UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

UC Santa Barbara

« What should we optimize?
— improve running time
— decrease space requirements
— decrease power consumption

* Why does optimization work??
— remove redundancies
— no need for full generality
» more specific instances of abstract constructs
— leverage knowledge of target machine
 pipelining, runtime of instructions, ...

UC Santa Barbara

« Scope of program analysis
— within a basic block (local)
— within a method (global or intra-procedural)
— across methods (whole-program or inter-procedural)

* Analysis
— control flow graph
* dominators, loops, etc.
— dataflow analysis
» flow of values
— static-single-assignment
» transform programs such that each variable has a unique definition
— alias analysis
* pointer memory usage

UC Santa Barbara

« Classes of optimizations
— machine independent or dependent

 Produce faster code

— eliminate redundant (or useless) computation

« common (sub)-expression elimination
» constant folding
» dead code elimination

— move code
* loop transformations

— specialize code
— instruction selection and scheduling
— register allocation

UC Santa Barbara

a « b + c a « b + c
b « a - d b« a - d
C « b + cC C « b + cC
d « a - d d « b

Original Block Rewritten Block

UC Santa Barbara

« Basic idea

— assigns a distinct number to each value that the block

computes

— choose the numbers so that two expressions, e and e2, have
the same value number if and only e7 and e2 have provably
equal values for all possible operands of the expressions

|

|

Is value “4” still in the hash table?
Yes, and it is associated with “b”
Thus, can replace last operation with
copy from “b”

Local Value Numbering

UC Santa Barbara

for i <~ 0 to n-1, where the block has n operations “T, < L; Op; R’

1. get the value numbers for L; and R;
2. construct a hash key from Op; and the value numbers for L; and R;

3. if the hash key is already present in the table then
replace operation i with a copy of the value into T; and
associate the value number with T;
else
insert a new value number into the table at the hash key location
record that new value number for T;

 Extended LVN algorithm
— add support for commutative operations
— add support for constant folding
— add support for algebraic identities

« Algebraic identities

multiply variable with O or 1

add or subtract O from a variable
xor variable with itself

more possibilities ...

UC Santa Barbara

UC Santa Barbara

« Simple example of global data flow analysis

— similar techniques used for other applications (e.g., finding
unused/dead code)

« Approach based on liveness analysis

— variable v is live at point p if and only if there exists a path in the CFG
from p to a use of v along which v is not redefined

* LiveOut(B)
— set that contains all the variables that are live on exit from block B

— Given a LiveOut set for the CFG entry node n,, each variable in
LiveOut(ny) has a potentially uninitialized use

UC Santa Barbara

Computing LiveOut set for block B
— use the LiveOut sets of B’s successors in the CFG

— use two sets UEVar(B) and VarKill(B) that encode facts how the code
in B manipulates variables

UEVar(B) - Upward Exposed Variable

— this set contains all the variables that are used in B (without being
defined before their uses)

VarKill(B)
— this set contains all the variables that are defined in B

Since LiveOut(B) depends on LiveOut of other blocks that it is
connected to, we can use an iterative fixed-point method

UC Santa Barbara

LiveOut(n) for a block n based on successor nodes m

LiveOuT(n) = U (UEVAR(m) U (LiveOuTt(m) N VARKILL(m)))

m € succ(n)

Variable v is live on entry to m under one of two conditions:
— it can be referenced in m before it is redefined in m

— it can be live on exit from m and pass unscathed through
m because m does not redefine it

UC Santa Barbara

First, compute UEVar and VarKill for each block

Second, apply iterative dataflow analysis

// assume CFG has N blocks
// numbered 0 to N-1

for 1 < 0 to N-1
LIVEOUT(1) <« @
changed <« true
while (changed)
changed <« false
for i < 0 to N-1
recompute LiveOurt(7))

if LiveOur (1) changed then
changed <« true

UC Santa Barbara

UEVAR VARKILL

0 {1}
{1} 0

0 {s}
{s,1} {s,1}
{s} 0

Iteration

Initial
1
2
3

Bo

?
{1}
{s,1}
{s,1}

LIVEOUT(n)
B, B>
0 0

{s,i} {s,i}
{s,1} {s,1}
{s,i} {s,i}

B3

0
{s,1}
{s,1}
{s,1}

B,

(SIS IR CS IR OS]

UC Santa Barbara

UC Santa Barbara

* Loop unrolling
— take the body of a loop and make N consecutive copies

— saves overhead of jumping back to loop head and evaluate
loop condition

— need to be careful to make sure that N copies of loop body
need to be executed

— short prologue loop that peels off enough iterations to ensure
that the unrolled loop processes an integral multiple of N
iterations

* Invariant code moving

— invariant computations do not change with each loop iteration

— compute value once outside of the loop, then use result inside
loop body

UC Santa Barbara

* Code placement
— change code layout to reduce number of jumps
— convert frequently-taken edges into fall through operations

|
While (cond) [< [Body

l While (cond) <
Body l

—> Exit Exit

UC Santa Barbara

* Function inlining
— procedure linkage creates overhead
— function body might be very small (e.g., string copy)
— copy function body into caller, save overhead

UC Santa Barbara

 Peephole optimization
— use a small sliding window over sequence of instructions

— replace individual instructions with faster alternatives
— replace common sequences with faster alternatives

 Individual instructions
— use shift instead of multiply (by power of 2)
— use address computation logic instead of arithmetic
lea (%rdi,%rdi), %eax
instead of
shl S$S0x1, %edi

mov %$edil, %eax

UC Santa Barbara

« Store followed by load

storeAl rj = Tlarp,8 = storeAl r; = rarp,8
loadAl rarp,8 = ris 721 Fi = ri5

* Double jump

jumpl — 170 — jumpl — 1711
T10: Jumpl — 171 T10: jumpl — 1711

 More complex algorithms possible, which work on AST
tree patters

UC Santa Barbara

« Exploit multiple functional units of CPU

— make sure that all units are busy at the same time
* integer and floating point units
* pipeline units

 Move independent instructions around

« Example
— load/store = 3 cycles, multiply = 2 cycles, rest = 1 cycle
a «— aX2XpXcXd

UC Santa Barbara

:.x‘cmtsm QU o S o

loadAl rarp,@a:

add r,rr =
l1oadAl Farp, @b =
mult re,ry =
loadAl rarp, @ =
mult re,ro =
l1oadAl rarp,@d =
mult re,rog =
storeAl rj =

(a) Example Code

a

|
NS
N/
N/
|

(b) Its Dependence Graph

UC Santa Barbara

Start

v b =

13
15
18
20

l1oadAl
add
loadAl
mult
l1oadAl
mult
l1oadAl
mult

storeAl

Operations

rarp, @a =
il =4
rarp, @ =
o =
rarp, @ =
Bii=rp =
rarp, @ =
G =
B =

Start

—

= O NOUL1T D WDN =

l1oadAl
l1oadAl
1oadAl
add
mult
l1oadAl
mult
mult

storeAl

Operations

rarp,@a
rarp,@b
rarp,@c
r1. 11
"1 2
rarp,@d
re,ra
r1, 12
1]

R R R R

(a) Original Code

(b) Scheduled Code

