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Overview

• Intermediate Representations
– There is more that one way to represent code as it is being generated, 

analyzed, and optimized (we use ASTs)

• How code runs
– The way code runs on a machine depends on if the code is compiled  

or interpreted, and if it is statically or dynamically linked

• Code Generation
– Three-address code and stack code
– Dealing with Boolean values and control (such as loops)
– Arrays



UC Santa Barbara

Code Generation

• To generate actual code that can run on a processor (such as gcc) 
or on a virtual machine (such as javac) we need to understand what 
code for each of these machines looks like.

• Rather than worry about the exact syntax of a given assembly 
language, we instead use a type of pseudo-assembly that is close 
to the underlying machine.

• In this class, we need to worry about 2 different types of code
– Stack-based code: Similar to the Java Virtual Machine
– Three-address code (Register-based code): Similar to most 

processors (x86, Sparc, ARM, …)
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Register-based vs. Stack-based Machines

A register-based machine has a number of registers used for 
calculations. 2 + 3 would work something like this:
• LOADI R4,#2; ：Load immediate 2 into register 4

LOADI R5,#3; ：Load immediate 3 into register 5
ADD R4,R5; ：Add R4 and R5, storing result in R4

On a stack-based machine, computation would work like this
• PUSHI #2； ：Push immediate 2 onto stack

PUSHI #3; ：Push immediate 3 onto stack
ADD; ：Pop top two numbers, add them, and push results to 

the top of the stack.
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Three-Address Code (Register-based Code)
• Each instruction can have at most three operands

• We have to break large statements into little operations that use temporary variables
– X=(2+3)+4    turns into to    T1=2+3;   X=T1+4;

• Temporary variables store the results at the internal nodes in the AST

• Assignments
– x := y
– x := y op z  op: binary arithmetic or logical operators
– x := op y op: unary operators (minus, negation, integer to float)

• Branch
– goto L execute the statement with labeled L next

• Conditional Branch
– if x relop y goto L relop: <, =, <=, >=,  ==, != 

• if the condition holds, we execute statement labeled L next
• if the condition does not hold, we execute the statement following this 

statement next 
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Three-Address Code
if (x < y)

  x = 5*y + 5*y/3;

else

  y = 5;

x = x + y;

if x < y goto L1
 goto L2
L1: t1 := 5 * y
 t2 := 5 * y
 t3 := t2 / 3
 x := t1 + t3
 goto L3
L2: y := 5
L3: x := x + y

Temporaries: temporaries correspond
to the internal nodes of the syntax tree

Variables can be represented with 
their locations in the symbol table

• Three-address code instructions can be represented as an array of
 

   quadruples: operation, argument1, argument2, result
   triples: operation, argument1, argument2  
 (each triple implicitly corresponds to a temporary)
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Stack Machine Code

• Stack based code uses the stack to store temporary variables

• When we evaluate an expression (E+E), it will take its arguments 
off the stack, add them together and put the result back on the 
stack. 

• (2+3)+4  will push 2; push 3; add; push 4; add

• The machine code for this is a bit uglier, but the code is actually 
easier to generate because we do not need to handle temporary 
variables
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Why is Code Easier to Generate?

• Each operation takes operands from the same place and puts 
results in the same place
– Location of the operands is implicit
– Always on the top of the stack 
– No need to specify operands explicitly 
– No need to specify the location of the result 
– Instruction “add” as opposed to “add r1, r2” ⇒ Smaller encoding of 

instructions ⇒ More compact programs 
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Stack Machine Code 

if (x < y)

  x = 5*y + 5*y/3;

else

  y = 5;
x = x+y;

load x
    load y
    iflt L1
    goto L2
L1: push 5
    load y
    multiply
    push 5
    load y
    multiply
    push 3
    divide
    add
    store x
    goto L3
L2: push 5
    store y
L3: load x
    load y
    add 
    store x

pops the top
two elements and
compares them

pops the top two 
elements, multiplies
them, and pushes the
result back to the stackJVM: A stack machine

•  JVM interpreter executes the bytecode on different
   machines
•  JVM has an operand stack which we use to evaluate
   expressions
•  JVM provides 65,535 local variables for each method 
   The local variables are like registers so we do not have
   to worry about register allocation
•  Each local variable in JVM is denoted by a number
   between 0 and 65535 (x and y in the example will be 
   assigned unique numbers)

pushes the value
at the location x to 
the stack 

stores the value at the 
top of the stack to the 
location x 
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Code

• Three-Address Code:
– Good - Compact representation
– Good - Statement is “self contained” in that it has the inputs, outputs, 

and operation all in one “instruction”
– Bad - Requires lots of temporary variables
– Bad - Temporary variables have to be handled explicitly

• Stack Based Code:
– Good – No temporaries, everything is kept on the stack
– Good – It is easy to generate code for this
– Bad – Requires more instructions to do the same thing
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Stack-Based Code Generation

Productions Semantic Rules
S ® id := E id.place ¬ lookup(id.name); 
   S.code ¬ E.code || gen(‘store’ id.place);
E ® E1  +  E2 E.code ¬ E1.code || E2.code || gen(‘add’);    
   (arguments for the add instruction are in the top of the stack)
E ® E1  *  E2 E.code ¬ E1.code || E2.code || gen(‘multiply’);
E ® ( E1 ) E.code ¬ E1.code; 
E ® - E1  E.code ¬ E1.code || gen( ‘negate‘);
E ® id  E.code ¬ gen(‘load’ id.place) 

Attributes: E.code: sequence of instructions that are generated for E
   (no place for an expression is needed since the result of an expression
   is stored in the operand stack)
Procedures: newtemp(): Returns a new temporary each time it is called
   gen(): Generates instruction (have to call it with appropriate arguments)
   lookup(id.name): Returns the location of id from the symbol table
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Example

X := ( Y + Z ) * A S

id   :=   E

E      *        E

(   E   )

E       +        E

id

id id
E.code = “load Z”

E.code = “load Y”

E.code = 
“ load Y
  load Z
  add”

E.code = 
“ load Y
  load Z
  add”

E.code = “load A”

E.code = 
“ load Y
  load Z
  add
  load A
  multiply”

S.code = 
“ load Y
  load Z
  add
  load A
  multiply
  store X”
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Three-Address Code

Productions Semantic Rules
S ® id := E id.place ¬ lookup(id.name); 
   S.code ¬ E.code || gen(id.place ‘:=‘ E.place);
E ® E1  +  E2 E.place ¬ newtemp();
   E.code ¬ E1.code || E2.code || gen(E.place ‘:=‘ E1.place ‘+’ E2.place);
E ® E1  *  E2 E.place ¬ newtemp();
   E.code ¬ E1.code || E2.code || gen(E.place ‘:=‘ E1.place ‘*’ E2.place);
E ® ( E1 )  E.code ¬ E1.code; 
   E.place ¬ E1.place;
E ® - E1  E.place ¬ newtemp();
   E.code ¬ E1.code || gen(E.place ‘:=‘ ‘uminus’ E1.place);
E ® id  E.place ¬ lookup(id.name);
   E.code ¬ ‘’   (empty string) 

Attributes: E.place: location that holds the value of expression E
   E.code: sequence of instructions that are generated for E
Procedures: newtemp(): Returns a new temporary each time it is called
   gen(): Generates instruction (have to call it with appropriate arguments)
   lookup(id.name): Returns the location of id from the symbol table
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X := ( Y + Z ) * A
S

id   :=   E

E      *        E

(   E   )

E       +        E

id

id id
E.place = z 
E.code = “”

E.place = y
E.code = “”

E.place = t1
E.code = “t1 := y + z”

E.place = a
E.code = “”

E.place = t2
E.code = “t1 := y + z
                 t2 := t1 * a”

S.code = 
  “t1 := y + z
    t2 := t1 * a
    x := t2”

E.place = t1
E.code = “t1 := y + z”

Example
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x86 Architecture

• Complex Instruction Set Computer (CISC)

• Significantly larger opcode set : 400-odd compared to 40-odd in 
RISC

• Opcodes often can operate on both registers and/or memory
– Do not necessarily need separate load/store instructions

• 8 general purpose registers (32 bits each)
– We will use %esp, %eax, and %ecx
– Intel engineers felt that it is better to provide more opcodes and less 

registers. Use on-chip real-estate for more functional units and logic 
(by saving space through a shorter register file and its connections).
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(A few) x86 Opcodes

• movl %reg1/(memaddr1)/$imm, %reg2/(memaddr2)
– Move 32-bit word from register reg1 (or address memaddr1 or the immediate 

value itself) into reg2 or to memory address memaddr2
– Captures several opcodes in one mnemonic (load, store, li, move-register, etc.). 

More powerful than RISC, e.g., MIPS cannot move immediate value directly to 
memory

• add %reg1/(memaddr1)/$imm, %reg2/(memaddr2)
– %reg2/(memaddr2) <-- reg1/(memaddr1)/imm + %reg2/(memaddr2)
– Overflow is always computed for both signed/unsigned arithmetic. Happens in 

parallel so not in critical performance path, but switches more transistors (more 
power)

• push %reg/(memaddr)/$imm
– (%esp-4) <-- reg/(memaddr)/imm; %esp <-- %esp-4

• pop %reg/(memaddr)/$imm
– reg/(memaddr)/imm <-- (%esp); %esp <-- %esp+4
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Expression Code for x86

• The stack-machine code for 7+5 in x86

pushl $0x7 ; push first expression (argument) on the stack
pushl $0x5 ; push second expression (argument) on the stack

; do the add operation
popl %ebx ; load first argument into temporary register
popl %eax ; load second arg. into accumulator
addl %ebx, %eax ; add result together and store in accumulator
pushl %eax ; push result back on the stack
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Expression Code for x86

• The stack-machine code for 3+(7+5) in x86

pushl $0x3

pushl $0x7

pushl $0x5

popl %ebx

popl %eax

addl %ebx, %eax

pushl %eax

popl %ebx

popl %eax

addl %ebx, %eax

pushl %eax

+

3 +

7 5
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Code Generation for Boolean Expressions

• Two approaches
– Numerical representation
– Implicit representation

• Numerical representation
– Use 1 to represent true, use 0 to represent false
– For three-address code, store this result in a temporary
– For stack machine code, store this result on the stack

• Implicit representation
– For the Boolean expressions that are used in flow-of-control 

statements (such as if-statements, while-statements etc.) Boolean 
expressions do not have to explicitly compute a value, they just need 
to branch to the right instruction

– Generate code for Boolean expressions that branch to the appropriate 
instruction based on the result of the Boolean expression
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Boolean Expressions: Numerical Representation

Attributes : E.place: location that holds the value of expression E 
   E.code: sequence of instructions that are generated for E
   id.place: location for id
   relop.func: the type of relational function

Productions  Semantic Rules

E ® id1  relop  id2  E.place ¬ newtemp();
   E.code ¬  gen(E.place ‘:=‘ id1.place relop.func id1.place)
E ® E1  and E2  E.place ¬ newtemp();
   E.code ¬  E1.code 
    || E2.code 
    || gen(E.place ‘:=‘ E1.place ‘and’ E2.place); 

If there are instructions in the architecture that support operations on Boolean data (like 
“logical and” or “logical or”), then the easiest way to implement Boolean data is to just treat it 
like normal data
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Boolean Expressions: Implicit Representation

Productions  Semantic Rules

E ® id1  relop  id2  E.code ¬ gen(‘if’ id1.place relop.op id2.place ‘goto’ E.true)
    || gen(‘goto’ E.false);

E0 ® E1 and E2                 E1.false ¬ E0. false; (short-circuiting) 
   E2.false ¬ E0. false;
   E1.true ¬ newlabel();
   E2.true ¬ E0. true;
   E.code ¬ E1.code || gen(E1.true ‘:’) || E2.code ; 

Attributes :  E.code: sequence of instructions that are generated for E
   E.false: instruction to branch to if E evaluates to false
   E.true: instruction to branch to if E evaluates to true
   (E.code is synthesized whereas E.true and E.false are inherited)
   id.place: location for id 

can be any relational operator:
==, <=, >= !=

These places will be filled with 
labels later on when they 
become availableThis generated label

will be inserted to the place 
for E1.true in the code 
generated for E1
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Example

100 t1 := x < y
101    t2 := a == b
102    t3 := t1 and t2

Input Boolean expression:
x < y and a == b

Numerical representation:

if x < y goto L1
 goto LFalse
L1: if a == b goto LTrue
 goto LFalse
 ...
LTrue:

LFalse:

Implicit representation:

These are the locations of
three-address code instructions, 
they are not labels

These labels will be generated
later on, and will be inserted
to the corresponding places 
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Flow-of-Control Statements

If-then-else
• Branch based on the result of Boolean expression

Loops
• Evaluate condition before loop (if needed)
• Evaluate condition after loop 
• Branch back to the top if condition holds

Merges test with last block of loop body

While, for, do, and until all fit this basic model

Pre-test

Loop body

Post-test

Next block
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Flow-of-Control Statements: Code Structure

E.code

S1.code

goto S.next

S2.code

•

•
•

to E.true

to E.false 

E.true:

E.false:

S.next:

S ® if E then S1 else S2

if  E evaluates to true

if  E evaluates to false

E.code

S1.code

goto S.begin

•
•
•

to E.true

to E.false 

E.true:

E.false:

S.begin:

S ® while E do S1

Another approach is to place 
E.code after S1.code
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Flow-of-Control Statements

Productions  Semantic Rules
S ® if  E then S1 else S2  E.true ¬ newlabel();
    E.false ¬ newlabel(); 
    S1.next ¬ S. next;
     S2.next ¬ S. next;
     S.code ¬ E.code || gen(E.true ‘:’) || S1.code 
    || gen(‘goto’ S.next) || gen(E.false ‘:’) || S2.code ;
S ® while E do S1    S.begin ¬ newlabel();
    E.true ¬ newlabel(); 
    E.false ¬ S. next;
     S1.next ¬ S. begin;
     S.code ¬ gen(S.begin ‘:’) || E.code || gen(E.true ‘:’) || S1.code 
    || gen(‘goto’ S.begin);
 

S ® S1 ; S2      S1.next ¬ newlabel();
    S2.next ¬ S.next;
    S.code ¬ S1.code || gen(S1.next ‘:’) || S2.code

Attributes :  S.code: sequence of instructions that are generated for S
   S.next: label of the instruction that will be executed immediately after S
   (S.next is an inherited attribute)
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Example

Input code fragment:

while (a < b)  {
    if  (c < d)
        x = y + z;
    else 
        x = y – z
}

L1: if a < b goto L2
 goto LNext
L2: if c < d goto L3
 goto L4
L3: t1 := y + z
 x := t1
 goto L1
L4: t2 := y – z
 x := t2
 goto L1
LNext:     ...
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x86 Example

Input code fragment:

if (x != 2) {
  y = true;
}
else {
  y = false;
}

    movl   0xfffffffc(%ebp), %eax
    pushl  %eax
    pushl  $0x2
    popl   %ebx
    popl   %eax
    cmpl   %ebx, %eax
    jne   c_t_label_1
    pushl  $0x0
    jmp   c_f_label_1
c_t_label_1:
    pushl  $0x1
c_f_label_1:
    popl   %eax
    cmpl   $0x01, %eax
    jne   if_else_label_0
    pushl  $0x1
    popl   %eax
    movl   %eax, 0xfffffff8(%ebp)
    jmp   if_end_label_0
if_else_label_0:
    pushl  $0x0
    popl   %eax
    movl   %eax, 0xfffffff8(%ebp)
if_end_label_0:
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Array Accesses

First, must agree on a storage scheme:

Row-major order                                                                     (most  languages)
Lay out as a sequence of consecutive rows
Rightmost subscript varies fastest
A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order                                                                              (Fortran)
Lay out as a sequence of columns
Leftmost subscript varies fastest
A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors                                                                                     (Java)
Vector of pointers to pointers to … to values
Takes more space
Locality may not be good
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Laying Out Arrays

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These have distinct & different 
cache behavior     

The order of  traversal of  an 
array can effect the 
performance

The Concept

Row-major order

Column-major order

Indirection vectors



UC Santa Barbara

How do we insert the calculation for arrays

• If I access element A[2,3], what address is storing my variable?

Need to map i = 2, j = 3 to array element 6

• If i = 2, and we start at 1, we need to skip over one row (Row 1) worth of 
stuff.  In general, we would skip over (i – low) rows (low is the number you 
start counting at for your arrays - in the example, it is 1)

• Each row is some number of elements in length (high – low + 1) 
= (4 – 1) + 1 = 4

• Once you get to the correct row, we just add j – low to get the right index
= (3 – 1) = 2

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

0        1       2         3        4       5       6       7
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Computing an Array Address
1-D array: A[ i ]
• @A + ( i - low ) ´ sizeof(A[1])

Two-D array: A[i1,i2]

Row-major order, two dimensions
@A + (( i1 - low1 ) ´ (high2 - low2 + 1) + i2 - low2) ´ sizeof(A[1])

Column-major order, two dimensions
@A + (( i2 - low2 ) ´ (high1 - low1 + 1) + i1 - low1) ´ sizeof(A[1])

Indirection vectors, two dimensions
*(A[i1])[i2]    — where  A[i1] is, itself, a 1-d array reference

Expensive computation!

Lots of  +, -, x operations

int A[1:10] Þ low is 1
Make low 0 for faster access 
(save a subtraction )

Almost always a power of  2, known at 
compile-time Þ use a shift for speed

Base of  A (starting 
address of  the array)



UC Santa Barbara

Optimizing the Stack Machine

• The “add” instruction does 3 memory operations 
– Two reads and one write to the stack 
– The top of the stack is frequently accessed 
– Idea: keep the top of the stack in a register (called accumulator)  

Register accesses are faster 
– The “add” instruction is now acc ← acc + top_of_stack
– Only one memory operation!

• Key: Now we have arithmetic instructions to support operands both
in register and on stack. Previously, the operands must be on the
stack.
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Example

• Consider the expression: e1 + e2

• At a high level, the stack machine code will be: 
<code to evaluate e1>
push acc on the stack 
<code to evaluate e2>
push acc on the stack 
add top two stack elements, store in acc 
pop two elements off the stack 

• Observation: There is no need to push the result of e2 on the stack. 
<code to evaluate e1>
push acc on the stack 
<code to evaluate e2>
add top stack element and acc, store in acc 
pop one elements off the stack 
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Stack Machine with Accumulator

• Compute 7 + 5 using an accumulator
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A (Slightly) Bigger Example: 3 + (7 + 5)
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x86 C Compiler with Static Linking

x86

Code written in
High Level Lang.

Compiler

x86 Assembly

x86 Assembler

x86 Object File (.o)

Code written in
High Level Lang.

Compiler

x86 Assembly

x86 Assembler

x86 Object File (.o)

Libraries

Linker

x86 Executable

Executable

Compile time Run time

At compile time, all of the code is 
transformed into x86 object files and 
then the object files are linked together 
with the libraries to create a “statically 
linked” executable.  This executable 
then runs directly on the x86 hardware.

One drawback, is if you wanted to run 
the same code on a Power-PC (even 
with the same OS) you have to re-
compile everything.
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x86 C Compiler with Dynamic Linking

x86

Code written in
High Level Lang.

Compiler

x86 Assembly

x86 Assembler

x86 Object File (.o)

Code written in
High Level Lang.

Compiler

x86 Assembly

x86 Assembler

x86 Object File (.o)

Linker

Not-fully Linked
x86 Executable

Final Executable
loaded in Memory

Compile time

Run time

This is similar to before, but now the final 
linking occurs when the program is loaded 
(or even during program execution)

Here, libraries can be shared and they can 
be updated across the whole system 
without re-linking every single executable

The linker just links together the 
.o files, and does not link calls to 
dynamically loaded libraries 
(DLLs in Windows or Shared 
Libraries in Unix)

Dynamic
Libraries

Not-fully Linked
x86 Executable

Loader
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Java Compiler

x86

Code written in
High Level Lang.

Compiler

Java Assembly

Java Assembler

Java Bytecode (class)

Code written in
High Level Lang.

Compiler

Java Assembly

Java Assembler

Java Bytecode (class)

Here the compiler targets java bytecode (which is what we do in 
this class) and the bytecode is then run on top of the Java Virtual 
Machine (JVM).  The JVM really just interprets (simulates) the 
bytecode like any scripting language.  Because of this, any java 
program compiled to bytecode is portable to any machine that 
someone has already ported the JVM too. No need to recompile.

Java
Classes

Java Bytecode 
(class)

Java Bytecode
(class)

Java Virtual
Machine
(bytecode

interpreter)


