UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel




UC Santa Barbara




UC Santa Barbara

« Main Idea: We want to replace temporary variables with some fixed
set of registers

* First: need to know which variables are live after each instruction

— Two simultaneously live variables cannot be allocated to the same
register




UC Santa Barbara

Live variable analysis (or simply liveness analysis) is a classic data-
flow analysis to calculate the variables that are live at each point in
the program.

A variable is live at some point if it holds a value that may be
needed in the future, or equivalently if its value may be read before
the next time the variable is written to.

Analysis is performed starting from the end of the function working
towards the beginning = backwards analysis

Compute def(inition) — use(age) regions: A variable is live between
its (most recent) definition and (last) use




Instructions Live vars
b=a+2
c=b*b
b=c+1

return b * a

UC Santa Barbara




Instructions Live vars
b=a+2
c=b*b
b=c+1
b,a

return b * a

UC Santa Barbara




Instructions Live vars
b=a-+2
c=b*b

a,c
b=c+1

b,a

return b * a

UC Santa Barbara




Instructions
b=a+2
c=b*b
b=c+1

return b * a

Live vars

b,a
a,c

b,a

UC Santa Barbara




Instructions
b=a+2
c=b*b
b=c+1

return b * a

Live vars
a

b,a
a,c

b,a

UC Santa Barbara




Instructions
b=a+2
c=b*b
b=c+1

return b * a

Live vars
a

UC Santa Barbara

b,a

a,c

b,a




UC Santa Barbara

Nodes of the graph = variables
Edges connect variables that interfere with one another

Nodes will be assigned a color corresponding to the register
assigned to the variable

Two colors cannot be next to one another in the graph




Instructions
b=a+2
c=b*b
b=c+1

return b * a

Live vars
a

a,b
a,c

a,b

UC Santa Barbara




Instructions

b=a+?2

c=b*b

b=c+1

return b * a

Live vars
a

a,b
a,c

a,b

UC Santa Barbara




Interference Graph

UC Santa Barbara

————————————————————————————————

. color register |

Instructions Live vars eax
a -
b=a+2 ebx i
c=b*Db
a,c
b=c+1
a,b

return b * a




UC Santa Barbara

Questions:

Can we efficiently find a coloring of the graph whenever possible?
Can we efficiently find the optimum coloring of the graph?
How do we choose registers to avoid move instructions?

What do we do when there aren’t enough colors (registers) to color the
graph?




UC Santa Barbara

« Kempe’s algorithm [1879] for finding a K-coloring of a graph

- Step 1 (Simplify): Find a node with at most K-1 edges and cut it out
of the graph. Remember this node on a stack for later stages




UC Santa Barbara

« Once a coloring is found for the simpler graph, we can always color
the node we saved on the stack

« Step 2 (Color): When the simplified subgraph has been colored,
add back the node on the top of the stack and assign it a color not
taken by one of the adjacent nodes




UC Santa Barbara

————————————————————————————————

. color register

cax

\ stack:




UC Santa Barbara

————————————————————————————————

. color register

cax

stack:




Coloring

UC Santa Barbara
. color register |
eax
stack:
c




Coloring

UC Santa Barbara
- color register
cax
ebx
stack:
d
C
C




Coloring

UC Santa Barbara
color register |
eax
ebx
StaCk:
b
C




Coloring

UC Santa Barbara
. color register |
eax
ebx
stack:

O o o




Coloring

UC Santa Barbara
. color register
eax
ebx
stack:

O o o




Coloring

UC Santa Barbara
- color register |
cax
ebx
stack:
d
C




Coloring

UC Santa Barbara
. color register
eax
ebx
stack:
c




Coloring

UC Santa Barbara
. color register
eax
ebx
stack:




Coloring

UC Santa Barbara

————————————————————————————————

. color register |

cax

stack:




UC Santa Barbara

If the graph cannot be colored, it will eventually be simplified to
graph in which every node has at least K neighbors

Sometimes, the graph is still K-colorable!

Finding a K-coloring in all situations is an NP-complete problem
— We will have to approximate to make register allocators fast enough




UC Santa Barbara

————————————————————————————————

. color register

cax

< AN - s
e




UC Santa Barbara

- color register
: & All nodes have

eax (at least) 2 neighbors!

stack:




Coloring

UC Santa Barbara
. color register |
eax
stack:

(@R




Coloring

————————————————————————————————

. color register |

cax

UC Santa Barbara

stack:

O oo o0




Coloring

UC Santa Barbara
. color register |
eax
ebx
stack:

oo o o




Coloring

UC Santa Barbara
- color register
cax
ebx
stack:
d
b

(@R




Coloring

UC Santa Barbara
. color register |
eax
ebx
stack:

(@R




Coloring

UC Santa Barbara
. color register |
eax
ebx
stack:




Coloring

UC Santa Barbara

————————————————————————————————

. color register |

cax

stack:

We got lucky!




Coloring

UC Santa Barbara

. color register
’ Some graphs cannot be colored
cax in K colors

stack:

o0 o0 o o




Coloring

UC Santa Barbara

————————————————————————————————

. color register
’ Some graphs cannot be colored

cax in K colors

stack:

oo o o




Coloring

UC Santa Barbara

————————————————————————————————

. color register
’ Some graphs cannot be colored

cax in K colors

stack:




Coloring

UC Santa Barbara

————————————————————————————————

. color register
’ Some graphs cannot be colored

cax in K colors

No colors left for e!

-

stack:




UC Santa Barbara

Step 3 (Spilling): Once all nodes have K or more neighbors, pick a
node for spilling

— Storage on the stack

There are many heuristics that can be used to pick a node
— not in an inner loop




UC Santa Barbara

« We need to generate extra instructions to load variables from stack
and store them

« These instructions use registers themselves. What to do?

— Naive approach: always keep extra registers handy for shuffling data in
and out: What a waste!

— Better approach: ?




UC Santa Barbara

 We need to generate extra instructions to load variables from stack
and store them

« These instructions use registers themselves. What to do?

— Naive approach: always keep extra registers handy for shuffling data in
and out: what a waste!

— Better approach: rewrite code introducing a new temporary; rerun
liveness analysis and register allocation




UC Santa Barbara

« Some variables are pre-assigned to registers
— Eg: mul on x86/pentium
« uses eax; defines eax, edx
— Eg: call on x86/pentium
« Defines (overwrites) caller-save registers eax, ecx, edx

« Treat these registers as special temporaries; before beginning, add
them to the graph with their colors




UC Santa Barbara

Cannot simplify a graph by removing a precolored node
Precolored nodes are the starting point of the coloring process

Once simplified down to colored nodes, start adding back the other
nodes as before




UC Santa Barbara

* Register allocation has three major parts
— Liveness analysis
— Graph coloring
— Program transformation (spilling and optimizations)




