
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

72 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

A s compute power, disk storage, and high-
end network communication costs plum-
met, cloud computing has emerged to

provide intuitive, utility-style access to vast
pools of resources (compute, storage, network-
ing, and software services). Although such pro-
cessing power is cheap and readily available,
accessing it from cloud infrastructure providers
via infrastructure as a service (IaaS) currently
requires significant expertise, experience, and
time to customize, configure, deploy, and man-
age virtual machines (VMs).

Recent advances in platform-level cloud
computing (platform as a service, or PaaS) have
significantly simplified cloud use by giving
developers complete software/runtime stacks
(versus the self-service VMs of IaaS) on which to
execute their Web-accessible applications (apps)
and services. PaaS systems offer programmatic
access to scalable, distributed, and fault-tolerant
cloud services, which eliminates the need for
developers to write or deploy their own, and
lets them focus on innovation. Cloud platform
application services typically include key-value,
relational, object, or blob data storage, data cach-
ing, email and messaging, authentication, moni-
toring, resource/service acquisition, background
tasking, and data analytics technologies, among
others. Extant PaaS systems automatically fully
or partially configure, deploy, and scale the apps
and services they execute. Unfortunately, given
the current state of the art in PaaS systems, a

key barrier to their widespread use remains:
lock-in to a particular cloud system or app ser-
vice implementation. We can address this porta-
bility problem with a new cloud platform called
AppScale.

The Portability Problem
Publ ic PaaS systems such as Google App
Engine (GAE), Microsoft Azure, Amazon Elastic
Beanstalk, and VMWare CloudFoundry all offer
similar cloud service ecosystems for app use.
Unfortunately, they do so via different APIs and
language bindings, scale and service-level guar-
antees, performance levels, pricing models, and
standards, rules, and restrictions to which apps
must comply. The sheer multitude of offerings
and options makes it challenging for new and
expert software developers to determine which
set of services is best for their apps, for some
definition of “best” (price, performance, scale,
configurability, familiarity, ease of use, and so
on). Moreover, once users choose a platform,
code their app to its service interfaces, and con-
figure it for that system, they become locked in
to both the public cloud fabric and to the service
implementation the platform chooses to export.
This lock-in occurs because changing, even to a
similar service or platform from a different pro-
vider, requires the developer to exert significant
porting effort (that is, code changes in the app).

Surprisingly, this lack of portability across
popular app services also occurs even for open

The AppScale Cloud Platform
Enabling Portable, Scalable Web
Application Deployment
Chandra Krintz • University of California, Santa Barbara

AppScale is an open source distributed software system that implements a

cloud platform as a service (PaaS). AppScale makes cloud applications easy to

deploy and scale over disparate cloud fabrics, implementing a set of APIs and

architecture that also makes apps portable across the services they employ.

AppScale is API-compatible with Google App Engine (GAE) and thus executes

GAE applications on-premise or over other cloud infrastructures, without

modification.

IC-17-02-VftC.indd 72 3/5/13 12:08 PM

The AppScale Cloud Platform

MARCH/APRIL 2013 73

source technologies. With cloud ser-
vices’ popularity, a vast diversity of
open source alternatives have emerged
that implement service functionality.
For example, the immensely popular
key-value (informally dubbed NoSQL)
datastores, initially described and
used by Google and Amazon for their
internal “big data” concerns, are now
widely available as open source. Cur-
rently, more than 200 NoSQL options
offer a similar overall service for apps,
but they differ in one or more charac-
teristics, such as their programming
interfaces (APIs), query language and
query support, deployment topology
(master/slave versus peer-to-peer),
performance and scaling behavior,
data consistency policies, replication
policies, and programming language
bindings, among others. Moreover,
each service alternative has a unique
methodology for its configuration and
deployment in a distributed setting,
which imposes overheads and learn-
ing curves on developers and sys-
tem administrators because each is a
complex system, performance is sen-
sitive to configuration, and software
updates are frequent.

A similar diversity in offerings
is available for other app services,
including authent icat ion, Map-
Reduce data analytics, full text search,
multitasking and distributed coordi-
nation, caching, SQL databases, and
messaging. Although open source
app services offer developers more
implementation choices than public
cloud systems (which choose, limit,
or restrict implementations for scal-
ing and management purposes), the
choice of any single implementation
also leads to code lock-in. As for cloud
fabrics and proprietary systems, it’s
difficult to know in advance which
option is best for a particular app
or workload, and moving between
service implementations, even if the
app is designed to do so, consumes
time, lines of code, and programmer
focus that could instead be used for
the core innovation.

Our work at the University of
California, Santa Barbara, addresses
these portability limitations that
extant cloud systems and app ser-
vices impose with new research and
technology. In particular, we attempt
to reduce lock-in and encourage and
facilitate broader use (and thus inves-
tigation) of these systems for deploy-
ing current and future Web-based
and data-intensive apps. Toward this
end, we’ve designed, developed, and
released as open source the AppScale
cloud platform (http://appscale.cs
.ucsb.edu). AppScale is a software
infrastructure that implements a
PaaS cloud to exploit the benefits
that such systems offer (ease of use
through a simplif ied deployment
and execution model, and automatic

deployment, configuration, and elas-
tic scalability).

AppScale differs from other PaaS
offerings in three primary ways. First,
AppScale executes automatically over
multiple IaaS clouds (on-premise
and public), providing “write-once,
deploy-anywhere” functionality for
cloud applications that execute over
it. Second, AppScale implements the
programming model and APIs of the de
facto PaaS public cloud standard: GAE
(http://code.google.com/appengine/
docs/whatisgoogleappengine.html).
Applications that execute over App
Engine also execute over AppScale
without modification, extending app
portability to multiple IaaS and PaaS
cloud fabrics. Third, the AppScale
software architecture integrates (and
automatically configures, deploys,
and scales) multiple alternatives

for each service or API its apps use
within a given cloud instance.

Such choice precludes application/
code lock-in to any particular cloud
system (IaaS or Paas) or service
implementation (NoSQL, SQL, task-
ing, messaging, authentication, and
so on). Moreover, AppScale lets users
exper iment with these different
technologies with a low barrier to
entry, and gives cloud researchers a
platform that facilitates the investi-
gation of cloud technologies using a
diversity of real apps and integrated
technologies.

AppScale
Figure 1 depicts the design of the
AppSca le system. Our AppSca le
approach is unique in that we fully

emulate GAE by implementing the
App Engine programming model and
APIs both to bring successful pub-
lic cloud technologies on-premise
and under developer control, and
to export these APIs via a plug-in
software architecture that decouples
the app from its service implemen-
tation so that its implementation
(and underlying cloud fabric) can
be swapped out without changing
the app.

GAE is a public cloud platform
(distributed Web service stack) that
hosts more than 1 million active apps
today within Google’s data centers
(http://googleappengine.blogspot
.com/2011/05/year-ahead-for-google-
app-engine.html). This widespread
use and uptake has resulted from
the programming model that App
Engine implements, which reflects a

Although open source app services offer
developers more implementation choices than
public cloud systems, the choice of any single
implementation also leads to code lock-in.

IC-17-02-VftC.indd 73 3/5/13 12:08 PM

View from the Cloud

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

set of best practices for intuitive and
expedited Web service development,
as observed by Google engineers.
The programming model extracts
and provides “as-a-service” appli-
cation support technologies that
are common across a wide range of
Web applications. Developers incor-
porate the services (data storage, com-
munications, authentication, tasking,
and so on) into their apps using a sim-
ple and intuitive API for each. This
model lets developers focus on app
innovation rather than on the ancil-
lary support on which their apps
rely. GAE automatically instanti-
ates, scales, and manages faults for
the app as well as its service ecosys-
tem and isolates apps using sandbox
support via high-level languages
(Java, Python, and Go) and their
runtimes.

Programming Model and APIs
AppSca le implement s t he App
Engine programming model for
Web-based application develop-
ment by implementing each API
that GAE defines and supporting all
the GAE programming languages.

That is, AppScale is API-compatible
and emulates GAE’s fully distrib-
uted behav ior — on-premise or
over an IaaS cloud instead of on
Google’s resources — so that any
app that executes over GAE also
executes over AppScale, without code
modification.

API-compatibility with GAE lets
us engender a large and growing
user community, provide develop-
ers with access to extant applica-
tions, and investigate the potential
implementations of, and extensions
to, public cloud systems using open
source technologies. Developers code
their applications to this set of APIs
to access each of the ancillary ser-
vices the app requires. AppScale,
like App Engine, implements each
of these APIs and then automati-
cally deploys, manages, and scales
the apps along with their service
ecosystems.

To implement the services the
GAE APIs export, AppScale provides
a software framework into which we
plug multiple, competitive implemen-
tations of each service (open source
or proprietary). Each AppScale cloud

instance plugs in a single service for
each API, but users can choose from
multiple alternatives upon deploy-
ment. This support lets users eas-
ily compare and contrast different
service alternatives with their apps
and work loads. For example, for
the Datastore API, AppScale inte-
grates more than a dozen different
plug-in alternatives, including those
for Cassandra, HBase, Hypertable,
Redis , MySQL Cluster (which we
employ as a key-value store), and
SimpleDB (an Amazon public cloud
datastore service). Apps that use
the Datastore API can use any one
of these plug-ins simply by execut-
ing over a different AppScale cloud
instance (AppScale supports moving
data if needed). As part of this plug-
in support, the AppScale platform
automatically configures, deploys,
scales, and manages any faults of
the service plug-ins to relieve both
developers and cloud administrators
of this significant burden.

Additional Features
The AppScale plug-in architecture
also lets us export many other fea-
tures and cloud technologies to app
developers. In particular, AppScale
efficiently profiles and extends its
integrated services in a technology-
independent way. For example, we
prov ide a l imited form of ACID
transaction semantics across Data-
store API plug-ins. We also integrate
and export public cloud services as
API plug-ins from popular cloud fab-
rics including Amazon Web Services
(AWS), Google cloud technologies,
and Microsoft Azure. We currently
integrate these technologies v ia
plug-in implementations for NoSQL,
SQL, and unstructured storage. We
also go beyond the GAE APIs and
leverage the AppScale architecture’s
extensibility to provide access to VM
control (start, stop, and monitoring),
background tasking of arbitrary
programs or scripts, and support for
other services that are increasingly

Figure 1. Design of the AppScale cloud platform. AppScale implements a
multitier distributed Web service stack with automatic deployment, load
balancing, and scaling, along with API adaptors for alternatives for each service
API. Developers or systems operators deploy AppScale over virtualized cluster
resources or cloud infrastructures and then upload their apps to the platform,
using an AppScale Web service or command line toolset.

Load balancing

Fault tolerance and elastic scaling

Conguration and deployment

API implementation/cloud and service integration

AppScale platform APIs (GAE++)

LuceneSolr Cloudera Google

The AppScale
distributed
cloud platform

Plug-in
adaptors

AppScale
plug-ins

On-premise AWS GAE Azure

HBaseCassandra MySQL S3

• Clouds

• Data management
NoSQL, SQL, objects

• Analytics
search, MapReduce

IC-17-02-VftC.indd 74 3/5/13 12:08 PM

The AppScale Cloud Platform

MARCH/APRIL 2013 75

important for data-intensive apps,
such as MapReduce (via Hadoop) and
statistical analytics.

The AppScale platform also pro-
vides the scalability, ease of use, and
high availability that users have
come to expect from public cloud
platforms and infrastructures. This
includes elasticity and fault detection/
recovery,1 authentication and user
control, monitor ing and logging,
cross-cloud data and application
migration,2 hybr id cloud multi-
tasking,3 and offline analytics and
disaster recovery.2,4 In particular, we
couple elasticity and fault tolerance
to start/stop platform components
within and across VMs, and we ulti-
mately rely on Apache Zookeeper —
which we employ for distr ibuted
coordination and state management —
for system survivability.

AppScale Deployment
and Use
We release AppScale as a single VM
and easy-to-use Web-based tool-
kit, which automatically deploys an
AppScale cloud using one or more
VM instances. Each instance imple-
ments one or more AppScale com-
ponents and services. An AppScale
cloud integrates and automatically
deploys various open source technol-
ogies that facilitate its functionality,
including Apache Zookeeper (for
fault-tolerant distributed coordina-
tion), RabbitMQ (for distributed multi-
tasking), ejabberd/Strophe.js (for
messaging and channel communica-
tion), Lucene (for full text search),
sendmail, memcached (for distrib-
uted caching), Hadoop MapReduce,
R analytics, the network file system,
and the Hadoop distributed file sys-
tem, among others.

Cloud configuration and elastic-
ity is automatic but can be informed
by user preferences if desired. As
mentioned previously, our tools
deploy AppScale over extant IaaS
fabrics; we currently support on-
premise deployments over Eucalyptus5

and public cloud deployments over
Amazon Elast ic Compute C loud
(EC2). Cloud administrators supply
their credentials to the AppScale
tools to initiate automatic deployment
and then manage developers’ cloud
use. Developers log into an AppScale
cloud to upload their apps. The
AppScale cloud then executes and
automatically scales the apps on
the developers’ beha lf. Because
AppScale can also run as a single
VM instance, developers can run
AppScale locally over virtualization
to test and debug their applications
prior to cloud deployment (AppScale
or App Engine).

I n summary, AppScale is an exten-
sible and freely available distrib-

uted cloud platform that facilitates
simplified development, automated
deployment, and empirical investi-
gation of cloud apps and their ser-
vice ecosystems. AppScale enables
applications written in high-level
languages to execute via AppScale
over different cloud fabrics and to
employ a vast diversity of applica-
tion service implementations with-
out modification. Such portability
enables novice and expert devel-
opers alike to quickly and easily
develop GAE apps that implement
interesting Web service and data
analytic applications and use extant
and emerging cloud systems without
requiring them to become experts
at the underlying technologies or
locked in to any particular cloud
or ser v ice implementat ion thei r
apps use. Additional information on
AppScale and directions for down-
load and use are available at http://
appscale.cs.ucsb.edu.

Acknowledgments
This work wouldn’t be possible without an

incredible group of students, led by Chris

Bunch and Navraj Chohan, with whom I

have had the privilege to work on this proj-

ect over the past three years. This work

was funded in part by Google, IBM, US

National Science Foundation grants CNS-

0546737, CNS-0905237, CNS-1218808, and

the US National Institutes of Health grant

1R01EB014877-01.

References
1. C. Bunch et al., “A Pluggable Autoscaling

Service for Open Cloud PaaS Systems,”

Proc. IEEE/ACM Int’l Conf. Utility and

Cloud Computing, 2012.

2. N. Chohan et al., “North by Northwest:

Inf rast ructure Agnost ic and Data-

store Agnostic Live Migration of Pri-

vate Cloud Platforms,” Proc. 4th Usenix

Workshop Hot Topics in Cloud Comput-

ing (HotCloud 12), Usenix Assoc., 2012;

w w w.c s .uc sb .edu/~ck r i nt z/pape r s/

hotcloud12.pdf.

3. C. Bunch et al., “Language and Runtime

Support for Automatic Configuration and

Deployment of Scientific Computing Soft-

ware over Cloud Fabrics,” J. Grid Comput-

ing, vol. 10, no. 1, 2012, pp. 23–46.

4. N. Chohan et al., “Hybrid Cloud Sup-

port for Large-Scale Analytics and Web

Processing,” Proc. 3rd Usenix Conf. Web

Application Development (WebApps 12),

Usenix Assoc., June 2012.

5. D. Nurmi et al., “The Eucalyptus Open-

Source Cloud-Computing System,” Proc.

IEEE Int’l Symp. Cluster Computing and

the Grid , 2009; http://open.eucalyptus

.com/documents/ccgrid2009.pdf.

Chandra Krintz is a professor of computer

science at the University of California,

Santa Barbara, and is CTO and cofounder

of AppScale Systems. Her research inter-

ests include cloud computing, compil-

ers and runtime systems, dynamic and

adaptive optimization, high-performance

computing, resource-aware Internet and

embedded systems, and broadening par-

ticipation in computing. Krintz has a PhD

in computer science from the University

of California, San Diego. Contact her at

ckrintz@cs.ucsb.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-17-02-VftC.indd 75 3/5/13 12:08 PM

