
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Code Optimization

UC Santa Barbara

Code Optimization

• What should we optimize?
– improve running time
– decrease space requirements
– decrease power consumption

• Why does optimization work?
– remove redundancies
– no need for full generality

• more specific instances of abstract constructs
– leverage knowledge of target machine

• pipelining, runtime of instructions, …

UC Santa Barbara

Program Analysis

• Scope of program analysis
– within a basic block (local)
– within a method (global or intra-procedural)
– across methods (whole-program or inter-procedural)

• Analysis
– control flow graph

• dominators, loops, etc.
– dataflow analysis

• flow of values
– static-single-assignment

• transform programs such that each variable has a unique definition
– alias analysis

• pointer memory usage

UC Santa Barbara

Optimization Overview

• Classes of optimizations
– machine independent or dependent

• Produce faster code
– eliminate redundant (or useless) computation

• common (sub)-expression elimination
• constant folding
• dead code elimination

– move code
• loop transformations

– specialize code
– instruction selection and scheduling
– register allocation

UC Santa Barbara

Eliminate Redundant Computation

a ← b + c
b ← a - d
c ← b + c
d ← a – d

a ← b + c
b ← a - d
c ← b + c
d ← b

Original Block Rewritten Block

UC Santa Barbara

Local Value Numbering

• Basic idea
– assigns a distinct number to each value that the block

computes
– choose the numbers so that two expressions, e1 and e2, have

the same value number if and only e1 and e2 have provably
equal values for all possible operands of the expressions

a2 ← b0 + c1

b4 ← a2 - d3

c5 ← b4 + c1

d4 ← a2 - d3

• Is value “4” still in the hash table?
• Yes, and it is associated with “b”
• Thus, can replace last operation with

copy from “b”

UC Santa Barbara

Local Value Numbering

UC Santa Barbara

Local Value Numbering

• Extended LVN algorithm
– add support for commutative operations
– add support for constant folding
– add support for algebraic identities

• Algebraic identities
– multiply variable with 0 or 1
– add or subtract 0 from a variable
– xor variable with itself
– more possibilities …

UC Santa Barbara

Finding Uninitialized Variables

• Simple example of global data flow analysis
– similar techniques used for other applications (e.g., finding

unused/dead code)

• Approach based on liveness analysis
– variable v is live at point p if and only if there exists a path in the CFG

from p to a use of v along which v is not redefined

• LiveOut(B)
– set that contains all the variables that are live on exit from block B
– Given a LiveOut set for the CFG entry node n0, each variable in

LiveOut(n0) has a potentially uninitialized use

UC Santa Barbara

Finding Uninitialized Variables

• Computing LiveOut set for block B
– use the LiveOut sets of B’s successors in the CFG
– use two sets UEVar(B) and VarKill(B) that encode facts how the code

in B manipulates variables

• UEVar(B) - Upward Exposed Variable
– this set contains all the variables that are used in B (without being

defined before their uses)

• VarKill(B)
– this set contains all the variables that are defined in B

• Since LiveOut(B) depends on LiveOut of other blocks that it is
connected to, we can use an iterative fixed-point method

UC Santa Barbara

Finding Uninitialized Variables

LiveOut(n) for a block n based on successor nodes m

Variable v is live on entry to m under one of two conditions:
– it can be referenced in m before it is redefined in m
– it can be live on exit from m and pass unscathed through

m because m does not redefine it

UC Santa Barbara

Finding Uninitialized Variables

• First, compute UEVar and VarKill for each block

• Second, apply iterative dataflow analysis

UC Santa Barbara

Finding Uninitialized Variables

UC Santa Barbara

Finding Uninitialized Variables

UC Santa Barbara

Moving Code

• Loop unrolling
– take the body of a loop and make N consecutive copies
– saves overhead of jumping back to loop head and evaluate

loop condition
– need to be careful to make sure that N copies of loop body

need to be executed
– short prologue loop that peels off enough iterations to ensure

that the unrolled loop processes an integral multiple of N
iterations

• Invariant code moving
– invariant computations do not change with each loop iteration
– compute value once outside of the loop, then use result inside

loop body

UC Santa Barbara

Moving Code

• Code placement
– change code layout to reduce number of jumps
– convert frequently-taken edges into fall through operations

While (cond)

Body

Exit

Body

While (cond)

Exit

UC Santa Barbara

Moving Code

• Function inlining
– procedure linkage creates overhead
– function body might be very small (e.g., string copy)
– copy function body into caller, save overhead

UC Santa Barbara

Instruction Selection

• Peephole optimization
– use a small sliding window over sequence of instructions
– replace individual instructions with faster alternatives
– replace common sequences with faster alternatives

• Individual instructions
– use shift instead of multiply (by power of 2)
– use address computation logic instead of arithmetic

lea (%rdi,%rdi), %eax

instead of
shl $0x1, %edi

mov %edi, %eax

UC Santa Barbara

Instruction Selection

• Store followed by load

• Double jump

• More complex algorithms possible, which work on AST
tree patters

UC Santa Barbara

Instruction Scheduling

• Exploit multiple functional units of CPU
– make sure that all units are busy at the same time

• integer and floating point units
• pipeline units

• Move independent instructions around

• Example
– load/store = 3 cycles, multiply = 2 cycles, rest = 1 cycle
a ← a×2×b×c×d

UC Santa Barbara

Instruction Scheduling

UC Santa Barbara

Instruction Scheduling

