbara

Question Time

What does this print out?

UC Santa Barbara

Stack versus Heap

• Stack memory is associated with the stack data structure, which follows a
LIFO pattern for memory allocation and deallocation.

• But the name heap has nothing to do with the heap data structure. It is
called heap because it is a pile of memory space available to programmers
to allocate a block at any time and free it at any time.

• This makes it much more complex to keep track of which parts of the heap
are allocated or free at any given time; there are many custom heap
allocators available to tune heap performance for different usage patterns.

Stack Heap

UC Santa Barbara

Heap Memory

• Heap memory allocation isn’t as easy as stack memory allocation
because the data stored in this space is accessible or visible out of
a procedure.

• Different from stack memory management, no efficient, automatic
de-allocation feature is provided

UC Santa Barbara

Key Memory Manager Functions

Memory Manager
• The subsystem that allocates and deallocates space within the

heap.

– Allocation: A chunk of contiguous heap memory of the requested size
when a request is issued. If not enough space, then increasing the
heap storage space by getting consecutive bytes of virtual memory.

– We also assume that (1) Allocation requests are for chunks of the
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: …

UC Santa Barbara

Allocation Examples: Internal Fragmentation
p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))

UC Santa Barbara

Allocation Examples: External Fragmentation

p4 = malloc(7*sizeof(int))

Occurs when there is enough aggregate heap memory, but no
single free block is large enough

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

UC Santa Barbara

Key Memory Manager Functions

Memory Manager
• The subsystem that allocates and deallocates space within the

heap.

– Allocation: A chunk of contiguous heap memory of the requested size
when a request is issued. If not enough space, then increasing the
heap storage space by getting consecutive bytes of virtual memory.

– We also assume that (1) Allocation requests are for chunks of the
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: It will return deallocated space to the pool of free space
so it can reuse the space to satisfy other allocation requests. NOTE: it
typically does not return memory to the operating system even if the
program‘s heap usage drops.

UC Santa Barbara

Manual Memory Deallocation

• Programmer has full control over memory
 . . . with the responsibility to manage it well

• Premature free’s lead to dangling references (referencing deleted
data)

• Overly conservative free’s lead to memory leaks (failing ever to
delete data that cannot be referenced)

• With manual free’s, it is difficult to ensure that a program is correct
and secure

• Even with manual memory management, the system maintains
bookkeeping data and does nontrival memory-related processing
(e.g., search for appropriate chunk to allocate, avoid fragmentation,
etc.)

UC Santa Barbara

Garbage Collector

• Data that cannot be referenced is generally known as garbage

• Many high-level programming languages remove the burden of
manual memory management from the programmer by offering
automatic garbage collection, which deallocates unreachable data

• Garbage collection dates back to the initial implementation of Lisp
in 1958.

• Other significant languages that offer garbage collection include
Python, Prolog, Smalltalk, …

UC Santa Barbara

Garbage Data: Memory as a Graph

• Each data block is a node in the graph
• Each pointer is an edge in the graph
• Root nodes: locations not in the heap that contain pointers into the

heap (e.g., registers, locations on the stack, global variables)

Root nodes

Heap nodes

unreachable
(garbage)

reachable

UC Santa Barbara

Performance Metrics

• Many different approaches, but there is not one clearly best
garbage collection algorithm.

• Key metrics
– Overall Execution Time. It is at runtime, taking part of our program

execution time.

– Pause Time. It could cause programs to pause suddenly. A maximum
pause time shall be guaranteed, especially for those real-time
applications that require certain computations to be completed within a
time limit.

– Program Locality. It also controls the placement of data and thus
influences the data locality. A “great” garbage collector could make the
original problem running slower

UC Santa Barbara

Classical GC Algorithms

• Reference counting (Collins, 1960)
– Does not move blocks

• Mark and sweep collection (McCarthy, 1960)
– Does not move blocks (unless you also “compact”)

• Copying collection (Minsky, 1963)
– Moves blocks (compacts memory)

UC Santa Barbara

Reference Couting
• Reference counting is a conservative technique for detecting garbage
• Each object has a reference count: the #references made to it

(in-degree of the node in object graph). When the reference count of an
object falls to 0, then the object is garbage (and, hence, collected)

• When an object is allocated, we initialize its reference count to 0.
• Increment reference counts

– Assignment
– Parameter Passing (more like explicit assignment)

• Decrement reference counts
– New Assignment (p = q à p = r)
– Procedure exits. All objected referred to by its local variables shall

have their counts decremented. If local variables hold references to
the same object, that object’s count must be decremented once for
each such reference.

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10a

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

2 10a

b 1 20

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a

b 2 20

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a
1 20

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

0 20

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

0 10

UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

UC Santa Barbara

An Unreachable, Cyclic Data Structure

• Three objects with references among them, but no references from
anywhere else.

• If none of them is part of the root set, then they are all garbage, but
their reference counts are each greater than 0.

• Such a situation constitutes a memory leak if we use reference
counting for garbage collection.

data structures often
point back to their
parent nodes or point
to each other as
cross references

UC Santa Barbara

Reference Counting: Summary

Advantages
– Does not create long pauses
– Memory efficient, because it finds garbage as so on as it is produced
– Simple

Disadvantages
– Has high overheads which is proportional to the amount of

computation in the program and not just to the number of objects in the
system. It indeed imposes an overhead on every operation that stores
a pointer, e.g., a single move operation p = q will need manipulation of
two counts.

– Cyclic structures cannot be detected as garbage

UC Santa Barbara

GC Without Reference Counts

• If we don’t have counts, how to deallocate?

• Determine reachability by traversing pointer graph directly
– Stop user’s computation periodically to compute reachability
– Deallocate anything unreachable

UC Santa Barbara

Mark-and-Sweep Collector

Two-phase collector
• Mark Phase: Does a depth-first traversal of the object graph,

starting from the roots
Marks all objects visited (note reachable nodes represent live data)

• Sweep Phase: Does a sweep over the entire heap, adding any
unmarked node to the free list, and removing marks from nodes
(preparing for next round)

Needs extra bookkeeping space in each object for storing the
marks

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Assume fixed-sized, single-pointer data blocks, for simplicity.

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

UC Santa Barbara

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Free list:

UC Santa Barbara

Mark & Sweep: Summary

• Advantages
– No space overhead for reference counts
– No time overhead for reference counts
– Handles cycles

• Disadvantage
– Cost of collection is proportional to the entire heap size (since sweep

traverses the whole heap).
– Noticeable pauses for GC

UC Santa Barbara

Stop & Copy Garbage Collector

Two-Space Collector
• Heap is divided into two spaces

– From Space: The currently active heap
– To Space: Space to which objects will be copied (currently inactive)

• Objects reached are copied from the From Space to To Space

• References to copied objects are modified during the traversal

• From and To spaces are swapped at the end of copying

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

Assume fixed-sized, single-pointer data blocks, for simplicity.

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:

UC Santa Barbara

Stop & Copy: GC Example

Root pointers:

To:

From:

Next block to allocate

UC Santa Barbara

Stop & Copy GC

• Needs more heap space than is currently used, but
– Memory is compacted during copy, and hence no fragmentation

• Cost of collection is proportional to size of live objects in heap
(unreachable objects are not touched).

• Objects that survive a collection may get copied repeatedly, which
is expensive.

• Often used as a part of a generational garbage collector

UC Santa Barbara

Stop & Copy GC

• Advantages
– Handles cycles
– “Compacts” data, tends to increase spatial locality
– Very simple allocation

• Disadvantages
– Noticeable pauses for GC
– Doubles the basic heap size

