
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Register Allocation

UC Santa Barbara

Register Allocation

• Main Idea: We want to replace temporary variables with some fixed
set of registers

• First: need to know which variables are live after each instruction
– Two simultaneously live variables cannot be allocated to the same

register

UC Santa Barbara

Liveness Analysis

• Live variable analysis (or simply liveness analysis) is a classic data-
flow analysis to calculate the variables that are live at each point in
the program.

• A variable is live at some point if it holds a value that may be
needed in the future, or equivalently if its value may be read before
the next time the variable is written to.

• Analysis is performed starting from the end of the function working
towards the beginning à backwards analysis

• Compute def(inition) – use(age) regions: A variable is live between
its (most recent) definition and (last) use

UC Santa Barbara

Liveness Analysis

Instructions Live vars

b = a + 2

c = b * b

b = c + 1

return b * a

UC Santa Barbara

Liveness Analysis

Instructions Live vars

b = a + 2

c = b * b

b = c + 1
 b,a
return b * a

UC Santa Barbara

Liveness Analysis

Instructions Live vars

b = a + 2

c = b * b
 a,c
b = c + 1
 b,a
return b * a

UC Santa Barbara

Liveness Analysis

Instructions Live vars

b = a + 2
 b,a
c = b * b
 a,c
b = c + 1
 b,a
return b * a

UC Santa Barbara

Liveness Analysis

Instructions Live vars
 a
b = a + 2
 b,a
c = b * b
 a,c
b = c + 1
 b,a
return b * a

UC Santa Barbara

Liveness Analysis

Instructions Live vars
 a
b = a + 2
 b,a
c = b * b
 a,c
b = c + 1
 b,a
return b * a

a b c

UC Santa Barbara

Interference Graph

• Nodes of the graph = variables

• Edges connect variables that interfere with one another

• Nodes will be assigned a color corresponding to the register
assigned to the variable

• Two colors cannot be next to one another in the graph

UC Santa Barbara

Interference Graph

Instructions Live vars
 a
b = a + 2
 a,b
c = b * b
 a,c
b = c + 1
 a,b
return b * a

UC Santa Barbara

Interference Graph

Instructions Live vars
 a
b = a + 2
 a,b
c = b * b
 a,c
b = c + 1
 a,b
return b * a

a

cb

UC Santa Barbara

Interference Graph

Instructions Live vars
 a
b = a + 2
 a,b
c = b * b
 a,c
b = c + 1
 a,b
return b * a

a

cb

eax

ebx

color register

UC Santa Barbara

Graph Coloring

• Questions:
– Can we efficiently find a coloring of the graph whenever possible?
– Can we efficiently find the optimum coloring of the graph?
– How do we choose registers to avoid move instructions?
– What do we do when there aren’t enough colors (registers) to color the

graph?

UC Santa Barbara

Coloring a Graph

• Kempe’s algorithm [1879] for finding a K-coloring of a graph

• Step 1 (Simplify): Find a node with at most K-1 edges and cut it out
of the graph. Remember this node on a stack for later stages

UC Santa Barbara

Coloring a Graph

• Once a coloring is found for the simpler graph, we can always color
the node we saved on the stack

• Step 2 (Color): When the simplified subgraph has been colored,
add back the node on the top of the stack and assign it a color not
taken by one of the adjacent nodes

UC Santa Barbara

Coloring

b

ed

eax

ebx

color register

a

c
stack:

UC Santa Barbara

Coloring

b

ed

a

stack:

c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

a
e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:
b
a
e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:
d
b
a
e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

b
a
e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

a
e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

e
c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

c

c

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:
c

eax

ebx

color register

UC Santa Barbara

Failure

• If the graph cannot be colored, it will eventually be simplified to
graph in which every node has at least K neighbors

• Sometimes, the graph is still K-colorable!

• Finding a K-coloring in all situations is an NP-complete problem
– We will have to approximate to make register allocators fast enough

UC Santa Barbara

Coloring

b

ed

a

c
stack:

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

c
stack:

d

eax

ebx

color register All nodes have
(at least) 2 neighbors!

UC Santa Barbara

Coloring

b

ed

a

c
stack:

b
d

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

c
stack:
c
e
a
b
d

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

c
stack:

e
a
b
d

eax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

stack:

a
b
d

eax

ebx

color register

c

UC Santa Barbara

Coloring

b

ed

a

stack:

b
d

eax

ebx

color register

c

UC Santa Barbara

Coloring

b

ed

a

stack:

d

eax

ebx

color register

c

UC Santa Barbara

Coloring

b

ed

a

stack:

We got lucky!

eax

ebx

color register

c

UC Santa Barbara

Coloring

b

ed

a

c
stack:
c
b
e
a
d

Some graphs cannot be colored
in K colorseax

ebx

color register

UC Santa Barbara

Coloring

b

ed

a

c
stack:

b
e
a
d

eax

ebx

color register
Some graphs cannot be colored
in K colors

UC Santa Barbara

Coloring

b

ed

a

c
stack:

e
a
d

eax

ebx

color register
Some graphs cannot be colored
in K colors

UC Santa Barbara

Coloring

b

ed

a

c
stack:

e
a
d

No colors left for e!

eax

ebx

color register
Some graphs cannot be colored
in K colors

UC Santa Barbara

Spilling

• Step 3 (Spilling): Once all nodes have K or more neighbors, pick a
node for spilling
– Storage on the stack

• There are many heuristics that can be used to pick a node
– not in an inner loop

UC Santa Barbara

Spilling Code

• We need to generate extra instructions to load variables from stack
and store them

• These instructions use registers themselves. What to do?
– Naive approach: always keep extra registers handy for shuffling data in

and out: What a waste!
– Better approach: ?

UC Santa Barbara

Spilling Code

• We need to generate extra instructions to load variables from stack
and store them

• These instructions use registers themselves. What to do?
– Naive approach: always keep extra registers handy for shuffling data in

and out: what a waste!
– Better approach: rewrite code introducing a new temporary; rerun

liveness analysis and register allocation

UC Santa Barbara

Precolored Nodes

• Some variables are pre-assigned to registers
– Eg: mul on x86/pentium

• uses eax; defines eax, edx
– Eg: call on x86/pentium

• Defines (overwrites) caller-save registers eax, ecx, edx

• Treat these registers as special temporaries; before beginning, add
them to the graph with their colors

UC Santa Barbara

Precolored Nodes

• Cannot simplify a graph by removing a precolored node
• Precolored nodes are the starting point of the coloring process
• Once simplified down to colored nodes, start adding back the other

nodes as before

UC Santa Barbara

Summary

• Register allocation has three major parts
– Liveness analysis
– Graph coloring
– Program transformation (spilling and optimizations)

