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Overall: Runtime Memory

Typical subdivision of run-time memory into code and data areas 

• Compiler writer: The executing target program 
runs in its own continuous logical address 
space in which each program value has a 
location 

• The operating system then maps the logical 
addresses into physical addresses, which are
usually spread throughout memory



UC Santa Barbara

Static Storage Allocation 
We say that a storage allocation decision is static 
if it is made by the compiler looking only at the text 
of the program

Static allocation
• Code: generated target code is fixed at compile 

time, so the compiler can place the executable 
target code in a statically determined Code, 
area usually in the low end of memory 

• Static data, such as globals. These data objects 
can be placed in another statically determined 
area called Static.
– Benefits: the addresses of these objects 

can be compiled into the target executable.
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Dynamic Storage Allocation

For dynamic space, whose size can change as 
the program executes 

• Stack
– centering around procedures (activation records)

• Heap
– dynamic but not local: data that may outlive the call

to the procedure that created it is usually allocated 
on a “heap” of reusable storage
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Examples: Stack and Heap Memory
(Both at Runtime)
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Recall: Stack Used By Procedures

• When a procedure is called, a block is reserved on the top of the 
stack for local variables and some bookkeeping data 

• When that procedure returns, the block becomes unused and can 
be used the next time a function is called

• The stack is always reserved in a LIFO (last in, first out) order; the 
most recently reserved block is always the next block to be freed

• This makes it simple to keep track of the stack; freeing a block 
from the stack is nothing more than adjusting one pointer
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Address of Local Variables

How does the compiler represent memory location for a specific 
instance of variable x for a procedure?

• Name is translated into a static coordinate: < level, offset >
– “level” is lexical scoping level
– “offset” is unique within that scope
– “offset” is assigned at compile time and it is used to generate code that 

executes at run-time

• Static distance coordinate is used to generate addresses
– For each lexical scope level, we generate a base address
– offset gives the location of a variable relative to that base address
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Memory Alignment and Padding
• The storage layout for data is influenced by the addressing 

constraints of the target machine

• On many machines, instructions to add integers may expect 
integers to be aligned that is placed at an address divisible by 4
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Question Time

What does this print out?
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Stack versus Heap

• Stack memory is associated with the stack data structure, which follows a
LIFO pattern for memory allocation and deallocation.

• But the name heap has nothing to do with the heap data structure. It is 
called heap because it is a pile of memory space available to programmers 
to allocate a block at any time and free it at any time. 

• This makes it much more complex to keep track of which parts of the heap 
are allocated or free at any given time; there are many custom heap 
allocators available to tune heap performance for different usage patterns.

Stack Heap
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Heap Memory

• Heap memory allocation isn’t as easy as stack memory allocation 
because the data stored in this space is accessible or visible out of 
a procedure.

• Different from stack memory management, no efficient, automatic 
de-allocation feature is provided
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Key Memory Manager Functions

Memory Manager
• The subsystem that allocates and deallocates space within the 

heap.

– Allocation: A chunk of contiguous heap memory of the requested size 
when a request is issued. If not enough space, then increasing the 
heap storage space by getting consecutive bytes of virtual memory.

– We also assume that (1) Allocation requests are for chunks of the 
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: …
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Allocation Examples: Internal Fragmentation
p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))
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Allocation Examples: External Fragmentation

p4 = malloc(7*sizeof(int))

Occurs when there is enough aggregate heap memory, but no 
single free block is large enough

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)
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Key Memory Manager Functions

Memory Manager
• The subsystem that allocates and deallocates space within the 

heap.

– Allocation: A chunk of contiguous heap memory of the requested size 
when a request is issued. If not enough space, then increasing the 
heap storage space by getting consecutive bytes of virtual memory.

– We also assume that (1) Allocation requests are for chunks of the 
different sizes. (2) There is no good way to predict the lifetimes of all
allocated objects.

– Deallocation: It will return deallocated space to the pool of free space 
so it can reuse the space to satisfy other allocation requests. NOTE: it
typically does not return memory to the operating system even if the 
program‘s heap usage drops.
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Manual Memory Deallocation

• Programmer has full control over memory 
 . . . with the responsibility to manage it well 

• Premature free’s lead to dangling references (referencing deleted 
data)

• Overly conservative free’s lead to memory leaks (failing ever to 
delete data that cannot be referenced) 

• With manual free’s, it is difficult to ensure that a program is correct 
and secure

• Even with manual memory management, the system maintains 
bookkeeping data and does nontrival memory-related processing 
(e.g., search for appropriate chunk to allocate, avoid fragmentation, 
etc.)
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Garbage Collector

• Data that cannot be referenced is generally known as garbage

• Many high-level programming languages remove the burden of 
manual memory management from the programmer by offering 
automatic garbage collection, which deallocates unreachable data

• Garbage collection dates back to the initial implementation of Lisp 
in 1958.

• Other significant languages that offer garbage collection include 
Python, Prolog, Smalltalk, …
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Garbage Data: Memory as a Graph

• Each data block is a node in the graph 
• Each pointer is an edge in the graph
• Root nodes: locations not in the heap that contain pointers into the 

heap (e.g., registers, locations on the stack, global variables)

Root nodes

Heap nodes

unreachable
(garbage)

reachable
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Performance Metrics

• Many different approaches, but there is not one clearly best 
garbage collection algorithm.

• Key metrics
– Overall Execution Time. It is at runtime, taking part of our program

execution time.

– Pause Time. It could cause programs to pause suddenly. A maximum
pause time shall be guaranteed, especially for those real-time 
applications that require certain computations to be completed within a 
time limit.

– Program Locality. It also controls the placement of data and thus 
influences the data locality. A “great” garbage collector could make the
original problem running slower
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Classical GC Algorithms

• Reference counting (Collins, 1960)
– Does not move blocks

• Mark and sweep collection (McCarthy, 1960)
– Does not move blocks (unless you also “compact”)

• Copying collection (Minsky, 1963)
– Moves blocks (compacts memory)
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Reference Couting
• Reference counting is a conservative technique for detecting garbage 
• Each object has a reference count: the #references made to it 

(in-degree of the node in object graph). When the reference count of an 
object falls to 0, then the object is garbage (and, hence, collected)

• When an object is allocated, we initialize its reference count to 0. 
• Increment reference counts

– Assignment
– Parameter Passing (more like explicit assignment)

• Decrement reference counts
– New Assignment (p = q à p = r)
– Procedure exits. All objected referred to by its local variables shall

have their counts decremented. If local variables hold references to 
the same object, that object’s count must be decremented once for 
each such reference.
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10a



UC Santa Barbara

Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

2 10a

b 1 20
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a

b 2 20
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

a
1 20
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

1 10

0 20
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …

0 10
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Reference Counting: Example

a = cons(10,empty)
b = cons(20,a)
a = b
b = …
a = …
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An Unreachable, Cyclic Data Structure 

• Three objects with references among them, but no references from 
anywhere else.

• If none of them is part of the root set, then they are all garbage, but 
their reference counts are each greater than 0.

• Such a situation constitutes a memory leak if we use reference 
counting for garbage collection.

data structures often
point back to their 
parent nodes or point 
to each other as 
cross references
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Reference Counting: Summary

Advantages
– Does not create long pauses
– Memory efficient, because it finds garbage as so on as it is produced 
– Simple

Disadvantages
– Has high overheads which is proportional to the amount of 

computation in the program and not just to the number of objects in the 
system. It indeed imposes an overhead on every operation that stores 
a pointer, e.g., a single move operation p = q will need manipulation of 
two counts.

– Cyclic structures cannot be detected as garbage
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GC Without Reference Counts

• If we don’t have counts, how to deallocate?

• Determine reachability by traversing pointer graph directly
– Stop user’s computation periodically to compute reachability
– Deallocate anything unreachable



UC Santa Barbara

Mark-and-Sweep Collector

Two-phase collector 
• Mark Phase: Does a depth-first traversal of the object graph, 

starting from the roots 
Marks all objects visited (note reachable nodes represent live data) 

• Sweep Phase: Does a sweep over the entire heap, adding any 
unmarked node to the free list, and removing marks from nodes 
(preparing for next round) 

Needs extra bookkeeping space in each object for storing the 
marks
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Mark & Sweep: GC Example

Root pointers:

Heap:

Assume fixed-sized, single-pointer data blocks, for simplicity.

Unmarked= Marked=
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Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=
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Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=
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Root pointers:
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Heap:

Unmarked= Marked=
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Mark & Sweep: GC Example

Root pointers:
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Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=
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Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Free list:
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Mark & Sweep: Summary

• Advantages
– No space overhead for reference counts
– No time overhead for reference counts
– Handles cycles

• Disadvantage
– Cost of collection is proportional to the entire heap size (since sweep 

traverses the whole heap). 
– Noticeable pauses for GC
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Stop & Copy Garbage Collector

Two-Space Collector
• Heap is divided into two spaces

– From Space: The currently active heap 
– To Space: Space to which objects will be copied (currently inactive)

• Objects reached are copied from the From Space to To Space 

• References to copied objects are modified during the traversal 

• From and To spaces are swapped at the end of copying
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Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

Assume fixed-sized, single-pointer data blocks, for simplicity.

To:
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Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:



UC Santa Barbara

Stop & Copy: GC Example

Root pointers:
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Stop & Copy: GC Example
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Stop & Copy: GC Example

Root pointers:
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Uncopied= Copied=
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Stop & Copy: GC Example

Root pointers:

From:

Uncopied= Copied=

To:
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Stop & Copy: GC Example

Root pointers:

To:

From:

Next block to allocate
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Stop & Copy GC

• Needs more heap space than is currently used, but 
–  Memory is compacted during copy, and hence no fragmentation 

• Cost of collection is proportional to size of live objects in heap 
(unreachable objects are not touched). 

• Objects that survive a collection may get copied repeatedly, which 
is expensive. 

• Often used as a part of a generational garbage collector



UC Santa Barbara

Stop & Copy GC

• Advantages
– Handles cycles
– “Compacts” data, tends to increase spatial locality 
– Very simple allocation

• Disadvantages
– Noticeable pauses for GC
– Doubles the basic heap size


