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Chapter 1

Introduction

Cloud computing is a service oriented approach to distributed computing wherein

vendors lease resources to users on a metered, pay-per-use basis. This enables com-

panies to quickly acquire resources (e.g., virtual machines, storage) and release them

when they are no longer needed. To date, cloud computing has mostly been seen in use

by web service companies, who can use this elasticity to acquire machines in response

to increased web traffic, without having to pay the full cost for those machines.

In response to the increasing number and low cost of cloud service offerings, other

communities are investigating the feasibility of cloud services within their domains.

One such community are computational scientists, who utilize computational resources

to simulate, investigate, and experiment with scientific processes. These processes may

rely on data collected with “traditional” scientific devices (e.g., microscopes, chemical

interactions), but may be modelled via computer to better understand the underlying

phenomena involved.

1



Chapter 1. Introduction

Yet using cloud services for scientific computing is a far from trivial undertaking.

Scientists may not have the same levels of experience with configuring, debugging,

installing, and maintaining complex programs as a full-time system administrator, and

the time it would take to acquire this experience is time thatcould otherwise be spent

furthering their own scientific research. Furthermore, in the case of student scientists,

these workers are transient in nature, and the focus that they put into their research

tends to come at the expense of a proper knowledge transfer process. This results in a

longer learning curve for new students, and makes it more difficult to properly evaluate

new cloud technologies. The primary quantities that must beconsidered to make this

evaluation are:

• The capabilities of the service to use.Not all services are identical offerings,

and can operate at varying layers of abstraction and requirediffering amounts

of maintainence. Infrastructure-as-a-Service (IaaS) offerings, such as Amazon

EC2 [2] and Google Compute Engine [47], provide access to virtual machines,

metered on a per-hour basis. At a higher level of abstractionexists Platform-as-a-

Service (PaaS), which provides access to full runtime stacks. These stacks can of-

fer the traditional three tier-web deployment strategy, inwhich users can present

web pages to users from one or more application servers, store and retrieve data

via a persistent database, and cache frequently accessed data. Providers, such

as Google App Engine [44], deny users access to individual machines, but in-
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stead enable users to focus only on their applications, which the provider then

can scale on the user’s behalf. Finally, Software-as-a-Service (SaaS) providers

offer end-users a single application that they can configurefor their needs.

• The cost model of the service to use.As a motivating example, consider virtual

machine (IaaS-level) services. Amazon EC2 and Google ComputeEngine meter

on a per-hour basis, while Microsoft Azure [70] meters on a per-wall-clock-hour

basis. Alternatively, Google App Engine meters on a per-minute basis. These

varying cost models must be taken into consideration to minimize the cost in-

curred to use cloud resources. Resources that are metered on afiner granularity

(shorter amounts of time) encourage users to acquire more resources, use them

immediately, and release them, while resources metered on courser granularities

(longer amounts of time) encourage users to acquire less resources and spread

out resource usage over that quantum.

• The application programming interfaces (API) that exist to connect the user’s

application to the cloud service.Cloud vendors provide first-party library sup-

port to access their services for users of certain, but not all, programming lan-

guages. Third-party support exists for a wider array of programming languages,

but often lags behind first-party support in terms of featuresets and overall qual-

ity. This means that the program the scientist is developingis not guaranteed to
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be compatible with all cloud services, and that an investigation must be launched

to determine which services (and which APIs within each service) can be utilized

within the language that the scientist’s application is written in.

Once the scientist decides which of these services they wantto utilize, they must

then implement and maintain their system utilizing each of the chosen technologies.

If transitioning off of an existing system, then the scientist must port their system to

the new technology. The time and engineering costs that havebeen invested in learn-

ing each of these technologies is not directly transferrable to other technologies: while

other competitors may be abstractly similar (i.e., Amazon EC2 and Google Compute

Engine both offer virtual machines), in practice their APIsare incompatible, requiring

an expert to refactor the code base when porting to other services. Finally, the sci-

entist must spend additional time to transfer the knowledgeof how to maintain their

application (which now utilizes a new set of services) with others.

The above process results in the creation of a system that is optimized for, and thus

only supports, a single scientific application. This systemrequires a system adminis-

trator to maintain, and is not reusable for other applications. In practice, this is because

systems are not typically designed to be automatically configured and deployed. This

would require the system to be made general-purpose, to enable arbitrary programs to

be deployed, and may do so at the cost of the performance of hosted applications (as

application-specific information may be lost in the generalization process).
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As a result of trends between cloud service offerings, it is increasingly common for

scientists to leverage several cloud products to solve a single problem, and to not gen-

eralize their application to service other, possibly related, problems. Therefore, these

solutions tend to lackautomationwith respect to bothconfigurationanddeployment,

and are dependent (or “locked-in”, in the cloud vernacular)upon certain vendor’s of-

ferings. These offerings are heterogeneous in terms of theservices offered(e.g., virtual

machines at the IaaS layer, runtime stacks at the PaaS layer,and applications at the

SaaS layer), theircost models(e.g., per-minute metering, per-hour pricing, or per-API-

request pricing), and theinterfaces(tied to one or more programming languages) that

can be utilized to access them.

1.1 Thesis Question

The primary research question that we explore in this dissertation can be stated as

follows:

How can we enable scientific applications to be executed on cloud systems,
by automatically configuring and deploying applications across cloud of-
ferings that vary based on the type of service offered, cost model employed,
and APIs via which services are exposed?

To answer this question, we design, implement, and evaluateopen source Platform-

as-a-Servicesolutions that automatically configure and deploy applications from vari-

ous application domains. Our goal is to execute applications intelligently, considering
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Domain Language / Platform Support
Web Services AppScale (3)

High Performance Computing Neptune (4)
Arbitrary Applications MEDEA (5), Exodus (6)

Table 1.1: Design space in automated application executionthat we investigate. Each
row lists the domain that this work addresses as well as the solution that we design,
implement, and evaluate our support for. In parentheses, weshow the chapter number
that describe the corresponding systems that we contribute.

both how to execute applications as well as how to optimally do so with respect to

performance, cost, or user-defined metrics. We leverage programming language sup-

port to simplify how users specify that programs should be run via cloud services, and

investigate PaaS support forweb service applications, high performance computing

applications, and general purpose applications.

Table 1.1 summarizes thedesign spacethat we cover with this dissertation. A

primary goal of this work is to providepluggablesystems that expert users can impart

information into, that can then be automatically leveragedfor non-expert users and

the community at large. The aim is to provide a research tool that can be used to

evaluate cloud service offerings for applications whose underlying usage patterns may

vary greatly between one another.

Another key goal of our research is to provideprogramming language supportto

enable Turing-complete specifications of scientific workflows. This enables scientists

to dynamically indicate when their computations have finished, to consult expert users

via e-mail or other existing infrastructures (as data sets may be too complex to analyze
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in a purely programmatic fashion), or to run certain computations only as long as they

can be done quickly or inexpensively.

This work aims to target a diverse array of application domains, to maximize the

impact of the systems contributed here. We design and implement AppScale (Chap-

ter 3) to aim at targetting web service applications to improve the Quality-of-Service

that they provide to users while minimizing the cost incurred to do so. We direct our

focus to high performance computing applications, which form a crucial core of sci-

entific applications and have, to-date, been primarily discussed outside of the context

of cloud systems. We intend to simplify their often complex deployment via expres-

sive programming language support, and do so without sacrificing performance, via the

Neptune domain specific language (Chapter4). This enables users to write programs

that interactively investigate the results of their experiments, and launch new experi-

ments in response to these results. Finally, MEDEA and Exodus (Chapters5 and6,

respectively) are our efforts to target general-purpose applications, widening the reach

of our contributions and maximizing the types of scientific research that can be per-

formed. We intend to do so while preserving the ease of use that scientists (and users

at large) have come to expect from their systems, and while preserving the research

contributions of our systems that serve web service and highperformance computing

applications.
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1.2 Dissertation Organization

We organize the remainder of this dissertation as follows. We begin by providing

background information, discussing terminology, state-of-the-art systems, open prob-

lems, and limitations in automatically configuring and deploying applications across

cloud systems in Chapter2. Chapters3–6 describe the four systems that we contribute

to address our thesis question and that represent separate points in the design space

shown in Table1.1. In this table, the parenthesized values correspond to the chapter

numbers that detail solutions for the domain in question. Each of these four chap-

ters motivate the particular problems they aim to solve, discuss how they are designed

and implemented to solve these forward new types of science to be performed, eval-

uate applications that their systems support, discuss related work, and conclusions.

Chapter3 focuses on web service applications, while Chapter4 focuses on high perfor-

mance computing applications. Arbitrary applications arediscussed in Chapters5 and

6. Chapter7 summarizes our contributions and discusses future research directions.
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Chapter 2

Background

In this chapter, we provide background on, and survey the state-of-the-art in, mid-

dleware systems that are used to automatically configure anddeploy applications in the

web services and scientific computing domains. Of particular interest to us are systems

deployed on statically allocated resources (e.g., grids, clusters) as well as on dynam-

ically allocated resources (e.g., clouds). We overview recent advances in automatic

program execution and deployment as well as the limitationsfound in each of these

systems.

2.1 Application Execution via Static Resources

In this section, we overview systems that allow for the automated configuration and

deployment of programs in the context of statically acquired resources. These resources

may be classified as grids or clusters, but fundamentally arestatic in size: users access
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a fixed number of machines, which can only change due to the influence of a system

administrator (occurring infrequently). We provide background on systems harnessing

these resources, in the context of web services and scientific computing, and discuss

their limitations.

2.1.1 Web Services

Web services are offered by organizations to both internal and external-facing users,

with resources typically hosted on-premise or in an organization-owned datacenter.

Users tend to be served web traffic via the standard, three-tier deployment strategy,

in which users access a load balancer (first tier), which routes them to one or more

application servers (second tier), which store/retrieve data via one or more database

servers (third tier). Each of these three tiers has performance characteristics (with re-

spect to CPU, memory, and I/O usage) and usage patterns that depend the behavior of

its accessing tier.

The widespread usage of web services has led to a number of software stacks emerg-

ing solely to support it. The perhaps most well-known is the Linux-Apache-MySQL-

PHP (LAMP) stack, which provides users with a fully open source stack that is there-

fore free to use. Best practices and additional software packages have since emerged

that try to simplify the configuration and deployment process for LAMP-stack applica-

tions, and to try to extend the range of programs supported inthe stack.
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Chef [26] and Puppet [76] are two efforts that aim to simplify application configura-

tion and deployment through the use of domain specific languages. Users write scripts

(“recipes” in Chef and Puppet’s nomenclature) that describewhich software should

be installed, how to install it, and how to deploy it. These systems work on a single

machine as well as in distributed environments. Although simplifying the deployment

process, these systems still require the presence of an expert user, who must optimally

place and configure their components as well as maintain Chef or Puppet themselves in

a distributed environment.

Research efforts have taken a largely orthogonal approach tothese domain spe-

cific languages, and have instead aimed to improve resource usage within each tier

and across tiers. [92] utilizes results from queueing theory to model the three-tier web

deployment strategy as three queueing systems, each with their own production and

consumption rates. Their system does not support the LAMP stack, but supports a sim-

ilar stack through the use of Apache as the load balancer, Tomcat as the application

server (hosting applications written in the Java programming language), and MySQL

as the database server. They contribute scaling algorithmsfor scenarios when each tier

can and cannot benefit from the use of hot spares to elastically scale up and down,

as long as the applications supported have been “well-profiled” and generate accurate

heuristics for their algorithms.
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In practice, profiling these applications to acquire these heuristics is a non-trivial

task. One effort that addresses this problem is [12]. This work argues that the only

way to properly profile an application is to instrument its production environment, and

use that data to determine when to scale resources up and down. In lieu of the scalers

proposed by [92], [12] uses hot spares as a safeguard if their autoscaler consumestoo

many resources for profiling purposes (which would otherwise leave too few resources

available to users).

2.1.2 Scientific Computing

Grid computing services are offered by organizations to their internal users with

resources typically hosted on-premise or in an organization-owned datacenter. System

administrators determine which software packages are installed and supported on these

machines, which can be programmatically acquired and released by users. These sys-

tems have largely been utilized for scientific computing applications, with a specific

emphasis on the field of high-performance computing (HPC).

The most well-known interface to machines hosted in a grid isthe Portable Batch

System (PBS) [75]. PBS enables users to acquire machines hosted within a grid,ex-

ecute one or more programs on them, and release those machines. The Simple API

for Grid Applications (SAGA) [60] project aims to fulfill a similar goal, but instead of
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requiring users to learn a new job description language, provides APIs within the Java,

C, and Python programming languages to facilitate greater ease-of-use.

Extensions in this space have been largely concerned with expanding the types of

programs that can be run and with improving resource utilization when a large number

of programs are run. BatchPipes and Swift [35] provide users with the ability to “chain”

the execution of many programs together and specify interdependencies amongst pro-

grams via XML, while systems like Pegasus [34] can consume these workflow descrip-

tions and attempt to optimize their execution for some set ofmetrics (e.g., end-to-end

execution time, grid resource usage). Both of these systems can utilize “community

grid” systems like Condor [90], wherein idle resources (e.g., terminals in a university

that are not in use by students) are employed by the grid for execution of submitted

jobs, until a user resumes use of their terminal (at which point the job is checkpointed

and aborted).

Other efforts have focused on restricting the runtime stackto optimize shared clus-

ter usage, or altering the runtime stack to focus on non-traditional hardware profiles. In

the former category are projects like Mesos [56], which limits the runtime stack to MPI

and Hadoop MapReduce programs, to attempt to improve CPU utilization on company-

owned clusters. In the latter category are the Anyscale Many-Task Computing En-

gine (AME) [99] and StratUm [73]. AME seeks to resolve engineering difficulties that

have arisen from deploying grid software onto supercomputers by taking into account
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supercomputer-specific information, while StratUm implements a meta-scheduler to

dispatch biochemical computing applications across one ormore community grids.

2.1.3 Limitations

Mainstream cluster and grid offerings to date offer mature software solutions, pro-

viding stable access to on-premise hardware. In the contextof providing automated

application deployment, these systems possess the following key limitations:

• Resources are statically utilized within grid and cluster systems. System admin-

istrators may add and remove resources, but this is a relatively rare event, and

more relevantly, resources can not be added or removed programmatically. In the

context of web applications, this means that users try to avoid downtime by pro-

visioning for the maximum amount of traffic they could face (as opposed to the

current amount of traffic they face). This causes resources to be wasted during

non-peak hours.

• Software stacks must be maintained by system administrators on-premise. In

the context of HPC applications, this means that users can only deploy applica-

tions written in supported frameworks (and only certain versions of those frame-

works), even if other frameworks offer better performance or if newer versions

of supported frameworks are available. Furthermore, system administrators are
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responsible for maintaining the health and availability ofthe cluster or grid it-

self. End-users with sufficient technical knowledge or system expertise have no

mechanisms to alleviate this, even at smaller scales.

Extant systems have begun to address these limitations by utilizing virtualization.

This technology enables machines to be emulated as programs, known as virtual ma-

chines, and when architecture support for virtualization is enabled, virtual machines

suffer little performance degradation compared to their non-virtualized counterparts.

The following section details how the grid and cluster computing fields have evolved

by utilizing virtualization to create a new field of study, known as cloud computing.

This field is still in its infancy, but many of the software offerings detailed here (e.g.,

SAGA, Swift) have already begun to support cloud services toenable programs to be

configured and deployed automatically.

2.2 Application Execution via Dynamic Resources

In this section, we overview systems that allow for programmatic interaction and

deployment of programs in the context of dynamically acquired resources. These re-

sources may be classified as Infrastructure-as-a-Service clouds or Platform-as-a-Service

clouds, which provide scalable access to virtual machines or full software stacks, re-
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spectively. We provide background on systems harnessing these resources, detail what

application domains they serve, and enumerate their limtations.

2.2.1 Programmatic Cloud Interaction

Cloud computing services are offered by vendors to the publicon a pay-per-use ba-

sis or within private institutions, often hosted on-premise. These services are typically

classified at two tiers: Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service

(PaaS). At the IaaS layer, virtual machines are offered to users. Users receive root-

level access to these machines, and have both the freedom andthe responsibility to

utilize them correctly for their needs. Public offerings can typically scale to as many

machines as the end user can afford, while private offeringsscale as far as the total size

of the on-premise deployment.

The Amazon Elastic Compute Cloud [2], often abbreviated to simply Amazon EC2,

is the oldest and most well-known IaaS offering. Machines with different hardware

profiles (“instance types” within the EC2 nomenclature) are offered to users and are

metered on a per-hour basis. For example, a user who uses a single machine for an

hour and a half would be charged for two full hours of use. Amazon EC2 offers virtual

machines in an on-demand fashion as well as in an auction-style offering, known as

Spot Instances [3]. In contrast to the on-demand instance offering, the pricethat a user

pays for a Spot Instance is not constant, but instead is set byAmazon in an opaque
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fashion, based on excess machine capacity. Users place bidsfor these instances, and as

long as the user’s bid exceeds the price set by Amazon, they are granted access to the

machines in question. Spot Instances tend to cost less than On-Demand instances, but

can be reclaimed by Amazon at any time, limiting the types of applications that can use

them effectively.

A number of software packages provide interfaces to Amazon EC2 for users of

different programming languages.boto[13] provides this functionality for users of

the Python programming language, while the RightScale Gems [79] fulfil this role for

the Ruby programming language. Furthermore, while the SAGA [60] project originally

targetted grid interaction, it has been repurposed since the introduction of Amazon EC2

to also interact with it.

2.2.2 Automated Service Deployment

While IaaS offerings provide low-level access to virtual machines in an on-demand

fashion, Platform-as-a-Service (PaaS) offerings providescalable access to a fully cus-

tomized software stack. PaaS offerings vary in the types of autoscaling mechanisms

that are exposed to end users, in a manner proportional to thecustomizability of hosted

programs.

For example, Google App Engine [44] provides a PaaS offering that originally only

hosted applications written in Python 2.5. Furthermore, only web applications could be
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hosted on Google App Engine, and only API calls on Google’s whitelist could be used.

In practice, this disallows file system access, socket creation, or the persistence of data

in any fashion other than a Google-hosted database or a transient caching layer. Web

responses were also initially limited to 30 seconds in length. This restricted runtime

environment forces the web server to be stateless and its performance to be predictable,

allowing Google App Engine to easily scale any hosted application, regardless of its

actual content. Furthermore, this scaling can be performedtransparently, without the

need for the user to indicate scaling rules (which they may beunfamiliar with or be un-

qualified to instruct Google’s closed source platform on). Since its initial introduction,

Google App Engine has expanded to also support applicationswritten in the Java and

Go programming languages, with similar runtime restrictions.

Alternatively, Microsoft Azure [70] provides a PaaS offering that allows users to

host applications of any programming language, without restrictions. For automated

scaling to occur, a rule language is exposed to users, who must then dictate a series

of rules that indicate to the platform when resources shouldbe scaled up or scaled

down. As the platform can be running code in any language, thescaling rules cannot

be tied to user-specific code, and must rely on conditions involving the state of Azure-

hosted services. In practice, this means that applicationscan scale up or down based on

CPU and memory usage of hosted VMs, or the state of the queue andstorage services

provided by Microsoft Azure (e.g., scale up if the storage service has been accessed
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more than X times in the last Y minutes). This increases the amount of complexity

that the end user has to deal with to properly host applications on this platform, but

correspondingly increases the variety in the types of applications that can be hosted.

The Nimbus project [61] provides two offerings that are aimed at bringing the types

of automated service deployment offered by a PaaS to IaaS systems. The first offering,

cloudinit.d, provides an API that can be utilized to launch and configure services

in a cloud IaaS. Users write scripts that utilizecloudinit.d to acquire virtual ma-

chines and use them in their applications. In contrast, the second offering, the Nimbus

Context Broker, shifts the complexity of writing scripts to utilize virtual machines onto

the cloud IaaS itself. The user can then simply ask for a “pre-configured”, specialized

virtual machine, and the Context Broker will acquire a “vanilla”, base virtual machine

and customize it accordingly. Both offerings do not provide autoscaling, and thus may

not be true PaaS offerings, but attempt to bridge the gap between IaaS and PaaS.

Conversely, Elastisizer [53] does offer a PaaS-like system that attempts to automat-

ically deploy Hadoop MapReduce programs [49] to Amazon EC2, in a manner similar

to Amazon Elastic MapReduce [4]. Both systems provide automated configuration and

deployment for Hadoop MapReduce, but Elastisizer adds capabilities to intelligently

place Map and Reduce tasks on virtual machines based on CPU, memory, or I/O load.

Another offering that allows for automated program execution within a cloud PaaS

is the Google App Engine Pipeline API [46]. Users write Python or Java code (as is re-
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quired by Google App Engine) and indicate which functions are to be chained together,

in a manner similar to that of the workflow systems detailed previously. The core differ-

ence comes in that users write code in a Turing-complete language, allowing dynamic

workflows that can consult humans (e.g., via e-mail or instant messaging services) if

the data to analyze is too complex for a program to analyze alone.

In a similar manner to the workflow systems utilized for statically acquired sets of

resources (e.g., grids and clusters), Amazon also providesa workflow service that har-

nesses EC2 to run computations. This service, known as AmazonSimple Workflow

Service (SWF) [7], enables users to statically define workflows, which are then exe-

cuted on machines hosted within Amazon or on-premise (whichmust be administered

manually).

2.2.3 Limitations

Mainstream cloud offerings to date offer a valuable first step in offering unprece-

dented amounts of raw compute capacity to the community at large (e.g., scientists,

system administrators, end-users). However, these offerings as a whole tend to fall into

one of the two following ideologies:

• Generalize, at the cost of specialization.Cloud Infrastructure-as-a-Service of-

ferings tend to fall into this category, in which users are offered root-level virtual

machine access and have the ability to do anything, but consequently are required
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to do everything to produce a scalable solution. This requires users to become

system administrators (an often difficult and costly endeavor) and produce solu-

tions that are not extensible to inclusion or use by other software artifacts.

• Specialize, at the cost of generalization.Cloud Platform-as-a-Service offerings

tend to fall into this category, in which users are offered a specific software stack

and cannot modify it in any way. This alleviates users of the burden of becoming

system administrators, but now requires users to (1) evaluate if their application

can run within the allowed software stack, and (2) rewrite their application to run

effectively on the cloud platform.

Some work has been done by others [29] to provide a “middle-ground” between

these offerings, wherein the platform is customizable and yet system administration is

not the user’s responsibility. Yet the ability to customizethe software stack in these

offerings comes at the cost of auto-scaling, and require extant, non-free solutions to

partially mitigate this issue. The requirements for a state-of-the-art research cloud plat-

form should therefore incorporate at least some of the following goals and features:

• Open source.As a research tool, the ability to modify the platform at willmakes

it feasible as a tool for conducting scientific experiments.This requires us to pro-

duce a tool that is open to the public, and that anyone can use,at no cost to them,

21



Chapter 2. Background

to test and validate our theories through rigorous experiment and observation,

and give users the ability to create and test their own theories.

• One-button deployment. The research tool will only be useful to users if it is

simple to utilize. Any barriers-to-entry will preclude users from harnessing this

tool, and thus is detrimental to their ability to use it as a scientific tool.

• Extensible to different software stacks.The research tool should not require

users to conform to it, but instead, conform to the user’s programs in a reasonable

fashion. The initial offering may not support every software stack, but is open to

customization by the community-at-large.

• Extensible within supported software stacks.The research tool should enable

sufficiently interested users to customize it to add domain-specific library support

(e.g., for high performance computing, for image processing) as they require.

• Auto-scale for supported software stacks.Extending the research tool to add

additional functionality should not come at the cost of losing autoscaling capa-

bilities, and thus the tool should be able to acquire and release cloud resources to

best serve user requests.

• Pluggable to different cloud services.Harnessing the resources of a single set

of cloud resources encourages vendor lock-in, which harms the portability of
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supported applications. It is thus imperative that the research tool be able to run

on resources hosted in public clouds (off-premise) or private clouds (on-premise),

which may possible provide differing APIs.

Prior work in this field tends to provide a small subset of these requirements, and

no single offering satisfies all of these requirements. Currently, the key limitations of

existing work are:

• Many offerings are sold as commercial-off-the-shelf (COTS)products or are re-

motely hosted by the vendor, so their source code is not open to inspection or

extension. This precludes their use as the primary researchtool, as it harms the

ability to run experiments that are repeatable over long periods of time (as the

vendor is incentivized to improve or otherwise alter their services to better serve

their customers).

• Ease of installation and use has not, to date, been a first-class feature of existing

offerings. This means that the sheer complexity of existingsoftware has come

with a correspondingly complex installation process. Thishampers the ability to

utilize these tools as a vehicle for scientific research, andhas been a barrier-to-

entry for all but the most technically savvy system administrators.

• Platforms-as-a-Service, by their very definition, offer scalable access to full soft-

ware stacks. As the majority of mature PaaS offerings are hosted within a ven-
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dor’s datacenter(s), this places the onus of securing thesemachines on the ven-

dor, and disincentivizes them to experiment with a wider array of software stacks,

programming languages, and libraries. Similarly, there isan incentive to only re-

lease features that will be used by the majority of customers, making them less

attractive to use by researchers (who may want to experimentat all layers of the

software stack, and do not have the same budget as an enterprise customer).

• Platform-as-a-Service offerings tend to restrict the supported software stack to

enable autoscaling. Alternatively, some offerings choosethe reverse decision:

to disable autoscaling to enable a wider array of software stacks. A first-class

research tool should seek to provide both autoscaling and more than a single

software stack, and investigate how to do so in the general case (so that it can be

adopted, evaluated, and improved upon by others).

• Commercial vendors are monetarily incentivized to create “lock-in”, and create

incompatible APIs and cost models for what are conceptuallysimilar services

(e.g., FIFO queues). This makes it difficult for even expert users to determine

which services are the best for their application and usage pattern. Furthermore,

due to the rapidly evolving nature of these applications, which services may be

“best” (e.g., w.r.t. price, performance, ease of use) may change over time, and the

cost of changing from one provider to another (via refactoring, system adminis-
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tration, etc.) tends to greatly outweigh the cost of paying more for services from

the original vendor. This disincentivizes competition amongst cloud vendors,

especially the vendor who maintains the largest market share (who can simply

dictate which APIs should be used, instead of creating open APIs with other ven-

dors).

The systems described in Chapters3, 4, and5 address these limitations by designing

and implementing pluggable middleware systems that enableexpert users to inject their

own software stacks and autoscale them as desired. Once an expert user does this, users

at all skill levels can take advantage of this work in their own research or commercial

applications.
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A Pluggable Autoscaling Service for
Open Cloud PaaS Systems

In this chapter, we present the design, implementation, andevaluation of a plug-

gable autoscaler within an open cloud platform-as-a-service (PaaS). We redefine high

availability (HA) as the dynamic use of virtual machines to keep services available to

users, making it a subset of elasticity (the dynamic use of virtual machines). This makes

it possible to investigate autoscalers that simultaneously address HA and elasticity. We

present and evaluate autoscalers within this pluggable system that are HA-aware and

Quality-of-Service (QoS)-aware for web applications written in different programming

languages, automatically (that is, without user intervention). Hot spares can also be

utilized to provide both HA and improve QoS to web users. Within the open source

AppScale PaaS, utilizing hot spares within the HA-aware autoscaler can reduce the

amount of time needed to respond to node failures by an average of 48%, and can in-
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crease the amount of web traffic that the QoS-aware autoscaler serves to users by up to

32%.

As this autoscaling system operates at the PaaS layer, it is able to control virtual

machines and be cost-aware when addressing HA and QoS. Therefore, we augment

these autoscalers to make them cost-aware. This cost awareness uses Spot Instances

within Amazon EC2 to reduce the cost of machines acquired by 91%, in exchange for

an increase in startup time. This system facilitates the investigation of new autoscaling

algorithms by others that can take advantage of metrics provided by different levels of

the cloud stack (IaaS, PaaS, and SaaS).

3.1 Introduction and Motivation

While cloud IaaS and PaaS systems have seen sizable increasesin usage, they

have also suffered from a number of outages [32] [45], with some lasting several

days [41] [55]. The remedy to the problem of single-datacenter failures (as recom-

mended by IaaS vendors) is to utilize resources across multiple datacenters, and to

use autoscaling products (e.g., RightScale, CloudWatch) to provide fault detection, re-

covery, and elasticity. Yet to make these offerings general-purpose, for use with ser-

vices written in any programming language, the metrics withwhich these products

can autoscale are limited and statically defined. In practice, these systems are usually
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rule-based and can scale on coarsely-defined, VM-level metrics, including CPU usage,

memory usage, and system load. Furthermore, the closed source nature of these offer-

ings makes them inextensible and precludes their use by the community at large (e.g.,

researchers, developers, system administrators) to perform autoscaling on applications

written in different programming languages, based on application-specific metrics.

As a motivating example, consider a typical application utilizing an IaaS and a

LAMP stack. Once this application becomes popular, the developer or system admin-

istrator needs to manually scale this application out by hand, which (at the bare min-

imum) requires them to become experts at scaling load balancers, application servers,

and database nodes. By contrast, if the application itself runs at the PaaS layer, then

the burden of autoscaling is removed from the developer and placed onto the PaaS ven-

dor. Furthermore, the runtime restrictions that PaaS providers enforce mean that the

application itself does not need to be modified to facilitatescaling.

We mitigate the problem of autoscaling by reinterpreting high availability (HA) un-

der the veil of elasticity, and proposing apluggableautoscaling service that operates

within at the PaaS layer. Operating at the PaaS layer enablesthe autoscaling tool to use

high-level, application-specific metrics (e.g., databaseor API usage) as well as low-

level, cloud-specific metrics (e.g., hypervisor or cloud IaaS scheduling decisions). Fur-

thermore, because the autoscaling tool operates at the PaaSlayer, it can perform both

inter-VM scaling and intra-VM scaling. Additionally, we elect to utilize the Google
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Role Name Implemented Via
Load Balancer haproxy

AppServer Modified AppServer
Database Pluggable[16]

AppCaching memcached
Service Bus VMWare RabbitMQ
Metadata Apache ZooKeeper

AppController Ruby daemon

Table 3.1: A listing of the roles within the AppScale PaaS andthe open source tech-
nologies that implements them.

App Engine PaaS, so that our autoscaling service can operateon the one million active

applications that currently run on Google App Engine [72].

This work targets the AppScale and Eucalyptus [71] cloud systems, but the tech-

niques detailed here are extensible to other PaaS/IaaS systems. AppScale, originally

detailed in [28] and extended in [16][27], is an open source implementation of the

Google App Engine APIs. This enables any application written for Google App Engine

to execute over AppScale without modification. As AppScale is open source, it is exten-

sible to other application domains; in [19], it was extended to support high-performance

computing (HPC) frameworks, including MPI [48] and X10 [25]. AppScale runs over

the Amazon EC2 public cloud IaaS as well as the Eucalyptus private cloud IaaS, an

open source implementation of the EC2 APIs.

We begin by detailing the design of our pluggable autoscaling service and its im-

plementation within the open source AppScale PaaS. We then evaluate autoscalers that

implement support for HA, Quality-of-Service (QoS), and cost awareness. We discuss
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this support within the open source Eucalyptus IaaS as well as over the closed source

Amazon EC2 IaaS. We then discuss related work and conclude.

3.2 Design

This work redefines HA as the acquisition of virtual machinesto keep services

available to end-users, making it a special case of elasticity (the acquisition and release

of virtual machines). We discuss how we use this idea within acloud PaaS to provide

HA via elasticity and our implementation of this idea in the open source AppScale

PaaS. We then detail the pluggable autoscaling system that AppScale enables, along

with a number of autoscalers that can be used within AppScaleto provide HA, Quality-

of-Service (QoS), and cost awareness for hosted applications.

3.2.1 Role System

The goal of our work is to use elasticity to implement HA. To support this aim

within a cloud PaaS, it is necessary to support HA for the fullsoftware stack that a

cloud PaaS provides for its users. The approach that we take within the AppScale PaaS

is what we call arole system, where each part of the software stack is designated by a

uniquerole that indicates what responsibilities it takes on and how it should be “started”

(configured and deployed) and “stopped” (its tear-down process). Scripts are included
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in the AppScale code base that indicate how each role can be started and stopped, as

needed. A list of the roles supported by the AppScale PaaS, their functionality, and the

open source software packages that implement these roles are detailed in Table3.1.

Roles are started and stopped on each node by a Ruby daemon namedthe AppCon-

troller. Users detail the “placement strategy” (a map indicating which nodes run each

set of roles) for their AppScale deployment and, using a set of command-line tools, pass

this information to an AppController. The AppController thensends this information

to all other AppControllers in the system, and starts all the roles for its own node. Be-

cause the AppController itself is “role-aware”, start and stop scripts can take advantage

of this to enforce dependencies between roles. A common dependency is the reliance

of the AppServer on the Database, AppCaching, and Service Bus roles, which are all

required for the AppServer to start correctly.

As an example of how users specify roles in their placement strategy, consider the

following AppScale configuration file (specified in the YAML [96] format):

−−−

: l o a d b a l a n c e r :

− node−1

: a p p s e r v e r :

− node−2

− node−3
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− node−4

: d a t a b a s e :

− node−5

− node−6

− node−7

Here, the user has specified that they wish to have a single load balancer role, three

application server roles, and three database roles. This configuration file is used by

the AppControllers to generate the AppScale deployment shown in Figure3.1. Note

that users need not indicate here which cloud IaaS they run over, as this is abstracted

away from them and whatever cloud IaaS credentials they makeavailable to AppScale

are used to acquire resources. This role system greatly simplifies configuration and

deployment for the user, as it is the PaaS’s responsibility to administer these services.

In this scenario, the user has not specified where the AppCaching, Service Bus, and

Metadata roles should be run, so the AppControllers place them automatically to enable

the system to start correctly. This behavior can be overriden to fail if all roles are not

explicitly specified, or customized to allow researchers toconsider the performance

implications of running more instances of each distributedrole in the AppScale PaaS.

Each role that runs within the AppScale PaaS (except the Metadata role) writes

metrics about its usage to the Metadata role. Within AppScale, this service is im-
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haproxy

AppServer,
memcached,
rabbitmq

AppServer,
memcached,
rabbitmq

AppServer,
memcached,
rabbitmq

Cassandra,
ZooKeeper

Cassandra,
ZooKeeper

Cassandra,
ZooKeeper

Load Balancer

AppServer

AppCaching

Service Bus

Database

Metadata

Figure 3.1: A sample placement layout for the AppScale PaaS,where the user has ex-
plicitly requested a single Load Balancer, three AppServers, and three Database roles.
The AppCaching, Service Bus, and Metadata roles are implicitly added by the App-
Controller if not explicitly placed.

plemented via Apache ZooKeeper, an implementation of the Paxos [65] algorithm

based on Google’s Chubby service [22]. To maintain correctness for data stored within

ZooKeeper, a quorum must be achieved on read and write requests, so a majority of

nodes running the Metadata role must always be alive at all times.
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3.2.2 Using Role Metadata to Support Pluggable Autoscaling

Storing metrics about every role within the AppScale PaaS enables any role to

gather metrics about the current state of the AppScale deployment. As the AppCon-

troller role is responsible for starting and stopping all other roles within its node, we

extend it here to make it also responsible for maintaining all roles within its node. Fur-

thermore, we make AppControllers responsible for maintaining HA within the App-

Scale PaaS as a whole. Specifically, after each AppControllerstarts all the roles neces-

sary for its own node, it creates a persistent connection with the Metadata service (an

ephemeral link in ZooKeeper terminology), so that it if that node ever fails, the link

will be disrupted and every other AppController will be notified of its failure.

Every AppController then enters a heartbeat loop, where it performs the following

activities:

• Write its own metrics to the Metadata service.

• Ask theautoscalerif new nodes should be spawned, and if so, how many are

required and the roles they should take on.

• Acquire that many nodes, start the AppController role on eachof them, and in-

struct each AppController which roles it should start.

Theautoscaleris a thread within the AppController that is responsible for making

scaling decisions within the AppScale PaaS. Because it can access the Metadata service,
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it can view metrics about any role and any node within the AppScale PaaS, and because

it runs within the AppController, it can spawn new nodes via the underlying IaaS and

configure them accordingly. Specifically, the types of metrics that are available to the

autoscaler are:

• Application-level metrics: Information about hosted Google App Engine applica-

tions, including their CPU, memory, I/O, and API usage (e.g.,datastore, caching,

e-mail). The number of application servers serving each application is also avail-

able, as well as the average request latency.

• PaaS-level metrics: Information about the virtual machines hosting AppScale.

This includes the CPU, memory, disk, and network I/O usage on each machine,

as well as role-specific statistics (e.g., Load Balancer usage, Metadata usage)

and historical data about previous scheduling decisions (e.g., the times/dates of

previous node failures).

3.3 Framework Instantiations

The pluggable autoscaling system designed here can make scaling decisions based

on application and PaaS-level statistics. We next detail how certain combinations of

these metrics can be utilized to implement autoscaling algorithms to serve complemen-

tary use cases within the AppScale PaaS.
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3.3.1 HA and QoS-Aware Autoscalers

One autoscaler supported within AppScale is HA. This autoscaler polls the Meta-

data service for a list of all the nodes that have registered itself as being alive, and looks

for persistent connections named after each of those nodes.If any of those connections

are missing (e.g., because a node has failed), then the autoscaler polls the metadata

service to see which roles that node was hosting and returns that information to the

AppController’s main thread. The AppController then spawns nodes to take the places

of each failed node, with each failed role.

Another autoscaler that is supported within AppScale is QoSenforcement. This au-

toscaler service polls the Metadata service for data reported by the Load Balancer role

(implemented by thehaproxy daemon) about how many requests have been served in

the lastt seconds (a customizable value that defaults to 10 seconds) for each AppServer

and how many are currently enqueued over the lastt seconds. It then uses an exponen-

tial smoothing algorithm to forecast how many requests to expect for the nextt seconds,

via the following formulae:

r0 = 0; q0 = 0 (3.1)

rt+1 = α ∗ rt−1 + (1− α) ∗ rt (3.2)

qt+1 = α ∗ qt−1 + (1− α) ∗ qt (3.3)
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wherer refers to the number of requests served, and whereq refers to the number of

requests enqueued. Ifrt+1 or qt+1 exceed a customizable threshold (defaulting to5 for

each), then the autoscaler decides that an AppServer needs to be added within the sys-

tem. If there is enough CPU and memory free on any node currently running (metrics

reported by each AppController), then the AppServer is addedon a currently running

node. The CPU and memory thresholds vary for AppServers in different program-

ming languages because the CPU and memory footprints differ significantly between

the Python, Java, and Go AppServers, as evaluated in Section3.4.3.

If there is not enough CPU and memory free on any currently running node, the

autoscaler reports that a new node needs to be spawned to hostan AppServer role.

This autoscaler considers both intra-VM scaling (scaling within a node) and inter-VM

scaling (scaling among nodes), in that order. Intra-VM scaling decisions are consid-

ered every minute, while inter-VM scaling decisions are considered every 15 minutes

(customizable values).

This autoscaler also uses the above formulae to scale AppServers down. Ifrt+1 or

qt+1 fall below a customizable threshold (defaulting to5 for each), then the autoscaler

determines that an AppServer needs to be removed from its node, as there is not enough

traffic to justify the CPU and memory footprint that it consumes.

Finally, it is important to stress that we are not limited to the use of a single au-

toscaler within the AppScale PaaS. For scenarios when more than one autoscaler is
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used, each autoscaler is invoked in the order that the researcher provides. In the open

source branch of AppScale that we extend as part of this work,we default to utilizing

both the HA-aware and QoS-aware autoscalers. Additionally, the open, pluggable na-

ture of the autoscaler proposed here makes it amenable to thevast amount of existing

research on resource scheduling [92][95][86][69].

3.3.2 A Cost-aware Autoscaler

As AppScale operates at the PaaS layer, it is responsible forthe acquisition and uti-

lization of IaaS resources (e.g., virtual machines). Therefore, we have the opportunity

to provide an autoscaler that can make decisions with not just performance in mind, but

also monetary cost. For example, Amazon EC2 charges users on aper-hour basis. If the

QoS-aware autoscaler described previously were to decide that resources it acquires are

no longer needed, it would terminate them without realizingthat keeping the resources

until the end of the hour is free under the Amazon pricing model, and that there is no

gain from terminating them before this hour price boundary.

We therefore augment the HA-aware, QoS-aware autoscaler used within AppScale

to also be cost-aware in the following ways. Whenever a resource would normally be

terminated by the QoS-aware autoscaler, it is instead relieved of all of its roles (that

is, the stop scripts are called for each role it runs) and the node becomes a hot spare.

This hot spare can then be utilized by the HA-aware autoscaler to quickly respond to a
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node failure or by the QoS-aware autoscaler to quickly respond to increased web traffic.

As we always run the HA-aware autoscaler before the QoS-aware autoscaler, the HA-

aware autoscaler gets priority over these machines, but this behavior can be reversed if

desired.

Amazon EC2’s standard offering provides users with instances in an on-demand

fashion. However, they do also offer an auction-style product, Spot Instances [3] (SI),

which users acquire by placing bids. If the bid that the user places is above the market

price for a particular instance type (classified by CPU and memory), then the user

wins the auction and gets the instance. If the market price (dictated by Amazon in an

opaque fashion) ever rises above the user’s bid, then the resource is reclaimed and the

user is refunded for any partial hours used. As these instances can cost substantially

less than the standard, on-demand instances, we propose a cost-aware autoscaler. This

autoscaler is able to automatically place bids and utilize SIs for both the HA autoscaler

and the QoS autoscaler. To avoid losing instances to rising market prices, the cost-

aware autoscaler searches through a history of successful bid prices and bids 20% above

the average SI price paid (a customizable metric). We evaluate the performance and

monetary cost impacts on the AppScale PaaS in Section3.4.3.

The HA-aware, QoS-aware, and cost-aware autoscaler is opensourced as part of

this research. Future work will examine a Azure-aware autoscaler that takes its pricing

model into account, as well as the inclusion of Google’s new IaaS offering, Compute
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Engine [47], which abstractly works in a similar fashion as the Amazon and Microsoft

offerings but has different prices associated with the machines it offers.

3.3.3 Manual Administrator Intervention

While the pluggable autoscaling system and sample autoscalers proposed in this

work do provide automated resource management within the AppScale PaaS, there

may be conditions where a cloud administrator may wish to perform manual scaling.

In these scenarios, the cloud administrator typically has some knowledge or metrics

that the autoscaler is not aware of and needs to scale up some part of the system.

For example, a company hosting an application may aggressively market their appli-

cation to the public and thus expect a steep increase of traffic. While the QoS autoscaler

above (or variations of it) may be able to reactively deal with the increased amount of

traffic, it may drop some traffic before it finishes scaling up.Therefore, the company

may want to proactively add AppServers or Database nodes to serve their application.

This work addresses this category of use cases by exposingautoscaling as a ser-

vice, enabling administrators to proactively scale the system up as needed. Specifically,

we extend the AppScale command-line tools (similar conceptually to the EC2 tools for

AWS) with a new tool,appscale-add-nodes. Users give this tool a YAML file

that indicates the placement strategy for the new nodes, in amanner identical to that

used when starting up AppScale normally. If a user wishes to serve the use case pre-
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viously described and add two AppServers and two Database nodes, they could give

appscale-add-nodes the following placement strategy:

−−−

: node−1:

− a p p s e r v e r

: node−2:

− a p p s e r v e r

: node−3:

− d a t a b a s e

: node−4:

− d a t a b a s e

Users need not learn and specify all the dependencies for each role. Although the

user above did not specify where the Service Bus should run, ifthe AppServer requires

it to run on the same node, the AppController will configure anddeploy it automatically.

Alternatively, users who want to add virtual machines to an AppScale deployment but

may not be certain where they could be best utilized can specify that the role beopen,

making it a hot spare that the AppControllers can assign rolesto as needed.
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Figure 3.2: Placement strategy used for the experiments in Section3.4. One node is
used to host each role, to maximize the impact of failures on the AppScale PaaS.

3.4 Experimental Evaluation

We next empirically evaluate our proposed autoscalers within AppScale. We begin

by presenting our experimental methodology and then discuss our results.

3.4.1 Methodology

To evaluate the pluggable autoscaler system put forth by this work, we use sample

Google App Engine applications provided by Google. We use implementations of the

standard Guestbook application written in Python and Java.Upon each request to this
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application, it queries the database for the most recent posts and displays them to the

user. This application is indicative of Google App Engine application usage as a whole,

as it utilizes the Datastore and Memcache APIs to serve data dynamically to users.

We host this application on AppScale via the placement strategy shown in Fig-

ure3.2. We intentionally minimize the number of roles implementing each service to

maximize the impact of scaling decisions and node failures on the system as a whole.

We also utilize Cassandra to implement the Database role, as it is the default within

AppScale.

3.4.2 Experimental Autoscaler Results

To evaluate the HA autoscaler, we run AppScale within AmazonEC2 and kill the

AppServer running the Python and Java Guestbook applications. Figure3.3 shows a

breakdown of how long it takes for the HA autoscaler to recover from this failure. As a

majority of the time is spent acquiring a new virtual machinefrom EC2, we also use the

appscale-add-nodes tool to proactively add a hot spare to the system, and find

that it significantly reduces the time needed to recover fromfailures. The presence of a

hot spare does not have a significant impact on the other phases in Figure3.3, however.

Furthermore, as the price of anm1.large instance (the instance type we use in these

experiments) is currently $0.32/hour, having a hot spare always present increases the

hourly cost to run this AppScale deployment by 33%, from $0.96 to $1.28. In practice,
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Figure 3.3: Average time for the HA autoscaler to recover from the loss of a single
node running the AppServer role within the AppScale PaaS, over the Amazon EC2
IaaS. Recovery time also indicates if a hot spare was available when the failure was
detected.

the additional $0.32 incurred to have a hot spare available is likely to be insignificant

compared to the opportunity costs due to lost business from the added downtime.

To evaluate the QoS autoscaler, we use the Apache Benchmark tool [1] to dispatch

40,000 web requests to the Python and Java guestbook applications (70 concurrently),

and measure how long it takes for AppScale to serve these requests. The results of five

runs of this experiment are shown in Figure3.4. The first bar in each graph measures

the time for AppScale to process the 40,000 web requests without the QoS autoscaler,

as a baseline set of values.
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The second bar in each graph uses the QoS autoscaler and only considers inter-

VM scaling. It performs significantly better for the Python Guestbook application (but

not for the Java Guestbook application). For both applications, the high request rate

and high number of users enqueued at the load balancer cause the QoS autoscaler to

quickly acquire more nodes to run AppServer roles, which in turn allows more requests

to be served at a time. However, the Java AppServer is faster due to the performance

difference between the Java and Python languages, and the Java AppServer is able to

use multithreading, while the Python AppServer is limited to a single thread. Although

the QoS autoscaler attempts to alleviate this problem by adding AppServers within a

virtual machine, it is only able to do it up to a limit (the available CPU and memory on

that machine).

Paradoxically, the faster Java AppServer processes the 40,000 web requests be-

fore the newly spawned AppServers can have a significant impact (hence the simi-

larities between Java QoS-off and Java QoS-on). To reduce the spawning time of

these AppServers and increase their impact, we use theappscale-add-nodes

command-line tool to add a hot spare to the AppScale deployment before running

Apache Benchmark. The results, shown in the third bar, detaila significant improve-

ment for both the Python and Java Guestbook applications when a hot spare is used.

Like in the HA autoscaler, the constant presence of a hot spare increases the cost to run

the AppScale deployment, but is far less than the costs of business lost due to downtime.
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Finally, the fourth bar utilizes the QoS autoscaler to only perform intra-VM scaling.

It performs similarly to the scenario where the inter-VM scaler is utilized with a hot

spare, and incurs a lower monetary cost (due to not needing the hot spare). Work is

ongoing to consider the performance implications of utilizing the inter-VM scaler and

intra-VM scaler simultaneously.

3.4.3 Experimental Metrics Results

We next move on to the gathering and reporting of metrics not traditionally consid-

ered by autoscaling algorithms, and their use in ongoing research into autoscalers used

by the pluggable autoscaling solution proposed here. We begin by examining the CPU

and memory footprint of the Python, Java, and Go AppServers,whose information is

stored automatically in the Metadata service. The AppController queries the operating

system every 30 seconds for this information (a customizable interval), and the average

of ten of these queries for steady-state AppServers is shownin Table3.2.

We begin by noting that the Go AppServer within AppScale utilizes the Python

AppServer as a proxy for RPC calls, so the Go AppServer always requires a Python

AppServer to be present. Table3.2 shows both the CPU and memory taken for the

standalone Go AppServer and its combined footprint in its production form, when it

requires the Python AppServer. As the standalone Go AppServer memory footprint is
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Figure 3.4: Average time for AppScale to serve 40,000 web requests to the Python
(Left) and Java (Right) Guestbook applications. We considerthe case when the QoS
autoscaler is off (the default before this work), when it is on (our contribution), and
when we proactively start a hot spare to be used by the QoS autoscaler. Each value
represents the average of five runs.
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Language CPU Footprint (%) Memory Footprint (%)
Python 0.00± 0.00 2.40± 0.00
Java 0.64± 0.08 8.10± 0.00
Go 0.00± 0.00 0.10± 0.00

Go+Python 0.00± 0.00 2.50± 0.00

Table 3.2: Average CPU and memory footprint consumed by the Python, Java, and Go
AppServers while in a steady state. Each value represents the average of ten runs.

significantly less than the Python AppServer memory footprint, we are examining how

to remove the dependency on the Python AppServer.

For both the Python and Go AppServers, its steady-state requires no CPU footprint

and a significantly smaller CPU and memory footprint than the Java AppServer. How-

ever, as Figure3.4demonstrated, this smaller footprint may have come at the expense

of the ability to handle a production web service workload.

An alternative metric that is simple yet powerful for a PaaS-layer autoscaler to mea-

sure is virtual machine startup time compared to cost incurred. Here, we use our cost-

aware scheduler to acquire Amazon EC2’s on-demand instancesand Spot Instances

(SIs) automatically (betting 20% above the market price in the manner described pre-

viously), and report both the time taken for the instances toboot up and the monetary

cost incurred for one hour’s use of these machines. Table3.3shows the average results

of running this experiment ten times.

Table3.3 shows two clear trends. First, on-demand instances can be acquired ex-

tremely quickly, with low variance in both the time and cost incurred to utilize these
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Instance Type Time to Acquire Instances (sec)Monetary Cost ($)
On-Demand 37.03± 1.36 0.3200± 0.0000

Spot 411.31± 103.61 0.0299± 0.0002

Table 3.3: Time and monetary cost incurred for the cost-aware scheduler to utilize
Amazon EC2 on-demand and spot instances. These results reflect the average of ten
runs, with them1.large instance type in the AWS East Coast region.

machines. Second, the SIs take an order of magnitude longer to acquire, but cost an

order of magnitude less. This makes SIs an ideal target to be used as hot spares within

the AppScale PaaS, to be aggressively spawned and used to reduce the amount of time

needed to recover from failures or ensure a higher QoS.

3.5 Related Work

This work proposes and implements a pluggable autoscaling solution that can be

utilized for fault tolerance as well as elasticity. The fields of fault tolerance and elastic-

ity have been well-studied, and a number of research effortsare conceptually similar to

the work proposed here.

The VGrADS [77] and MODISAzure [66] projects are two research efforts aimed

at providing fault tolerance to e-Science applications running over cloud resources.

VGrADS is aimed at using cloud resources according to grid computing’s best prac-

tices, where resources are acquired in bulk, utilized, and discarded. That is the opposite

mentality of the work performed here, where cloud resourcesare acquired and used ac-
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cording to cloud computing’s best practices, where resources are acquired elastically,

as needed. The difference is notable in a public cloud environment where resources are

not free, as compared to the grid environment (where large clusters are available for use,

free of charge). Accordingly, VGraDS does not consider the cost of utilizing the Ama-

zon EC2 IaaS, whereas we are cognizant of it and consider the use of Spot instances to

reduce the price that end-users pay. MODISAzure is similarly only interested in how

clouds can be utilized for their end-users (in their case, the Microsoft Azure IaaS), and

is not concerned with the cost of actually using these resources.

CloudScale [86] and [92] focus on developing new elasticity techniques for web

applications. Two main differences exist between these works and the pluggable au-

toscaler system proposed here. First, this work is the first that we know of to actually

run within a cloud PaaS. Despite its name, CloudScale does notrun within a cloud IaaS

or PaaS, but instead utilizes virtual machines managed by the Xen hypervisor (which is

necessary but not sufficient for cloud computing). [92] also targets machines running

over Xen, but does not use it as a mechanism for research, opting instead to focus on

elasticity algorithms customized for the three-tier web deployment strategy (load bal-

ancer, application server, and database). Second, these efforts do not seek to provide a

pluggable autoscaling solution for researchers to experiment with and test with. They

seek to provide novel autoscaling algorithms, and thus do not compete with the system
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proposed here. Work is ongoing to adapt the algorithms proposed in these works as

autoscalers and evaluate their effectiveness within the AppScale PaaS.

Cloud vendors have also proposed products and solutions to the issues of fault tol-

erance and elasticity for their users. Amazon EC2 and Microsoft Azure both provide

users with virtual machine-level high availability by always running a hot spare [14],

although this leaves the responsibility of utilizing that machine in the user’s application

to the user. RightScale [78], enStratus [40], Scalr [84], and Kaavo [59] seek to provide

high availability and elasticity through virtual machine-level metrics (CPU, memory,

disk usage), and if the user utilizes LAMP stack components,the health of those com-

ponents can also be utilized when making scaling decisions.Yet these systems are

closed source systems, often only allowing simple rules to be utilized to make scaling

decisions (e.g., scale up if load exceeds 30%). In contrast,the open pluggable autoscal-

ing system proposed here is extensible to the years of scheduling research done by the

community at large and provides new avenues of research to beperformed.

3.6 Summary and Conclusions

The flexible role system and pluggable autoscaler implemented here abstracts away

the complexities of deploying and managing applications distributed across machines

in cloud services. The motivation behind this pluggable autoscaler is to enable users to
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experiment with the vast array of research on autoscaling and experimentally validate

how the performance and cost of autoscalers for their application and specific work-

loads. We utilize this pluggable autoscaler to implement HAand QoS autoscalers, and

make them cost-aware when running in a public cloud. We evaluate the performance

of the HA and QoS autoscalers under varying workloads, for applications written in

different programming languages. This pluggable autoscaler provides users with the

ability to easily test autoscalers for their applications,and to quantify how scaling de-

cisions impact their application’s performance and cost itincurs to the user that hosts

it.

The text of this chapter is, in part, a reprint of the materialas it appears in [15] .
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Chapter 4

Language and Runtime Support for
Automatic Configuration and
Deployment of Scientific Computing
Software over Cloud Fabrics

In this chapter, we present the design and implementation ofNeptune, a simple,

domain-specific language based on the Ruby programming language. Neptune auto-

mates the configuration and deployment of scientific software frameworks over dis-

parate cloud computing systems. Neptune integrates support for MPI, MapReduce,

UPC, X10, StochKit, and others. We implement Neptune as a software overlay for

the AppScale cloud platform and extend AppScale with support for elasticity and hy-

brid execution for scientific computing applications. Neptune imposes no overhead on

application execution, yet significantly simplifies the application deployment process,

enables portability across cloud systems, and promotes lock-in avoidance by specific

cloud vendors.
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4.1 Introduction and Motivation

Beyond the differences between clouds and grids, there are three barriers to the

adoption of cloud computing for the execution of distributed, cluster-based, scientific

applications. First, cloud systems currently in use have been designed for the execution

of applications from the web services domain. As a result, developers must imple-

ment additional services and frameworks to support applications from other domains.

Such infrastructure (tools, services, packages, libraries) presents challenges to efficient

reuse, and requires non-trivial installation, configuration, and deployment efforts to be

repeatable. Second, cloud systems today are vastly diversebetween one another, and

code written for one system is not easily portable to other cloud systems, despite us-

ing common services and APIs provided by the cloud system. Differing interfaces can

impose large learning curves and lead to lock-in – the inability to easily move from

one cloud system to another. Third, the self-service natureof cloud infrastructures re-

quire significant user expertise to manipulate, control, and customize virtual machines

(the execution unit of cloud infrastructures), making theminaccessible to all but expert

users [57].

The goal of our work is to reduce the real-world impact of these barriers-to-entry

and to facilitate greater use of cloud fabrics by the scientific computing community.

This is also part of an effort to enable a cost-effective computation alternative to that
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of the cluster that is still viable for large scale scientificproblems. Toward this end,

we present and evaluate Neptune, a domain-specific languagefor automatically con-

figuring and deploying disparate cloud-based services and applications. Neptune is a

high-level language that is a superset of Ruby [81], a dynamic, open source program-

ming language that is easy to learn and facilitates programmer productivity. Neptune

adds to Ruby a series of keywords and constructs that developers use to describe a com-

putational job at a very high level. Neptune executes any Rubycode using the Ruby

interpreter and uses this job description along with a set ofAPI calls to build, configure,

and deploy the services, libraries, and virtual machines necessary for the distributed ex-

ecution of complex scientific applications and systems overcloud platforms. Neptune

abstracts away all of the low level details of the underlyingcloud platforms (and by

extension, cloud infrastructures) and provides a single, simple interface with which de-

velopers can deploy their applications. Neptune thus enables application portability

across clouds and precludes lock-in to any single cloud vendor. Moreover, develop-

ers can use Neptune to employ multiple clouds concurrently (hybrid cloud computing),

without application modification.

To enable this, Neptune interfaces to the AppScale [27, 28, 64] cloud platform.

AppScale is a distributed, scalable software system that exposes a set of popular cloud

service APIs (based on those of Google App Engine), and executes over the Amazon

Web Services and Eucalyptus [71] clouds.
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In this paper we present the design and implementation of Neptune, as well as a set

of AppScale extensions that enable automatic configurationand deployment of scien-

tific applications. These extensions include dynamic instantiation of virtual machines,

placement of application and cloud service components within virtual machines for

elasticity, and hybrid cloud computing. We extend AppScalewith a set of popular

software systems that are employed by a wide range of scientific application domains,

such as MPI, UPC, and MapReduce for general-purpose HPC, as wellas more science-

specific toolkits such as StochKit [83] for stochastic biochemical simulation, DFSP [36]

for spatial stochastic biochemical simulation, and dwSSA [31] for the estimation of rare

event probabilities. Moreover, Neptune’s design makes it straightforward for users to

add additional frameworks, libraries, and toolkits.

In the sections that follow, we describe the design and implementation of Nep-

tune, and our extensions to the AppScale cloud platform. We then empirically evaluate

Neptune using distributed HPC frameworks, stochastic simulation applications, and

different placement strategies. We then present related work and conclude.

4.2 Neptune

Neptune is a domain-specific language that gives cloud application developers the

ability to easily configure and deploy computational science software over cloud sys-
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tems. Configuration refers to writing the configuration files that HPC software requires

to execute in a distributed fashion, while deployment refers to starting HPC services

in the correct order, to enable user code to be executed. Neptune operates at the cloud

platform layer (runtime system level) so that it can controlinfrastructure-level entities

(virtual machines) as well as application components and cloud services.

4.2.1 Syntax and Semantics

The Neptune language is a metaprogramming extension of the Ruby programming

language. As such, it is high-level and familiar, and can leverage a large set of Ruby

libraries to interact with cloud infrastructures and platforms. Moreover, any legal Ruby

code is also legal within Neptune programs, enabling users to use Ruby’s scripting ca-

pabilities to quickly construct functioning programs. Thereverse is also true: Neptune

can be used within Ruby programs, to which it appears to users as a library that can be

utilized in the same fashion as other Ruby libraries.

Neptune uses a reserved keyword (denoted throughout this work via theneptune

keyword) to identify services within a cloud platform. Legal Neptune code obeys the

following syntax, wheree represents the empty string:

S −> nep tune : t ype => T

T −> mpi , M1 | x10 , M1 | upc , M1 | mapreduce , R1
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T −> e r l ang , E1 | ssa , S1 | appsca le , P1

T −> se t−ac l , A1 | get−ac l , G1 | get−ou tpu t , O1 | compi le , C1

M1 −> : code => ’ l o c a t i o n ’ , M2

M2 −> : n o d e s t o u s e => i n t , M3

M3 −> : o u t p u t => ’ l o c a t i o n ’ , M4

M3 −> : o u t p u t => ’ l o c a t i o n ’ , M5

M4 −> : p r o c s t o u s e => i n t , M5

M5 −> K1 | e

R1 −> : i n p u t => ’ l o c a t i o n ’ , R2

R2 −> : o u t p u t => ’ l o c a t i o n ’ , R3

R3 −> : n o d e s t o u s e => i n t , R4

R4 −> : map reduce ja r => ’ l o c a t i o n ’ , R5

R5 −> : main => ’ c lassname ’ , R6

R6 −> K1 | e

E1 −> : code => ’ l o c a t i o n ’ , E2

E2 −> : o u t p u t => ’ l o c a t i o n ’ , E3
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E3 −> : n o d e s t o u s e => i n t , E4

E4 −> K1 | e

S1 −> : n o d e s t o u s e => i n t , S2

S2 −> : t a r => ’ l o c a t i o n ’ , S3

S2 −> : t a r => ’ l o c a t i o n ’ , S4

S3 −> : s i m u l a t i o n s => i n t , S5

S4 −> : t r a j e c t o r i e s => i n t , S5

S5 −> : o u t p u t => ’ l o c a t i o n ’ , S6

S6 −> K1 | e

K1 −> : s t o r a g e => ’ appdb ’ ,

K1 −> : s t o r a g e => ’ s3 ’ , K2

K1 −> : s t o r a g e => ’ g s t o r a g e ’ , K2

K1 −> : s t o r a g e => ’ wa l rus ’ , K2

K2 −> : EC2 ACCESSKEY => ’ key ’ , K3

K3 −> : EC2 SECRETKEY => ’ key ’ , K4

K4 −> : S3 URL => ’ u r l ’
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P1 −> : n o d e s t o u s e => {P2} , P3

P2 −> : c l oud i n t => i n t , P3

P3 −> : add component => ’ l o a d b a l a n c e r ’ , P4

P3 −> : add component => ’ appeng ine ’ , P4

P3 −> : add component => ’ da tabase ’ , P4

P4 −> : t i m e n e e d e d f o r => f l o a t

A1 −> : o u t p u t => ’ l o c a t i o n ’ , A2

A2 −> : a c l => ’ pub l i c ’

A2 −> : a c l => ’ p r i v a t e ’

G1 −> : o u t p u t => ’ l o c a t i o n ’

O1 −> : o u t p u t => ’ l o c a t i o n ’ , O2

O1 −> : o u t p u t => ’ l o c a t i o n ’

O2 −> : s a v e t o l o c a l => ’ l o c a t i o n ’

C1 −> : code => ’ l o c a t i o n ’ , C2

C2 −> : main => ’ f i l e ’ , C3
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C3 −> : o u t p u t => ’ l o c a t i o n ’ , C4

C4 −> : copy to => ’ l o c a t i o n ’

The semantics of the Neptune language are as follows: each valid Neptune program

consists of one or moreneptune invocations, each of which indicate a job to run in a

cloud. Thetype marker indicates the name of the job (e.g., MPI, X10), and is asso-

ciated with a set of parameters that are necessary for the given invocation. This design

choice is intentional: not all jobs are created equal, and while some jobs require little

information be passed, other job types can benefit greatly from increased information.

As a further step, we leverage Ruby’s dynamic typing to enablethe types of parameters

to be constrained by the developer. If the user specifies a Neptune job but fails to pro-

vide the necessary parameters, Neptune informs them which parameters are required

and aborts execution.

The value that the invocation returns is also extensible, but by default, a Ruby hash

is returned, whose items are job specific. In most cases, thishash contains a key named

:success whose Boolean value corresponds to whether or not the requestsucceeded.

Other scenarios allow for additional parameters to be included. For example, in the

scenario where the invocation asks for the access policy fora particular piece of data

stored in the underlying cloud platform, there is an additional key named:acl whose

value is the current data access policy.
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Finally, when the user wishes to retrieve data via a Neptune job, the invocation

returns the location on the user’s filesystem where the output can be found. Work is in

progress to expand the number of failure messages to give users more information about

why particular operations failed (e.g., if the data storagemechanism was unavailable

or had failed, or if the cloud platform itself was unreachable in a reasonable amount of

time), to enable Neptune programs written by users to becomerobust, and to adequately

deal with failures at the cloud level. The typical format of auser’s Neptune code is thus

of the following form:

r e s u l t = nep tune : t ype => : mpi ,

: code => ‘ / code / powermethod ’ ,

: n o d e s t o u s e => 4

i f r e s u l t [ : s u c c e s s ]

p u t s ‘ Your MPI job i s now i n p r o g r e s s . ’

e l s e

p u t s ‘ Your MPI job f a i l e d t o s t a r t . ’

end

4.2.2 Design Choices

It is important to contrast the decision to design Neptune asa domain specific lan-

guage with other configuration options that use XML or other markup languages [63].
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These languages work well for configuration but, since they are not Turing-complete

programming languages, they are bound to their particular execution model. In con-

trast, Neptune’s strong binding to the Ruby programming language enables users to

leverage Neptune and its HPC capabilities to easily incorporate it into their own codes.

For example, Ruby is well known for its Rails web programming framework [82], and

Neptune’s interoperability enables Rails users to easily spawn instances of scientific

software without explicit knowledge of how Neptune or the scientific computing soft-

ware operates.

Markup and workflow languages are powerful in the types of computation that they

enable. Similarly, Neptune allows arbitrary computation to be connected and chained

to one another. The following example shows how the output ofa MapReduce job can

be used as the input to a X10 job. Here, the MapReduce job produces a graph repre-

senting links between web pages, while the X10 code takes this graph and performs a

shortest-path algorithm from all nodes to one another. As Neptune does not automati-

cally resolve data dependencies between jobs, we manually delay the execution of the

X10 job until after the MapReduce job has completed and generated its output.

nep tune : t ype => : mapreduce ,

: i n p u t => ‘ / r awda ta / webdata ’ ,

: o u t p u t => ‘ / o u t p u t / mrgraph ’ ,

: map reduce ja r => ‘ / code / graph . j a r ’ ,
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: main => ‘ main ’ ,

: n o d e s t o u s e => 64

# wa i t f o r t h e mapreduce job t o f i n i s h

loop {

r e s u l t = nep tune : t ype => : ge t−ou tpu t ,

: o u t p u t => ‘ / o u t p u t / mrgraph ’

i f r e s u l t [ : s u c c e s s ]

b reak

end

s l e e p ( 6 0 )

}

nep tune : t ype => : mpi ,

: i n p u t => ‘ / o u t p u t / mrgraph ’ ,

: o u t p u t => ‘ / o u t p u t / s h o r t e s t p a t h ’ ,

: code => ‘ / code / S h o r t e s t P a t h ’ ,

: n o d e s t o u s e => 64
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To enable code reuse, we allow operations to be reused acrossmultiple Neptune job

types. For example, retrieving data and setting ACLs on data are two operations that

occur throughout all the job types that Neptune supports. Thus, the Neptune runtime

enables these operations to share a single code base for the implementation of these

functions. This feature is optional: not all software packages may support ACLs and

a unified model for data output, so Neptune gives developers the option to implement

support for only the features they require, and the ability to leverage existing support as

needed.

4.3 Implementation

To enable the deployment of Neptune jobs, the cloud platformmust support a num-

ber of primitive operations. These operations are similar to those found in computa-

tional grid and cluster utilities, such as the Portable BatchSystem [75]. The cloud

platform must be able to receive Neptune jobs, acquire computational resources to exe-

cute jobs on, run these jobs asynchronously, and place the output of these jobs in a way

that enables users to retrieve them later or share them with other users. For this work,

we employ the AppScale cloud platform to add these capabilities.

AppScale is an open-source cloud platform that implements the Google App Engine

APIs. Users deploy applications using AppScale via either aset of command-line tools
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or a web interface. An AppScale cloud consists of one or more distributed database

components, web servers, and a monitoring daemon (the AppController) that coordi-

nates services across nodes in the AppScale cloud. AppScaleimplements a wide range

of datastores for its database interface via popular open source technologies. As of its

most recent release (AppScale 1.5), it includes support forHBase, Hypertable, MySQL

Cluster, Cassandra, Voldemort, MongoDB, MemcacheDB, Scalaris, and Amazon Sim-

pleDB. AppScale runs over virtualized and un-virtualized cluster resources as well as

over the Amazon EC2 and Eucalyptus cloud infrastructures. The full details of App-

Scale are described in [28, 16].

The execution of a Neptune job follows the pattern shown in Figure4.1. The user

invokes theneptune executable on a Neptune script they have written, which results

in a SOAP message being sent to the Neptune runtime (a separate thread in AppScale’s

AppController service). In the case of a compute job, the Neptune runtime acquires

nodes to run the code over, configures them for use, and executes the code, storing the

output for later retrieval. In the case of a data input or output job, the Neptune runtime

stores or retrieves the data via the datastore.

In this section, we overview the AppScale components that are impacted by our

extensions enabling customized placement, automatic scaling, and Neptune support,

the AppScale command-line tools and the AppController
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Figure 4.1: AppScale cloud platform with Neptune configuration and deployment sup-
port.

4.3.1 Cloud Support

Our extensions to AppScale facilitate interoperation withNeptune. In particular, we

modify AppScale to acquire and release machines used for computation, and to enable

static and dynamic service placement. To do so, we modify twocomponents within

AppScale: the AppScale Tools and the AppController.

AppScale Tools

The AppScale Tools are a set of command-line tools that developers and admin-

istrators can use to manage AppScale deployments and applications. In a typical de-

ployment, the user writes a configuration file specifying which node in the system is

the “master” node and which nodes are the “slave” nodes. Prior to this work, this
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meant that the master node always deployed a Database Master(or Database Peer for

peer-to-peer databases) and AppLoadBalancer to handle and route incoming user re-

quests, while slave nodes always deployed a Database Slave (or Database Peer) and

AppServers hosting the user’s application.

We extend this configuration model to enable users to providea configuration file

that identifies which nodes in the system should run each service (e.g., Database Master,

Database Slave, AppLoadBalancer, AppServer). For example,users can specify that

they want to run each service on a dedicated machine by itself. Alternatively, users

could specify that they want their database nodes running onthe same machines as

their AppServers, and have all other components running on another machine. We

also allow users to designate certain nodes in the system as “open”, which tells the

AppController that this node is free to use for Neptune jobs (ahot spare).

We extend this support to enable hybrid cloud deployment of AppScale, in which

nodes are not limited to a single cloud infrastructure. Here, users specify which nodes

belong to each cloud infrastructure, and then export environment variables that corre-

spond to the credentials needed for each cloud. This is done to mirror the styles used

by Amazon EC2 and Eucalyptus. One potential use case of this hybrid cloud support

is for users who have a small, dedicated Eucalyptus deployment and access to Ama-

zon EC2: these users could use their Eucalyptus deployment totest and optimize their

code, and deploy to Amazon EC2 when more nodes are needed. Similarly, Neptune
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users can use hybrid cloud support to run jobs in multiple availability zones simultane-

ously, providing them with the ability to run computation asclose as possible to their

data. For scenarios where the application to be deployed is not a compute-intensive

application (e.g., web applications), it may be beneficial to ensure that instances of the

application are served in as many availability zones as possible, to ensure that users

always have access to a nearby instance. This deployment strategy gives users some

degree of fault-tolerance, in the rare cases when an entire availability zone is down or

temporarily inaccessible [54].

AppController

The AppController is a monitoring service that runs on every node in an AppScale

deployment. It configures and instantiates all necessary services, which typically in-

volves starting databases and running Google App Engine applications. AppControllers

also monitor the status of each service it runs, and periodically send heartbeat messages

to other AppControllers to aggregate this information. It currently queries each node

to learn its CPU, memory, and hard drive usage, although it is extensible to collecting

other metrics.

Our extensions enable the AppController to receive and understand RPC (via SOAP)

messages from Neptune and to coordinate Neptune activitiesacross other nodes in

an AppScale deployment. Computational jobs and requests foroutput data run asyn-
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chronously within AppScale, and do not block the user’s Neptune code. All Neptune

requests are authenticated with a secret established when starting AppScale, and are

performed over SSL to prevent request sniffing.

If running in hybrid cloud deployments, AppScale spawns machines for each cloud

in which the user has requested machines, with the credentials that the user has pro-

vided. Any hot spares (machines indicated as “open”) are acquired before new nodes

are spawned. The AppController records which cloud each machine runs in, so that

Neptune jobs can ask for nodes within specific cloud or more than one cloud. Addi-

tionally, as cloud infrastructures currently meter on a per-hour basis, we have modified

the AppController to be cognizant of this and reuse virtual machines between Neptune

jobs. Within AppScale, any virtual machine that is not running a Neptune job at the

55-minute mark is terminated; all other machines are renewed for another hour.

Administrators query AppScale via either the AppScale Tools or the web interface

provided by the AppLoadBalancer. These interfaces inform administrators about the

jobs in progress and, in hybrid cloud deployments, which clouds are running which

jobs. These interfaces do not actually run Neptune jobs or interact with them, but

simply describe their status as reported to them by the AppController.

A perk of offering this service at the cloud platform layer isthat the platform can

profile the usage patterns of the underlying system and act accordingly (since a well-

specified set of APIs are offered to users). We provide customizable scheduling mecha-
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nisms for scenarios when the user is unsure how many nodes arerequired to achieve op-

timal performance. This use case is unlikely to occur for highly tuned codes, but more

likely to occur within HTC and MTC applications, where the code may not be as well

tuned for high performance. Users only need specify how manynodes the application

can run over, a required parameter because Neptune does not perform static analysis

of the user’s code, and oftentimes specific numbers of nodes are required (e.g., pow-

ers of two). Neptune then employs a hill-climbing algorithmto determine how many

machines to acquire: given an initial guess, Neptune acquires that many machines and

runs the user’s job, recording the total execution time for later use. On subsequent job

requests, Neptune tries the next highest number of nodes, and follows this strategy until

the execution time fails to improve. Our initial release of Neptune provides scheduling

based on total execution time, total cost incurred (e.g., acquire more nodes only if it

costs less to do so), or a weighted average of the two. This behavior is customizable,

and is open to experimentation via alternative schedulers.

More appropriate to scientists using cloud technologies isthe ability to automati-

cally choose the type of instance acquired for computation.Cloud infrastructure providers

offer a wide variety of machines, referred to as “instance types”, that differ in terms of

cost and performance. Inexpensive instance types offer less compute power and mem-

ory, while more expensive instance types offer more computepower and memory. If

the user does not specify an instance type to use, Neptune will automatically acquire a
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compute-intensive instance. A benefit of this strategy is that since these machines are

among the more expensive machines available, the virtual machine reuse techniques we

employ amortize their cost between multiple users for jobs that do not run in 60-minute

increments (the billing quantum used in Amazon EC2).

AppServer

The AppServer is a modified version of the Google App Engine SDK that runs a

user’s App Engine application. Applications can be writtenin Python, Java, or Go, and

can utilize APIs that provide a variety of features, including storage capabilities (via

the Datastore and Blobstore) and communication capabilities (via Mail and XMPP).

For this work, we modify the AppServer to add an additional API: the Neptune API.

This API allows users to initiate Neptune jobs from within App Engine applications

hosted on AppScale, and thus provides a mechanism by which web applications can

execute high performance computation. This also opens up HPC to greater audiences

of users, including those who want to run their codes from different types of platforms

(e.g., via their smartphone or tablet computer).

4.3.2 Job Data

Clouds that run Neptune jobs must allow for data stored remotely to be imported

and used as job inputs. Jobs can consume zero or more files as inputs, but always
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produce exactly one piece of output, a string containing thestandard out generated by

the executed code. Neptune refers to data as three-tuple: a string containing the job’s

identification number, a string containing the output of thejob, and a composite type

indicating its access policy. The access policy used withinNeptune is similar to that of

the access policy used by Amazon’s Simple Storage Service [5]: a particular piece of

data can be tagged as either private (only visible to the userthat uploaded it) or public

(visible to anyone). Data is by default private but can be changed by the user, via a

Neptune job. Similarly, data is referenced as though it wereon a file-system: paths

must begin with a forward-slash (‘/’) and can be compartmentalized into folders in the

familiar manner. The data itself is accessed via a Google AppEngine application that is

automatically started when AppScale starts, and can be stored internally via AppScale

or externally via Amazon S3. This allows jobs to automatically save their outputs in any

datastore that AppScale supports, or any service that is API-compatible with Amazon

S3 (e.g., Google Storage, Eucalyptus Walrus). The Neptune program to set the ACL of

a particular piece of data to be public is:

nep tune : t ype => ‘ s e t−ac l ’ ,

: o u t p u t => ‘ / mydata / nqueens−ou tpu t ’ ,

: a c l => ‘ pub l i c ’

Just as a Neptune job can be used to set the ACL for a piece of data, a Neptune job

can also be used to get the ACL for a piece of data:
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a c l d a t a = nep tune : t ype => ‘ ge t−ac l ’ ,

: o u t p u t => ‘ / mydata / nqueens−ou tpu t ’

p u t s ‘ The c u r r e n t ACL i s : ’ + a c ld a t a [ : a c l ]

Retrieving the output of a given job is also done via a Neptune job. By default, it

returns a string containing the results of the job. As many jobs return data that is far too

large to efficiently be used in this manner, a special parameter can be used to instead

indicate that it should be copied to the local machine. The following Neptune code

illustrates both use cases (note that the# character is Ruby’s comment character):

# f o r a job wi th sma l l o u t p u t

r e s u l t = nep tune : t ype => ‘ ge t−ou tpu t ’ ,

: o u t p u t => ‘ / mydata / boo ’

p u t s ‘ Output i s : ’ + r e s u l t [ : o u t p u t ]

# f o r a job wi th much l a r g e r o u t p u t

r e s u l t = nep tune : t ype => ‘ ge t−ou tpu t ’ ,

: o u t p u t => ‘ / mydata / boo−l a r g e ’ ,

: s a v e t o l o c a l => ‘ / s h a r e d / boo− l a r g e . t x t ’

i f r e s u l t [ : s u c c e s s ]

p u t s ‘ Output cop ied s u c c e s s f u l l y . ’

end
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4.3.3 Employing Neptune for HPC Frameworks

To support HPC applications within cloud platforms, weservice-izethem for use

via Neptune. Specifically, Neptune provides support for MPI, X10, MapReduce, UPC,

and Erlang, to enable users to run arbitrary codes for different computational models.

While these general purpose languages and frameworks are useful for the scientific

community as a whole, Neptune also seeks to engender supportfrom the biochemical

simulation community. These groups of HPC perform simulations via kinetic Monte

Carlo methods (specifically, the Stochastic Simulation Algorithm), and often need to

run a large number of these simulations (on a minimum order of105) to gain statistical

accuracy. Neptune supports use of StochKit, a general purpose SSA implementation,

as well as DFSP and dwSSA, two specialized SSA implementations.

As users may not have these libraries and runtimes installedlocally, Neptune also

provides the ability to remotely compile their code (required for the non-SSA computa-

tional models), and is extensible to support non-compute intensive application domains,

such as web services.

MPI

The Message Passing Interface (MPI) [48] is a popular, general purpose computa-

tional framework for distributed scientific computing. Themost popular implementa-

tion is written in a combination of C, C++, and assembly. Implementations exist for
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many other programming languages, such as Fortran, Java, and Python. AppScale em-

ploys the C/C++ version, enabling developers to write code in either of these languages

to access MPI bindings within AppScale. The developer uses Neptune to specify the

location of the compiled application binary and output data, and this information is sent

from Neptune to the AppController.

Following the MPI execution model, one compute node is designated as a master

node, and all other nodes are referred to as slave nodes. The master node starts up

NFS on all nodes, mounts a shared filesystem on all slave nodes, runsmpdboot on its

own node, and executes the user’s code on its node viampiexec, piping the output

of the job to a file on its local filesystem. Once it has completed, the master node runs

mpdallexit and stores the standard output and standard error of the job (the results)

in the database that the user has requested, for later retrieval. An example of how a user

would run an MPI job is as follows:

nep tune : t ype => : mpi ,

: code => ‘ / code / powermethod ’ ,

: n o d e s t o u s e => 4 ,

: o u t p u t => ‘ / o u t p u t / powermethod . t x t ’

In this example, we specify the location where the compiled code to execute is lo-

cated (stored via a previous Neptune job). The user also indicates how many machines

are required to run their MPI code and where the output of the job should be placed.
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Note that this program does not use any inputs, nor need to write to any files on disk as

part of its output. Neptune can be extended to do so, if necessary. We also can designate

which shared file system to use when running MPI. Currently, wesupport NFS and are

working on support for the Lustre Distributed File System [68].

We also note that many HPC applications require a high performance, low latency

interconnect. If running over Amazon EC2, users can acquire this via the Cluster Com-

pute Instances they provided, and in Eucalyptus, a cloud canbe physically constructed

with the required network hardware. If the user does not haveaccess to this type of

hardware, and their program requires it, their program may suffer from degraded per-

formance, or may not run at all.

X10

While MPI is suitable for many types of application domains, one demand in com-

puting has been to enable programmers to write fast, scalable code using a high-level

programming language. In addition, as many years of research have gone into opti-

mizing virtual machine technologies, it is also desirable for a new technology to be

able to leverage this work. In this spirit, IBM introduced theX10 programming lan-

guage [25], which uses a Java-like syntax, and can execute transparently over either a

non-distributed Java backend or a distributed MPI backend.The Java backend enables
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developers to develop and test their code quickly, and utilize Java libraries, while the

MPI backend allows the code to be run over as many machines as the user can acquire.

As X10 code can compile to executables for use by MPI, X10 jobsare reducible to

MPI jobs. Thus the following Neptune code deploys an X10 executable that has been

compiled for use with MPI:

nep tune : t ype => : mpi ,

: code => ‘ / code / NQueensDist ’ ,

: n o d e s t o u s e => 2 ,

: o u t p u t => ‘ / o u t p u t / nqueensx10 . t x t ’

With the combination of MPI and X10 within Neptune, users cantrivially write

algorithms in both frameworks and (provided a common outputformat exists) compare

the results of a particular algorithm to ensure correctnessacross implementations. One

example used in this paper is then − queens algorithm [80], an algorithm that, given

an chess board of sizen × n, determines how many waysn queens can be placed

on the board without threatening one another. The followingNeptune code illustrates

how to verify the results produced by an MPI implementation against that of an X10

implementation (assuming both codes are already stored remotely):

# run mpi v e r s i o n

nep tune : t ype => : mpi ,
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: code => ‘ / code / MpiNQueens ’ ,

: n o d e s t o u s e => 4 ,

: o u t p u t => ‘ / mpi / nqueens ’

# run x10 v e r s i o n

nep tune : t ype => : mpi ,

: code => ‘ / code / X10NQueens ’ ,

: n o d e s t o u s e => 4 ,

: o u t p u t => ‘ / x10 / nqueens ’

# wa i t f o r mpi v e r s i o n t o f i n i s h

loop {

mpi da ta = nep tune : t ype => ‘ ou tpu t ’ ,

: o u t p u t => ‘ / mpi / nqueens ’

i f mp i da ta [ : s u c c e s s ]

b reak

end

s l e e p ( 6 0 )

}
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# wa i t f o r x10 v e r s i o n t o f i n i s h

loop {

x 1 0 d a t a = nep tune : t ype => ‘ ou tpu t ’ ,

: o u t p u t => ‘ / x10 / nqueens ’

i f x 1 0 d a t a [ : s u c c e s s ]

b reak

end

s l e e p ( 6 0 )

}

i f mp i da ta [ : o u t p u t ] == x 1 0d a t a [ : o u t p u t ]

p u t s ‘ Output matched ! ’

e l s e

p u t s ‘ Output d id no t match . ’

end

Output jobs return a hash containing a:success parameter, indicating whether or

not the output exists. We leverage this to determine when thecompute job that generates

this output has finished. The:output parameter in anoutput job contains a string
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corresponding to the standard out of the job itself, and we use Ruby’s string comparison

operator (==) to compare the outputs for equality.

MapReduce

Popularized by Google in 2004 for its internal data processing [33], the map-reduce

programming paradigm (MapReduce) has experienced a resurgence and renewed inter-

est. In contrast to the general-purpose message passing paradigm embodied in MPI,

MapReduce targets embarrassingly parallel problems. Usersprovide input, which is

split across multiple instances of a user-defined Map function. The output of this func-

tion is then sorted based on a key provided by the Map function, and all outputs with

the same key are given to a user-defined Reduce function, whichtypically aggregates

the data. As no communication can be done by the user in the Mapand Reduce phases,

these programs are highly amenable to parallelization.

Hadoop provides an open-source implementation of MapReducethat runs over the

Hadoop Distributed File System (HDFS) [50]. The standard implementation requires

users to write their code in the Java programming language, while the Hadoop Stream-

ing implementation faciliates writing code in any programming language. Neptune

has support for both implementations. Users provide a Java archive file (JAR) for the

standard implementation, or Map and Reduce applications forthe Streaming imple-

mentation.
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AppScale retrieves the user’s files from the desired data storage location, and runs

the job on the Neptune-specified nodes in the system. In particular, the AppController

contacts the Hadoop JobTracker node with this information,and polls Hadoop until the

job completes (indicated by the output location having datawritten to it). When this

occurs, Neptune copies the data back to a user-specified location. From the user’s per-

spective, the necessary Neptune code to run code written with the standard MapReduce

implementation is:

nep tune : t ype => : mapreduce ,

: i n p u t => ‘ / i n p u t / i npu t− t e x t . t x t ’ ,

: o u t p u t => ‘ / o u t p u t / mr−o u t p u t . t x t ’ ,

: map reduce ja r => ‘ / code / example . j a r ’ ,

: main => ‘ wordcount ’ ,

: n o d e s t o u s e => 4

As was the case with MPI jobs, the user specifies where the input to the MapRe-

duce job is located, where to write the output to, and where the code to execute is

located. Users also specify how many nodes they want to run their code over. App-

Scale normally stores inputs and outputs in a datastore it supports or Amazon S3, but

for MapReduce jobs, it also supports the Hadoop Distributed File System (HDFS). This

can result in Neptune copying data to HDFS from S3 (and vice-versa), but an extra pa-
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rameter can be used to indicate that the input already existsin HDFS, to skip this extra

copy operation.

Unified Parallel C

Unified Parallel C [38] is a superset of the C programming language that aims to

simplify HPC applications via the Partitioned Global Address Space (PGAS) program-

ming model. UPC allows developers to write applications that use shared memory

in lieu of the message passing model that other programming languages offer (e.g.,

MPI). UPC also can be deployed over a number of runtimes; someof these backends

include specialized support for shared memory machines as well as optimized perfor-

mance when specialized networking equipment is available.UPC programs deployed

via Neptune can use any backend supported by the underlying cloud platform, and as

we use AppScale in this work, three backends are available: the SMP backend, opti-

mized for single node deployments, the UDP backend, for distributed deployments, and

the MPI backend, which leverages the mature MPI runtime.

UPC code can be deployed in Neptune in a manner analogous to that of other pro-

gramming languages. If a UPC backend is not specified in aMakefilewith the user’s

code, the MPI backend is automatically selected. As we have compiled our code with

the MPI backend, the Neptune code needed is identical to thatused in MPI deploy-

ments:
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r e s u l t = nep tune : t ype => : mpi ,

: code => ‘ ˜ / r i ng −compi led / Ring ’ ,

: n o d e s t o u s e => 4 ,

: p r o c s t o u s e => 4 ,

: o u t p u t => ‘ / upc / r i ng−ou tpu t ’

# i n s p e c t i s Ruby ’ s method t o p r i n t a hash

p u t s r e s u l t . i n s p e c t

As shown here, users need only specify the location of the executable, how many

nodes to use, and where the output should be placed. We extendthe MPI support

that Neptune offers to enable users to specify how many processes should be spawned.

This allows for deployments where the number of processes isgreater than that of the

number of available nodes (and are thus overprovisioned), and can take advantage of

scenarios where the instance types requested have more thana single core present.

Erlang

Erlang [9] is a concurrent programming language developed by Ericsson that uses

a message passing interface similar to that of MPI. While other HPC offerings try to

engender a larger user community by basing their language’ssyntax, semantics, or

runtime on that of C or Java (e.g., MPI, UPC, and X10), Erlang does not. The stated
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reason for this is that Erlang seeks to optimize the user’s code via the single assignment

model, which enables a higher degree of compile-time optimization than the model

used by C-style languages.

While Erlang’s concurrent programming constructs extend todistributed comput-

ing, Erlang does not provide a parallel job launcher analogous to those provided by

MPI (via mpiexec), Hadoop MapReduce, X10, and UPC. These job launchers do

not require the user to hardcode IP addresses in their code, as is required by Erlang

programs.

Due to this limitation, we support only the concurrent programming model that

Erlang offers. We are currently investigating ways to automate the process for the

distributed version. Users write Erlang code with amainmethod, as is standard Erlang

programming practice, and this method is then invoked by theAppScale cloud platform

on a machine allocated for use with Erlang.

The Neptune code needed to deploy a piece of Erlang code is similar to that of the

other supported languages:

nep tune : t ype => : e r l ang ,

: code => ‘ ˜ / r i ng −compi led / r i n g . beam ’ ,

: o u t p u t => ‘ / e r l ang−o u t p u t . t x t ’ ,

: n o d e s t o u s e => 1
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In this example, we specify that we wish to use a single node, the path on the local

filesystem where the compiled code can be found, and where theoutput of the execution

should be placed.

Compilation Support

Before MPI, X10, MapReduce, UPC, or Erlang jobs can be run, they require the

user’s code to be compiled. Although the target architecture (the machines that App-

Scale runs over) may be the same as the architecture that the scientist has compiled

their code on, it is not guaranteed to be so. It is therefore necessary to offer remote

compilation support, so that no matter what platform the user runs, whether it be a 32-

bit laptop, a 64-bit server, or even a tablet computer that has a text editor and internet

connection, code can be compiled and run. The Neptune code required to compile a

given piece of source code is:

r e s u l t = nep tune : t ype => : compi le ,

: code => ‘ ˜ / r i ng ’ ,

: main => ‘ Ring . x10 ’ ,

: o u t p u t => ‘ / o u t p u t / r i ng ’ ,

: copy to => ‘ ˜ / r i ng −compi led ’

p u t s r e s u l t . i n s p e c t
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This Neptune code requires the user to indicate only where their code is located

and which code is the main executable (as opposed to being a library or other ancil-

lary code). Scientists may providemakefiles if they like. If they do not, Neptune

attempts to generate one for them based on the file’s extension or its contents. Neptune

cannot generatemakefiles for all scenarios, but can do so for many scenarios where

the user may not be comfortable with writing amakefile.

StochKit

To enable general purpose SSA programming support for scientists, Neptune pro-

vides support for StochKit, an open source biochemical simulation software package.

StochKit provides stochastic solvers for several variantsof the Stochastic Simulation

Algorithm (SSA), and provides the mechanisms for the stochastic simulation of ar-

bitrary models. Scientists describe their models by specifying them in the Systems

Biology Markup Language (SBML) [58]. In this work, we simulate a model included

with StochKit, known asheat-shock-10x. This model is a ten-fold expansion of

the system that models the heat shock response inEscherichia coli[39]. Figure 4.2

shows results from a statistical analysis on an ensemble of simulated trajectories from

this model.

Typically scientists utilizing the SSA run a large number ofsimulations to ensure

enough statistical accuracy in their results. As the numberof simulations to run may
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Figure 4.2: Plots showing statistical results from StochKit stochastic simulations of
the heat shock model. (Left) Comparison of probability density histograms from
two independent ensembles of trajectories, and the histogram distance between them.
The histogram self-distance is used to determine the confidence for a given ensemble
size. (Right) Time-series plots of the mean (solid lines) andstandard-deviation bounds
(dashed lines) for two biochemical species.
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not be known a priori, scientists often have to run a number ofsimulations, see if the

requested confidence level has been achieved, and if this hasnot occurred, the process

repeats. The Neptune code required to do this is trivial:

c o n f i d e n c e n e e d e d = 0 .95

i = 0

loop {

nep tune : t ype => : ssa ,

: n o d e s t o u s e = 4 ,

: t a r => ‘ / code / s s a . t a r . gz ’

: s i m u l a t i o n s = 100000 ,

: o u t p u t = ‘ / mydata / run−#{ i } ’

# wa i t f o r s s a job t o f i n i s h

loop {

s s a d a t a = nep tune : t ype => ‘ ge t−ou tpu t ’ ,

: o u t p u t => ‘ / mydata / run−#{ i } ’

i f s s a d a t a [ : s u c c e s s ]

b reak

end

s l e e p ( 6 0 )
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}

c o n f i d e n c e a c h i e v e d = s s ad a t a [ : o u t p u t ]

i f c o n f i d e n c e a c h i e v e d>c o n f i d e n c e n e e d e d

break

e l s e

p u t s ‘ S u f f i c i e n t c o n f i d e n c e no t reached . ’

end

i += 1

}

To enable StochKit support within Neptune, we automatically install StochKit within

newly created AppScale neptune/images by fetching it from alocal repository. It is

placed in a predetermined location on the image and made available to user-specified

scripts via its standard executables. It is possible to require users to run a Neptune

:compile job that would install StochKit in an on-demand fashion, butwe elect to

preinstall it, to reduce the number of steps required to run aStochKit job. Additionally,

while forcing a compilation step is possible, the user’s StochKit code often consists of

biochemical models and abash script, which do not need to be compiled to execute

and thus do not fall under the domain of a:compile job.
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As StochKit does not run in a distributed fashion, the AppController coordinates the

machines that the user requests to run their SSA computation. For the example above,

in which four nodes are to be used to run 100,000 simulations,Neptune instructs each

node to run 25,000 simulations.

DFSP

One specialized SSA implementation supported by Neptune isthe Diffusive Finite

State Projection algorithm (DFSP) [36], a high-performance method for simulating spa-

tially inhomogenous stochastic biochemical systems, suchas those found inside living

cells. The example system that we examine here is a biological model of yeast po-

larization, known as the G-protein cycle example, shown in [36]. Yeast cells break

their spatial symmetry and polarize in response to an extra-cellular gradient of mating

pheromones. The dynamics of the system are modeled using thestochastic reaction-

diffusion master equation. Figure4.3shows visualizations from stochastic simulations

of this model.

The code for the DFSP implementation is a tarball containingC language source

and an accompanyingmakefile. The executable produces a single trajectory for each

instance that is run. As this simulation is a stochastic system, an ensemble of indepen-

dent trajectories are required for statistical analysis; 10,000 trajectories are needed to

minimize error to acceptable levels. The Neptune code needed to run this is:
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Figure 4.3: Two plots of the DFSP example model of yeast polarization. (Left)
Temporal-Spatial profile of activated G-protein. Stochastic simulation reproduces the
noise in the protein population that is inherent to this system. (Right) Overlay of three
biochemical species populations across the yeast cell membrane: the extra-cellular
pheromone ligand, the ligand bound with membrane receptor,and the G-protein ac-
tivated by a bound receptor.
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s t a t u s = nep tune : t ype => : ssa ,

: n o d e s t o u s e => 64 ,

: t a r => ‘ / code / d f sp . t a r . gz ’ ,

: o u t p u t => ‘ / o u t p u t s / ssa−ou tpu t ’ ,

: s t o r a g e => ‘ s3 ’ ,

: EC2 ACCESSKEY => ENV[ ‘ S3 ACCESSKEY ’ ] ,

: EC2 SECRETKEY => ENV[ ‘ S3 SECRETKEY ’ ] ,

: S3 URL => ENV[ ‘ S3 URL ’ ] ,

: t r a j e c t o r i e s => 10 000 ,

p u t s s t a t u s . i n s p e c t

In this example, the scientist has indicated that they wish to run their DFSP code,

stored remotely at/code/dfsp.tar.gz, over 64 machines. The scientist here has

also specified that their code should be retrieved from Amazon S3 with the provided

credentials, and that the output should be saved back to Amazon S3. Finally, the scien-

tist has indicated that 10,000 simulations should be run. The storage-specific parame-

ters used here are not specific to DFSP or SSA jobs, and can be used with any type of

computation.

To enable DFSP support within Neptune, we automatically install support for the

GNU Scientific Library (GSL) when we generate a new AppScale image. The user’s
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DFSP code can then utilize it within its computations in the same fashion as if it were

installed on their local computer. Neptune does not currently provide a general model

for determining library dependencies, as versioning of libraries can make this problem

difficult to handle in an automated fashion. However, Neptune does allow an expert

user to manually install the required libraries a single time and enable the community

at large to benefit.

dwSSA

Another specialized SSA implementation we support within Neptune is the dwSSA,

the doubly weighed SSA coupled with the cross-entropy method. The dwSSA is a

method for accurate estimation of rare event probabilitiesin stochastic biochemical sys-

tems. Rare events, events with probabilities no larger than10−9, often have significant

consequences to biological systems, yet estimating them tends to be computationally

infeasible. The dwSSA accelerates the estimation of these rare events by significantly

reducing the number of trajectories required. This is accomplished using importance

sampling, which effectively biases the system toward the desired rare event, and re-

duces the number of trajectories simulated by several orders of magnitude.

The system we examine in this work is the birth-death processshown in [31]. The

rare event that this model attempts to determine is the probability that the stochastic

fluctuations of this system will double the population of thechemical species. The
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model requires the simulation of 1,000,000 trajectories toaccurately characterize the

rare event probability. The code for this example is a coupled set of source files written

in R (for model definition and rare event calculations) and C (for efficient generation of

stochastic trajectories). The Neptune code needed to run the dwSSA implementation is

identical to that of DFSP and StochKit: users simply supply their own tarball with the

dwSSA code in place of a different SSA implementation. As each dwSSA simulation

takes a trivial amount of time to run, we customize it to take,as an input, the number

of simulations to run. This minimizes the amount of time wasted setting up and tearing

down the R environment.

To enable dwSSA support within Neptune, we automatically install support for the

R programming language when we generate a new AppScale image. We also place

the R executables in a predetermined location for use by AppScale and Neptune and

use R’s batch facilities to instruct R to never save the user’sworkspace (environment)

between R executions, as is the default behavior.

4.3.4 Employing Neptune for Cloud Scaling and Enabling Hybrid

Clouds

Our goal with Neptune is to simplify configuration and deployment of HPC ap-

plications. However, Neptune is flexible enough to be used with other application

domains. Specifically, Neptune can be used to control the scaling and placement of
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services within the underlying cloud platform. Furthermore, if the platform supports

hybrid cloud placement strategies, Neptune can control howservices are placed. This

allows Neptune to be used for both high throughput computing(HTC) and many task

computing (MTC). In the former case, resources can be claimedfrom multiple cloud

infrastructures to serve user jobs. In the latter case, Neptune can be used to serve both

compute-intensive jobs as well as web service programs.

To demonstrate this, we use Neptune to enable users to manually scale up a running

AppScale deployment. Users need only specify which component they wish to scale up

(e.g., the load balancer, application server, or database server) and how many of them

they require. This reduces the typically difficult problem of scaling up a cloud to the

following Neptune code:

nep tune : t ype => : appsca le ,

: n o d e s t o u s e => { : c loud1 => 3 ,

: c loud2 => 6} ,

: add component => ‘ appeng ine ’ ,

: t i m e n e e d e d f o r => 3600

In this example, the user has specified that they wish to add nine application servers

to their AppScale deployment, and that these machines are needed for one hour. Fur-

thermore, three of the servers should be placed in the first cloud that the platform is

running over, while six servers should be placed in the second cloud. Defining which
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cloud is the “first cloud” and which cloud is the “second cloud” is done by the cloud

administrator, via the AppScale Tools (see Section 4.1.1).This type of scaling is useful

when the amount of load in both clouds is known: here, this is useful if both clouds are

over-provisioned, but the second is either expecting greater traffic in the near future or

is sustaining more load than the first cloud.

Scaling and automation are only amenable to the same degree as the underlying

services allow for. For example, while the Cassandra database allows nodes to be added

to the system dynamically, users cannot add more nodes to thesystem than already exist

(e.g., in a system withN nodes, no more thanN−1 nodes can be added at a time) [24].

Therefore, if more than the allowed for number of nodes are needed, either multiple

Neptune jobs must be submitted or the cloud platform must absorb this complexity into

its scaling mechanisms.

4.3.5 Limitations

Neptune enables automatic configuration and deployment of software by a cloud

platform to the extent that the underlying software allows.It is thus important to make

explicit scenarios in which Neptune encounters difficulties, as they are the same sce-

narios in which the supported software packages are not amenable to being placed in a

cloud platform. From the end-users we have designed Neptuneto aid, we have experi-
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enced three common problems that are not specific to Neptune or to distributed systems

(e.g., clouds, grids) in general:

• Codes that require a unique identifier, whether it be an IP address or process name

to be used to locate each machine in the computation (e.g., multi-node Erlang

computations). This is distinct from the case where the framework requires IP

addresses to be hardcoded, as these frameworks (like MPI) donot require the

end-user’s code to be modified in any way or be aware of a node’sIP address.

• Programs that have highly specialized libraries for end-users but are not free /

open-source, and thus are currently difficult to dynamically acquire and release

licenses for.

• Algorithms that require a high-speed interconnect that runin a cloud infrastruc-

ture that does not offer one. These algorithms may suffer from degraded perfor-

mance or may not work correctly at all. The impact of this can be mitigated by

choosing a cloud infrastructure that does provide such an offering (e.g., Cluster

Compute Instances for Amazon EC2, or a Eucalyptus cloud with similar network

hardware).

We are investigating how to mitigate these limitations as part of our future work.

For unique identifiers, it is possible to have Neptune take a parameter containing a list

of process identifiers to use within computation. For licensing issues, we can have
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the cloud fabric make licenses available on a per-use basis.AppScale can then guide

developers to clouds that have the appropriate licenses fortheir application.

4.3.6 Extensibility

Neptune is designed to be extensible, both in the types of jobsupported and the

infrastructures that it can harness. Developers who wish toadd support for a given

software framework within Neptune need to modify the Neptune language component

as well as the Neptune runtime within the cloud platform thatreceives Neptune job

requests. In the Neptune language component, the developerneeds to indicate which

parameters users need to specify in their Neptune code (e.g., how input and output

should be handled), and if any framework-specific parameters should be exposed to

the user. At the cloud platform layer, the developer needs toadd functionality that can

understand the particulars of their Neptune job. This oftentranslates into performing

special requests based on the parameters present (or absent) in a Neptune job request.

For example, MapReduce users can specify that the input be copied from the local file

system to the Hadoop Distributed File System. Our implementation within AppScale

skips this step if the user indicates that the input is already present within HDFS. Once

a single, expert developer has added support for a job type within Neptune and App-

Scale, it can then be automatically configured and deployed by the community at large,

without requiring them to become an expert user.
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4.4 Evaluation

We next use Neptune to empirically evaluate how effectivelythe supported services

execute within AppScale. We begin by presenting our experimental methodology and

then discuss our results.

4.4.1 Methodology

To evaluate the software packages supported by Neptune, we use benchmarks and

sample applications provided by each. We also measure the cost of running Neptune

jobs with and without VM reuse.

To evaluate our support for MPI, we use a Power Method implementation that, at

its core, multiplies a matrix by a vector (the standardMatVec operation) to find the

absolute value of the largest eigenvalue of the matrix. We choose this code over more

standard codes such as the Intel MPI Benchmarks because it tests a number of the MPI

primitives working in tandem, producing a code that should scale with respect to the

number of nodes in the system. By contrast, the Intel MPI Benchmarks largely mea-

sure interprocess communication time or the time taken for asingle primitive operation,

which is likely to scale negatively as the number of nodes increase (e.g., barrier oper-

ations are likely to take longer when more nodes participate). We use a 6400x6400
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matrix and 6400x1 vector to ensure that the size of the matrices evenly divides the

number of nodes in the computation.

For X10, our evaluation uses an NQueens implementation publicly available from

the X10 team that is optimized for multiple machines. To ensure a sufficient amount

of computation is available, we setn = 16, thus creating a 16x16 chessboard and

placing 16 queens on the board. For comparison purposes withMPI, we also include

an optimized MPI version publicly made available be the authors of [80]. It is also set

to use a 16x16 chessboard, using a single node to distribute work across machines and

the others to perform the actual work involved.

To evaluate our support for MapReduce, we use the publicly available Java Word-

Count benchmark, which takes an input data set and finds the number of occurrences

of each word in that set. Each Map task is assigned a series of lines from the input text,

and for every word it finds, it reports this with an associatedcount of one. Each Reduce

task then sums the counts for each word and saves the result tothe output file. Our

input file consists of the works of William Shakespeare appended to itself 500 times,

producing an input file roughly 2.5GB in size.

We evaluate UPC and Erlang by means of a Thread Ring benchmark,and compare

them to reference implementations in MPI and X10. Each code implements the same

functionality: a fixed number of processes are spawned over agiven number of nodes,

and each thread is assigned a unique identifier. The first thread passes a message to the
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next thread, who then continues doing so until the last thread receives the message. The

final thread sends the message to the first thread, connectingthe threads in a ring-like

fashion. This is repeated a given number of times to completethe program’s execution.

In our first Thread Ring experiment, we fix the number of messages to be sent to

100 and fix the number of threads to spawn to 64. We vary the number of nodes to use

between 1, 2, 4, 8, 16, 32, and 64 nodes, to determine the performance improvement

that can be achieved by increasing the amount of available computation power.

In our second Thread Ring experiment, we fix the number of messages to be sent to

100, and fix the number of nodes to use at 8 nodes. We then vary the number of threads

to spawn between 2, 4, 8, 16, 32, and 64 threads, to determine the impact of increasing

the number of threads that must be scheduled on a fixed number of machines.

Our third Thread Ring experiment fixes the number of nodes to use at 8 nodes, and

fixes the number of threads to use at 64 threads. We then vary the number of messages

to send between 1, 10, 100, 1000, and 10000, to determine the performance costs of

increasing the number of messages that must be sent around the distributed thread ring

in each implementation.

For our SSA codes, DFSP and dwSSA, we run 10,000 and 1,000,000simulations,

respectively, and measure the total execution time. As mentioned earlier, previous work

in each of these papers indicate that these numbers of simulations are the minimum that

scientists typically must run to achieve a reasonable accuracy.
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We execute the non-Thread Ring experiments over different dynamic AppScale

cloud deployments of 1, 4, 8, 16, 32, and 64 nodes. In all cases, each node is a Xen

guestVM that executes with 1 virtual processor, 10GB of disk(maximum), and 1GB of

memory. The physical machines that we deploy VMs to execute with 8 processors, 1TB

of disk, and 16GB of memory. We employ a placement strategy provided by AppScale

where one node deploys an AppLoadBalancer (ALB) and Database Peer (DBP), and

the other nodes are designated as “open” (that is, they can beclaimed for any role by

the AppController as needed). Since no Google App Engine applications are deployed,

no AppServers run in the system. All values reported here represent the average of five

runs.

For these experiments, Neptune employs AppScale 1.5, MPICH21.2.1p1, X10

2.1.0, Hadoop MapReduce 0.20.0, UPC 2.12.1, Erlang R13B01, theDFSP implemen-

tation graciously made available by the authors of the DFSP paper [36], the dwSSA

implementation graciously made available by the authors ofthe dwSSA paper [31], and

the StochKit implementation publicly made available on theproject’s web site [89].

4.4.2 Experimental Results

We begin by discussing the performance of the MPI and X10 Power Method codes

within Neptune. We time only the computation and any necessary communication re-

quired for the computation; thus, we exclude the time to start NFS, to write MPI con-
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figuration files, and to start prerequisite MPI services. Figure4.4presents these results.

Table4.1presents the parallel efficiency, given by the standard formula:

E =
T1

pTp

(4.1)

whereE denotes the parallel efficiency,T1 denotes the running time of the algorithm

running on a single node,p denotes the number of processors used in the computation,

andTp denotes the running time of the algorithm running onp processors.
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Figure 4.4: Average running time for the Power Method code utilizing MPI over
varying numbers of nodes. These timings include running time as reported by
MPI Wtime and do not include NFS and MPI startup and shutdown times.

Both Figure4.4and Table4.1show clear trends: speedups are initially achieved as

nodes are increased to the system, but the decreasing parallel efficiencies show that this
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Table 4.1: Parallel efficiency for the Power Method code utilizing MPI over varying
numbers of nodes.

# of Nodes MPI Parallel Efficiency
4 0.9285
8 0.4776
16 0.3358
32 0.0488
64 0.0176

scalability does not extend up through 64 nodes. Furthermore, the running time of the

Power Method code increases after using 16 nodes. Analysis using VAMPIR [93], a

standard tool for MPI program visualization, shows that thecollective broadcast calls

used are the bottleneck, becoming increasingly so as the number of nodes increase in

the system. This is an important point to reiterate: since Neptune simply runs supported

codes on varying numbers of nodes, the original code’s bottlenecks remain present and

are not optimized away.

The MPI and X10 n-queens codes encounter a different type of scaling compared to

our Power Method code. Figure4.5 shows these trends: the MPI code’s performance

is optimal at 4 nodes, while the X10’s code performance is optimal at 16 nodes. The

X10 n-queens code suffers substantially at the lower numbers of nodes compared to its

MPI counterpart; this is likely due to its relatively new work-stealing algorithm, and is

believed to be improved in subsequent versions of X10. This is also the rationale for the

larger standard deviation encountered in the X10 test. We omit parallel efficiencies for

this code because the MPI code dedicates the first node to coordinate the computation,
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which precludes us from computing the time needed to run thiscode on a single node

(a required value).
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Figure 4.5: Average running time for the n-queens code utilizing MPI and X10
over varying numbers of nodes. These timings include running time as reported by
MPI Wtime andSystem.nanoT ime, respectively. These times do not include NFS
and MPI startup and shutdown times.

MapReduce WordCount experiences a superior scale-up compared to our MPI and

X10 codes. This is largely because this MapReduce code is optimized by Hadoop and

does not communicate between nodes, except between the Map and Reduce phases.

Figure4.6 and Table4.2 show the running times of WordCount via Neptune. As with

MPI, we measure computation time and not the time incurred starting and stopping

Hadoop.
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Figure 4.6: Average running time for WordCount utilizing MapReduce over varying
numbers of nodes. These timings include Hadoop MapReduce runtimes and do not
include Hadoop startup or shutdown times.

Figure4.6and Table4.2show opposing trends compared to the MPI results. With

our MapReduce code, we see consistent speedups as more nodes are added to the sys-

tem, although with a diminishing impact as we add more nodes to the system. This is

clear from the decreasing parallel efficiencies, and as stated before, these speedups are

not related to MapReduce or MPI specifically, but are due to theprograms evaluated

here. WordCount sees a superior speedup compared to the PowerMethod code due to

the reduced amount of communication and larger amounts of computation. We also see

smaller standard deviations when compared with the Power Method MPI code, as the

communication is strictly dictated and optimized by the runtime itself.
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Table 4.2: Parallel efficiency for WordCount using MapReduce over varying numbers
of nodes.

# of Nodes Parallel Efficiency
4 0.8455
8 0.5978
16 0.5313
32 0.3591
64 0.3000

Table 4.3: Parallel efficiency for the Thread Ring code utilizing MPI, X10, and UPC
over varying numbers of nodes.

# of Nodes MPI X10 UPC
1 1.0000 1.0000 1.0000
2 0.5000 0.5000 0.5000
4 0.4518 1.1251 0.0014
8 0.3068 1.2663 5.6904e-04
16 0.1955 1.6518 2.0528e-04
32 0.1189 1.9190 7.0025e-05
64 0.0642 25.1618 9.8221e-06

In our first Thread Ring experiment, we measure time taken to send 100 messages

through a ring of 64 threads. We vary the number of nodes used between 1, 2, 4, 8, 16,

32, and 64. Figure4.7shows the amount of time taken for implementations written in

X10, MPI, and UPC, while Table4.3 shows the parallel speedup achieved. Both the

MPI and X10 codes improve in execution time as nodes are added. While the X10 code

achieves a better parallel efficiency than the MPI code, it ison average one to three

orders of magnitude slower. The reason behind this has been explained by the X10

team: the X10 runtime currently is not optimized to handle scenarios where the system

is overprovisioned (e.g., when the number of processes exceeds the number of nodes).
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Figure 4.7: Average running time for the Thread Ring code utilizing MPI, X10, and
UPC over varying numbers of nodes. These timings only include execution times re-
ported by each language’s timing constructs.

This is confirmed by the scenario in which 64 nodes are used: here, the system is not

overprovisioned and runs in an equivalent amount of time as the MPI code. The UPC

code exhibits a very different scaling pattern compared to the MPI and X10 codes: as

it relies on synchronization via barrier statements, it runs quickly when the number of

nodes is small, and becomes slower as the number of nodes increases.

Our second Thread Ring experiment fixes the number of nodes at the median value

(8 nodes), and measures the amount of time needed to send 100 messages through

thread rings of varying sizes. Here, we vary the sizes between 8, 16, 32, 64, and 128

threads. The results of this experiment for the X10, MPI, andUPC codes are shown in
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Figure 4.8: Average running time for the Thread Ring code utilizing MPI, X10, and
UPC over varying numbers of threads. These timings only include execution times as
reported by each language’s timing constructs.

Figure4.8. As expected, all codes become slower as the size of the thread ring grows.

The overall execution time is fastest for the MPI code, followed by that of the UPC

and X10 codes. The reason for these differences is identicalto that given previously:

the UPC code relies on barriers. As the number of threads increases, it becomes more

expensive to perform these barrier operations. The X10 codeis also overprovisioned in

most cases, so it slows down in these scenarios as well. In thescenario when it is not

overprovisioned (e.g., when there are 8 threads and 8 nodes), the X10 code performs

on par with the MPI code.
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Figure 4.9: Average running time for the Thread Ring code utilizing MPI, X10, and
UPC over varying numbers of messages. These timings only include execution times
as reported by each language’s timing constructs.

Our third Thread Ring experiment fixes the number of nodes at the median value (8

nodes) once again and measures the amount of time needed to send a varying number of

messages through the thread ring. Specifically, we vary the number of messages to be

sent between 1, 10, 100, 1000, and 10000 messages for the X10,MPI, and UPC codes.

Figure4.9shows the results of this experiment: for all codes, excluding the single mes-

sage scenario, the time to send additional messages increases linearly. Unlike the other

benchmarks, the X10 and UPC codes perform within an order of magnitude of the MPI

code. For the X10 code, this is because all machines are well-provisioned (specifically

because we run 8 threads over 8 nodes), avoiding the performance degradation that the
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other experiments revealed. The UPC code also maintains relatively close performance

to the MPI and X10 codes due to the low number of nodes: the barriers, which are the

bottleneck of the UPC code, are inexpensive when a relatively small number of nodes

are used.
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Figure 4.10: Average running time for the single node ThreadRing code utilizing MPI
and Erlang over varying numbers of threads. These timings only include execution
times as reported by each language’s timing constructs.

To evaluate the performance of our Erlang code, we compare our Erlang Thread

Ring implementation with that of our MPI code deployed over a single node. We fix

the number of messages to send at 1000 and vary the number of threads that make

up the ring between 4, 8, 16, 32, and 64. The results of this experiment are shown

in Figure4.10. The Erlang code scales linearly, and performs two to three orders of
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magnitude faster than the MPI code for all numbers of threadstested. This is likely

due to Erlang’s long history as a concurrent language and lightweight threading model,

which makes it highly amenable to this experiment. Similarly, MPI is designed to be

a distributed programming language, and as we have seen in the other experiments,

suffers performance degradations when overprovisioned. We are looking into support

for Threaded MPI (TMPI) [85], which provides optimizations for the concurrent use

case shown here.

We next analyze the performance of the specialized SSA packages supported by

Neptune. This includes the specialized implementations present in DFSP and dwSSA,

which here focus on the yeast polarization and birth-death models discussed previously.

Like the MapReduce code analyzed earlier, DFSP also benefits from parallelization

and support via Neptune. This is because the DFSP implementation used has no in-

ternode communication during its computation, and is embarrassingly parallel. In the

DFSP code, once each node knows how many simulations to run, they work with no

communication from other nodes. Figure6.2 and Table6.1 show the running times

for 10,000 simulations via Neptune. Unlike MapReduce and MPI, which provide dis-

tributed runtimes, our DFSP code does not, so we time all interactions once AppScale

receives the message to begin computation from Neptune until the results have been

merged on the master node.
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Figure 4.11: Average running time for the DFSP code over varying numbers of nodes.
As the code used here does not have a distributed runtime, timings here include the time
that AppScale takes to distribute work to each node and mergethe individual results.

Figure6.2and Table6.1show similar trends for the DFSP code as seen in MapRe-

duce WordCount. This code also sees a consistent reduction inruntime as the num-

ber of nodes increase, but retains a much higher parallel efficiency compared to the

MapReduce code. This is due to the lack of communication within computation, as the

framework needs only to collect results once the computation is complete, and does not

need to sort or shuffle data, as is needed in the MapReduce framework. As less com-

munication is used here compared to WordCount and Power Method MPI codes, the

DFSP code exhibits a smaller standard deviation, and a standard deviation that tends to

decrease with respect to the number of nodes in the system.
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Table 4.4: Parallel efficiency for the DFSP code over varyingnumbers of nodes.

# of Nodes Parallel Efficiency
4 0.9929
8 0.9834
16 0.9650
32 0.9216
64 0.8325

Table 4.5: Parallel efficiency for the dwSSA code over varying numbers of nodes.

# of Nodes Parallel Efficiency
4 0.7906
8 0.4739
16 0.3946
32 0.2951
64 0.1468

Another example that follows similar trends to the DFSP codeis the other Stochastic

State Algorithm, dwSSA, shown in Figure4.12and Table4.5. This code achieves a

reduction in runtime with respect to the number of nodes in the system, but does not

do so at the same rate as the DFSP code, as can be seen through the lower parallel

efficiencies. This is because the execution time for a singledwSSA trajectory is much

smaller than a single DFSP trajectory, which results in wasted time setting up and

tearing down the R environment.

4.4.3 VM Reuse Analysis

Next, we perform a brief examination of the costs of the experiments in the previous

section if run over Amazon EC2, with and without the VM reuse techniques described
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Figure 4.12: Average running time for the dwSSA code over varying numbers of nodes.
As the code used here does not have a distributed runtime, timings here include the time
that AppScale takes to distribute work to each node and mergethe individual results.

previously. The VMs are configured with 1 virtual CPU, 1 GB of memory, and a 64-bit

platform. This is similar to the Amazon EC2 “Small” machine type (1 virtual CPU, 1.7

GB of memory, and a 32-bit platform) which costs $0.085 per hour.

Each PowerMethod, MapReduce, DFSP, and dwSSA experiment is run five times

at 1, 4, 8, 16, 32, and 64 nodes to produce the data shown earlier, while each NQueens

experiment is run five times at 2, 4, 8, 16, 32, and 64 nodes. We compute the cost of

running these experiments without VM reuse (that is, by acquiring the needed number

of machines, running the experiments, and then powering them off) compared to the

cost with VM reuse (that is, by acquiring the needed number ofmachines, performing
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Table 4.6: Cost to run experiments for each type of Neptune job, with and without
reusing virtual machines.

# Type Cost with Cost without
of Job VM Reuse VM Reuse

PowerMethod $12.84 $64.18
NQueens(MPI) $12.92 $64.60
NQueens(X10) $13.01 $64.60

MapReduce $13.01 $64.18
DFSP $35.70 $78.63

dwSSA $12.84 $64.18

Total $100.32 $400.37

the experiment for all numbers of nodes, and not powering them off until all runs com-

plete). Note that in the reuse case, we do not perform reuse between experiments. For

example, the Neptune code used to run the experiments for theX10 NQueens code is:

[ 2 , 4 , 8 , 1 6 , 3 2 , 6 4 ] . each{ | i |

5 . t imes { | j |

nep tune : t ype => : x10 ,

: code => ‘ / code / NQueensDist ’ ,

: n o d e s t o u s e => i ,

: o u t p u t => ‘ / nqueensx10 /#{ i } /#{ j } ’

}

}

Table4.6 shows the expected cost of running these experiments with and without

VM reuse. In all experiments, employing VM reuse greatly reduces the cost. This is
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largely due to inefficient use of nodes without reuse, as manyscenarios employ large

numbers of nodes to run experiments that only run for a fraction of an hour (VMs

are charged for by AWS by the hour). All of the experiments except for DFSP also

cost roughly the same because they use similar numbers of CPU-hours of computation

within AWS and thus are similarly priced. We see much greater variation in time and

cost on a per-minute or per-second pricing model instead of aper-hour pricing model.

4.5 Related Work

An early version of this work was presented at the Workshop onScientific Cloud

Computing (ScienceCloud) and was entitled “Neptune: A DomainSpecific Language

for Deploying HPC Software on Cloud Platforms” [17]. The work developed by others

that is most similar to Neptune iscloudinit.d from Nimbus [61]. cloudinit.d

provides an API that users employ to automatically launch, configure, and deploy

nodes in a cloud infrastructure. In contrast to Neptune,cloudinit.d’s program-

ming model places the onus of configuration and deployment onthe user who writes

cloudinit.d scripts. Neptune takes an alternate approach, hiding the complexity

behind correct configuration and deployment.

Other works exist that provide either language support for cloud infrastructures

or automated configuration or deployment, but not both. In the former category ex-
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ist projects like SAGA [60], the RightScale Gems [79] and boto [13]. SAGA en-

ables users to write programs in C++, Python, or Java that interact with grid resources,

with the recent addition of support for cloud infrastructure interaction. A key differ-

ence between SAGA and Neptune is that SAGA is conceptually designed to work with

grid resources, and thus the locus of control remains with the user. The programming

paradigm embodied here serves use cases that favor a static number of nodes and an un-

changing environment. Conversely, Neptune is designed to work over cloud resources,

and can elastically add or remove resources based on the environment. The RightScale

Gems andboto are similar to SAGA but only provide interaction with cloud infras-

tructures (e.g., Amazon EC2 and Eucalyptus).

In the latter category exist projects such as the Nimbus Context Broker [61] and

Mesos [56]. The Nimbus Context Broker automates configuration and deployment of

otherwise complex software packages in a matter similar to that of Neptune. It acquires

a set of virtual machines from a supported cloud infrastructure and runs a given series of

commands to unify them as the user’s software requires. Conceptually, this is similar

to what Neptune offers. However, it does not offer a languageby which it can be

operated, like Neptune and SAGA. Furthermore, the Nimbus Cloud Broker, like SAGA,

does not make decisions dynamically based on the underlyingenvironment. A set of

machines could not be acquired, tested to ensure a low latency exists, and released

within a script running on Nimbus Cloud Broker. Furthermore, it does not employ
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virtual machine reuse techniques such as those seen within Neptune. This would require

a closer coupling with supported cloud infrastructures or the use of a middleware layer

to coordinate VM scheduling, which would effectively present a cloud platform.

Like the Nimbus Context Broker, Mesos also automates configuration and deploy-

ment of complex software packages, but aims to do so for only avery specific set of

packages (MapReduce, MPI, Torque, and Spark). It requires supported packages to

be modified, and once they are “Mesos-aware”, they can be utilized towards goals of

better resource utilization for the cluster as a whole and better performance for indi-

vidual jobs. Mesos also positions itself in the cluster computing space, in which jobs

can dynamically scale up and down in the number of nodes that they use, but where the

cluster as a whole must be statically partitioned. Cluster administrators can manually

add or remove nodes, but the size of the cluster as a whole tends to remain static. This

is in contrast to the cloud model employed by Neptune, where the number of nodes is

in flux and is controllable by Neptune itself.

4.6 Summary and Conclusions

Neptune provides users with a domain specific language that abstracts away the

complexities of deploying and utilizing high performance computing services within

cloud platforms. The motivation behind Neptune is to enableusers to program with
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HPC frameworks without first having to learn how to install, configure, deploy, and

maintain the often complex runtimes associated with these frameworks. Neptune aims

to achieve this goal by repurposing the AppScale cloud platform to automatically con-

figure and deploy HPC frameworks, on behalf of the user, who need only indicate how

many nodes are required to execute their application. We evaluate Neptune by utilizing

sample applications from the MPI, X10, MapReduce, UPC, and Erlang general-purpose

HPC frameworks, as well as StochKit, DFSP, and dwSSA, scientific applications that

serve the computational systems biology community. Neptune enables users to utilize

these HPC frameworks over varying numbers of nodes with minimal effort, simply,

uniformly, and scalably.

The text of this chapter is, in part, a reprint of the materialas it appears in [19] .
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Chapter 5

MEDEA: A Pluggable Middleware
System for Interoperable Program
Execution Across Cloud Fabrics

In this chapter, we present MEDEA, an execution model for automatically execut-

ing programs, written in various programming languages, portably over disparate cloud

fabrics. MEDEA abstract away the details of cloud-based program execution by pro-

viding language support (to enable applications to be programmatically described) as

well as runtime support that abstracts away implementation-specific details of cloud-

based queuing, compute, and storage services. To facilitate cross-cloud interoperability,

MEDEA plugs a wide range of compute, storage, and FIFO queue offerings into this

system, including those provided by Amazon Web Services, Microsoft Azure, Google

App Engine, and AppScale. By doing so, MEDEA relieves developers of the burden

of having to become experts with each cloud system on which they wish to run. To

investigate the potential of MEDEA, we employ the system fora number of different
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use cases in which we compare and contrast supported clouds in terms of price and

performance using various applications, domains, and programming languages.

5.1 Introduction and Motivation

Both IaaS and PaaS systems export programmatic access to a wide range of scal-

able services via well-defined APIs. Increasingly, these exported technologies are sim-

ilar across cloud offerings and include storage, FIFO queues, and execution services.

Although such technologies simplify distributed application deployment, their APIs,

language bindings, performance, scale, and cost models alldiffer significantly across

clouds.

The plethora of IaaS and PaaS options, implementations, andrestrictions makes it

challenging and time consuming for new and expert users alike to determine which set

of services is best for a particular application, for some definition of “best” (e.g., price,

performance, scale, ease of use). Moreover, once users choose a service and code their

application to that interface and configure it for that system, they become “locked in”

As a motivating example, consider a typical user who wishes to start utilizing cloud

services. They must first evaluate which cloud services theywish to use in their ap-

plication, which can be at varying layers of abstraction andrequire differing amounts

of maintainence. Once the user decides which services they want to utilize, they must

123



Chapter 5. MEDEA: A Pluggable Middleware System for Interoperable Program Ex-
ecution Across Cloud Fabrics

then implement and maintain their system utilizing each of the chosen technologies. If

transitioning off of an existing system, then the user must port their system to the new

technology. The time and engineering costs that the user hasinvested in learning each

of these technologies is not directly transferrable to other technologies: while other

competitors may be abstractly similar (i.e., Amazon EC2 and Google Compute Engine

both offer virtual machines), in practice their APIs are incompatible, requiring an ex-

pert user to refactor the code base when porting to other services. Finally, the user must

spend additional time to transfer the knowledge of how to maintain their application

(which now utilizes a new set of services) with others.

This work attempts to alleviate these problems by proposingan interoperable,

portable, reusable execution model for cloud systems. Using this model, which

we call MEDEA, users describe the execution environment of their programs in a high

level scripting language. This metadata includes details about the program (name, exe-

cutable, arguments, etc.) and the user’s account credentials for each cloud they wish to

use. This scripting language support then communicates with the MEDEA deployment

engine. This deployment engine is a software overlay that exports an abstract interface

for managing jobs in FIFO queues, for executing jobs, and forpersisting program out-

put and profile information in cloud storage so that it can be easily accessed by users,

post-execution.

124



Chapter 5. MEDEA: A Pluggable Middleware System for Interoperable Program Ex-
ecution Across Cloud Fabrics

The deployment engine plugs in different cloud services to provide the implementa-

tion of these operations. By doing so, MEDEA is able to deploy arbitrary programs over

different cloud systems without requiring modification to the programs themselves, pro-

viding interoperability between supported cloud services. That is, we offload the com-

plexities of using different compute, storage, and queue cloud services onto MEDEA.

As a result, developers can use MEDEA-compatible services to avoid lock-in, to com-

pare and contrast different cloud offerings (their restrictions, costs, performance, etc.),

and to evaluate hybrid cloud deployment of their applications, easily and portably.

To implement MEDEA, we leverage the open source AppScale cloud platform [16,

27] and the Neptune HPC configuration language [19]. The plugins that we integrate

into the MEDEA deployment engine include compute, storage,and FIFO queue ser-

vices from Amazon Web Services [8], Microsoft Azure [70], Google App Engine [44],

and AppScale. To investigate the potential of MEDEA, we employ the system for a

number of different use cases in which we compare and contrast supported plugins in

terms of price and performance using various applications,domains, and programming

languages.

In summary, we contribute:

• A pluggable cloud software overlay that automates configuration and deploy-

ment of applications over cloud compute, storage, and queueservices provided

by Amazon, Google, Microsoft, and on-premise clouds. This support enables

125



Chapter 5. MEDEA: A Pluggable Middleware System for Interoperable Program Ex-
ecution Across Cloud Fabrics

developers to evaluate and switch between different cloud services without mod-

ifying their applications.

• Scripting language support to simplify interaction with the pluggable software

overlay that enables the construction of dynamic workflows by users.

• An experimental evaluation of a variety of software packages (from scientific

as well as general-purpose application domains) across multiple cloud vendors,

which investigates the performance and the monetary cost incurred to execute

applications via popular cloud services.

In the sections that follow, we present the design and implementation of the MEDEA

execution model. We describe how we plug in different cloud services with MEDEA.

We then investigate the cost and performance of a number of different use cases en-

abled by MEDEA, empirically evaluate its use in different hybrid cloud configurations,

and for programs written in different languages. We then discuss related work and

conclude.

5.2 Design

By unifying cloud program execution under the MEDEA execution model, we aim

to make existing user code interoperable between disparatecloud services. Pushing the

complexity of cloud services into an abstract software layer reduces the complexity that
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must be present in user-facing code. This also increases portability, reduces lock-in to a

particular vendor’s services, and enables users to benchmark their applications without

needing to become experts with each technology they wish to utilize. In this work, we

focus on providing such support for three different and common cloud services:

• Compute services for execution of user code

• Storage services for data persistence

• Queue services which provide a FIFO queue abstraction

The MEDEA execution model uses a combination of these three services to manage

and execute programs over supported cloud fabrics. Moreover, it does in a way that

hides the details of the implementation of each service, so that users can employ them

for execution of their programs without having any knowledge or direct experience with

them – users need only have credentials for each cloud she wishes to use.

We depict the design of the MEDEA execution model in Figure5.1. The MEDEA

execution model consists of two components. The first is scripting language support

that enables developers to specify the execution environment and deployment prefer-

ences for their programs. The second is a deployment engine that plugs in cloud service

support to execute applications. We first overview the MEDEAscripting language sup-

port and then describe the MEDEA deployment engine.
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Figure 5.1: Overview of the design of the MEDEA execution model.

To make the use of these services portable and simple, the MEDEA scripting sup-

port consists of a single function with which users specify the program they wish to

run, its inputs, location, and executable (if any), as well as the names of the service

plugins they wish to employ for compute, storage, and queuing. The type of programs

that MEDEA currently supports are those that take zero or more arguments as inputs,

that communicate only with persistent services, and that generate output through the

standard output and standard error streams.

Consider a user who wishes to run a Python n-body simulation inAmazon EC2,

store its output in Amazon S3 [5], and have workers in EC2 poll for tasks (here, the

n-body simulation is the task) via Amazon SQS [6]. Normally they would need to

become familiar with the APIs of each service, their pricingmodels, and best practices.

Once this is done, the user is then locked-in to these three services. In contrast, using
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a domain specific language to specify the execution environment of a program reduces

the amount of work required to execute the following code:

r e s u l t = b a b e l (

: e x e c u t a b l e => ” py thon ” ,

: code => ” / home / u s e r / nbody . py ” ,

: compute => ” ec2 ” ,

: s t o r a g e => ” s3 ” ,

: queue => ” sqs ” )

p u t s r e s u l t . s t d o u t

p u t s r e s u l t . s t d e r r

The formal syntax of calls tobabel is as follows, wheree represents the empty

string:

S −> b a b e l B | b a b e l T1

B −> : e x e c u t a b l e => ’ b i na ry ’ , C

C −> : code => ’ l o c a t i o n ’ , A
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A −> : a rgv => ” a rguments ” , E

A −> : a rgv => [ ” a rguments ” ] , E

E −> : compute => ’ ec2 ’ , S

E −> : compute => ’ azure ’ , S

E −> : compute => ’ app−engine ’ , S

E −> : compute => ’ euca ’ , S

S −> : s t o r a g e => ’ appdb ’ , Q

S −> : s t o r a g e => ’ s3 ’ , Q

S −> : s t o r a g e => ’waz−s t o r a g e ’ , Q

S −> : s t o r a g e => ’ g s t o r a g e ’ , Q

S −> : s t o r a g e => ’ wa l rus ’ , Q

Q −> : queue => ’ rabb i tmq ’ , O1

Q −> : queue => ’ sqs ’ , O1

Q −> : queue => ’ azure−q ’ , O1

Q −> : queue => ’ gae−p u l l−q ’ , O1
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O1 −> : i n s t a n c e t y p e => ’ machine ’ , O2 | e

O2 −> : max nodes => i n t , O3 | e

O3 −> : worker => ’ i n l i n e ’ | e

T1 −> : t ype => ’ ou tpu t ’ , T2

T2 −> ’ ou tpu t ’ => ’ l o c a t i o n ’

Users indicate what binary executes their program in the cloud compute service,

where the code to execute is located on their local machine, and which compute, stor-

age, and queue services should be used. Users also provide their credentials to each

service as environment variables or as additional parameters. Code can be written in

any language, as long as the compute service has the correct binary installed to exe-

cute it. Our library support for this function validates thesubmitter’s cloud credentials

and verifies that the user’s code exists on their local computer. Once this is done, it

packages this information and sends it to the MEDEA deployment engine.

The object that is returned from calls tobabel can be used to manually poll for the

result of the job. To execute the program using a different service, the developer need

only change the value of a function argument for the compute,storage, and/or queue

services. For example, changing the value of:compute above fromec2 to azure,

causes MEDEA to execute the program in Microsoft Azure instead of Amazon EC2.
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The returned object provides methods that store the task’s standard output and stan-

dard error streams. MEDEA also profiles the execution of the task and returns various

performance metrics to the user as a field in this object called metadata. This latter

support enables users to extend their scripts to interrogate the differences between the

multiple cloud services to compare and contrast them and to identify the most appro-

priate one for their application.

We implement the MEDEA scripting language support by repurposing Neptune, a

domain specific language that automates the configuration and deployment of high-

performance computing applications. Our extensions implement this new function

(function semantics, and library support) to facilitate execution of arbitrary user pro-

grams. Prior to this work, the implementation of Neptune only allowed for a special-

ized, statically chosen set of HPC frameworks to be configured and deployed. Arbitrary

programs could not be executed, even if the compute service supported it, as the original

implementation required an expert user to dictate how each framework executes code

(e.g., to run MPI, users must first start NFS, mount a shared filesystem, start the MPI

Process Daemon, and so on). In contrast, this work enables any executable installed on

a compute service to be utilized automatically by our scripting language support.
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5.3 Implementation

The MEDEA scripting language support communicates with theMEDEA deploy-

ment engine. The deployment engine provides a software layer that abstracts away

common services required for execution of arbitrary programs over cloud compute,

storage, and queue services. We plug in actual cloud services to this layer to provide

the implementation for each of these operations.

The MEDEA deployment engine employs two key abstractions: the Task Manager

(which delegates tasks to clouds) and the Task Worker (whichexecutes the task). This

scripting language support and deployment engine perform five steps (which form the

acronym MEDEA) to execute programs portably:

1. the scripting language support (M)essages the Task Manager with the program to

execute, described by a MEDEA script,

2. the Task Manager (E)nqueues the task to a queue service,

3. a Task Worker (D)equeues a task from a queue service,

4. a Task Worker (E)xecutes the task,

5. the developer (A)ccesses the result of the task from theirlocal computer (from

within a MEDEA script).
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We implement the MEDEA deployment engine as a web service within the App-

Scale cloud platform. This platform automatically deploysand starts the MEDEA de-

ployment engine when an AppScale cloud is instantiated. We also provide plugins into

the deployment engine’s abstractions for each service (queue, compute, and storage)

that implement the necessary functionality.

5.3.1 Pluggable Queue Support

When a Task Manager receives a request to run a task from a user,it examines the

:queue parameter in the user’s task to determine which cloud queue the task should

be placed on. Acceptable values are:

• "rabbitmq" for RabbitMQ, hosted within AppScale (the default)

• "sqs" for Amazon Simple Queue Service (SQS)

• "azure-q" for Microsoft Azure Queue Service

• "gae-pull-q" for Google App Engine’s pull queue

These queues provide a scalable FIFO queue service where items can be pushed to

or popped from. The Task Manager employs the Factory design pattern, thus, as long as

supported queues implement a common API (push/pop), the Task Manager can access

them without needing to be concerned with their underlying implementation details.
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Once the Task Manager uses a QueueFactory to get a connectionto the necessary queue

service, it pushes the task to that queue service and returnsan acknowledgement to the

user’s local computer that the task has been started.

Task Workers periodically query the Task Manager for a list of all the queues that

tasks can be found on, as well as the cloud credentials neededto access each queue.

This is necessary because two users may have different credentials to the same queue

service. Each Task Worker uses the same QueueFactory as the Task Manager to get a

connection to each queue service and pops off one item of workper core on its machine.

5.3.2 Pluggable Compute Support

After pushing the task onto the specified queue service, the Task Manager ensures

that Task Workers are running in the specified compute service. For example, if a user

has specified that a task should be executed in Amazon EC2, the Task Manager will

ensure that one or more Task Workers are running in Amazon EC2.To provide this

functionality, the Task Manager keeps metadata about the number of workers in each

cloud and utilizes a ComputeFactory to interact with cloud compute services, based on

the value of the:compute parameter in the user’s task. Acceptable values are:

• "ec2" for Amazon EC2, hosted within AppScale (the default)

• "azure" for Microsoft Azure
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• "app-engine" for Google App Engine

• "euca" for Eucalyptus

For Amazon EC2, the Task Manager uses the EC2 command-line tools to dynami-

cally spawn or terminate virtual machines. Once virtual machines have been spawned,

a Task Worker is started on it, who then polls the Task Managerfor work as previously

descibed. The Task Manager is also cost-aware, so it does notterminate Task Workers

once they have completed a task. Because Amazon EC2 charges on aper-hour basis,

the Task Manager terminates Task Workers only near the end ofthe hour, and only if

they are not in use at that time.

Amazon EC2 enables users to remotely log into machines and directly execute pro-

grams via the familiar Linux programsssh andscp. In contrast, Microsoft Azure

and Google App Engine do not support this functionality, as Azure deploys Windows

virtual machines, and App Engine does not allow access to thehosted machine at all.

To enable interoperable program execution, we contributeOration, a tool that auto-

matically generates Task Workers that execute user-provided applications in different

cloud execution systems. Oration takes, as inputs, the nameof the cloud to execute the

application in, the name of the function to execute, and the name of the file that func-

tion can be found in, and then constructs a “cloud-ready” Task Worker that utilizes best
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practices from that cloud to execute the user’s program. This Task Worker implements

the following API:

1. PUT /task: Given a function name and its inputs, runs the function stores its

output for later retrieval.

2. GET /task: Given the name of the task, checks to see if the task is still running,

has completed, or has failed.

3. PUT /data: Given a location to store data and the data to store, saves the data

for later use.

4. GET /data: Given a location to read from, returns either the given data(if it

exists) or a null value (if it does not exist).

For Microsoft Azure, Windows virtual machines are procured(as opposed to Linux

virtual machines in Amazon EC2), so the bootup script we include starts by installing

language support for each runtime we wish to execute tasks with (by default, this sup-

ports Python and Java, but is extensible to other languages). Microsoft Azure also

follows a per-hour pricing model, but in contrast to Amazon EC2, it is a per-wall-clock-

hour pricing model. The following process is used to implement MEDEA support on

Microsoft Azure:

1. the scripting language support (M)essages the Task Manager with the program to

execute, described by a MEDEA script,
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2. the Task Manager uses Oration to construct a Microsoft Azure compatible Task

Worker and uploads it to Microsoft Azure. The Task Manager then (E)nqueues

the task by performing aPUT /task on the remotely-hosted web application,

which will schedule a background task with the Microsoft Windows Azure Queue

Service API. If the task requires any files as inputs, the TaskManager usesPUT

/data calls to move inputs from the datastore specified to the Windows Azure

Storage Service.

3. the Task Worker (D)equeues the task and spawns up workers by performing a

POST /task to the application server.

4. the Task Worker (E)xecutes the task and stores the output via the Azure Storage

Service, a key-value datastore that uses a get/put interface.

5. the developer (A)ccesses the result of the task from theirlocal computer (from

within a MEDEA script). The Task Manager retrieves the result by performing a

GET /data on the remotely-hosted web application.

Finally, the Google App Engine PaaS provides autoscaling, and does not allow its

users to programmatically dictate the number of instances that are used. It also employs

a restricted runtime that can only execute tasks written in Python, Java, and Go, so we

provide specialized Task Workers in those languages to execute Python, Java, and Go

tasks. Google App Engine charges on a per-minute pricing model, as opposed to the
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per-hour pricing model employed by Amazon EC2 and Microsoft Azure. The following

process is used to implement MEDEA support on Google App Engine:

1. the scripting language support (M)essages the Task Manager with the program to

execute, described by a MEDEA script,

2. the Task Manager uses Oration to construct a Google App Engine compatible

Task Worker and uploads it to Google App Engine. The Task Manager then

(E)nqueues the task by performing aPUT /task on the remotely-hosted ap-

plication, which will schedule a background task with the Google App Engine

Task Queue API. If the task requires any files as inputs, the Task Manager uses

PUT /data calls to move inputs from the datastore specified to the Google App

Engine Datastore.

3. the Task Worker (D)equeues the task and spawns up workers by performing a

POST /task to the application server.

4. the Task Worker (E)xecutes the task and stores the output via the Datastore API,

an object datastore that uses a get/put interface.

5. the developer (A)ccesses the result of the task from theirlocal computer (from

within a MEDEA script). The Task Manager retrieves the result by performing a

GET /data on the remotely-hosted web application.
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Regardless of where the task executes, the Task Worker collects the following data

as outputs and metadata from the task:

• The standard output produced by the task.

• The standard error produced by the task.

• The time taken to execute the task.

• The time taken from when the Task Manager received the task towhen the task

finished executing.

• The time taken to retrieve the code and inputs from the datastore service.

• The time taken to dequeue the task off the queue service.

• Information about the processors on this machine (the contents of/proc/cpuinfo).

• Information about memory on this machine (the contents of/proc/meminfo).

• Information about disk usage on this machine (the result ofdf -h).

The types of data collected is extensible. In particular, weare looking to extend this

system with information about the cost incurred to run the task once cloud providers

make this information available programmatically (as opposed to performing estimates

or downloading bills from a web page, as is currently done).
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5.3.3 Pluggable Storage Support

Once a Task Worker finishes executing one or more tasks, it uses a StorageFactory

to get access to a supported storage service. The user indicates which storage service is

to be used via the:storage parameter, with acceptable values being:

• "appdb" for the datastore hosted within AppScale (the default)

• "s3" for Amazon Simple Storage Service (S3)

• "waz-storage" for Microsoft Azure Storage Service

• "gstorage" for Google Cloud Storage

• "walrus" for Eucalyptus Walrus

The Task Worker then stores three files in the specified storage service, containing

the standard output of the task, the standard error of the task, and the task’s metadata

(performance profile). At this point, if the user’s script accesses thebabel function’s

return value, the calls will succeed and return this information to the user.

5.4 Evaluation

We next use our support for MEDEA within AppScale to empirically evaluate how

effectively tasks execute within cloud IaaS and PaaS offerings. We begin by evaluating
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our pluggable queue support, continue by evaluating a computational systems biology

application, and conclude by evaluating implementations of the n-body benchmark ap-

plication.

5.4.1 Pluggable Queue Evaluation

We begin by using the pluggable queue support that the MEDEA execution model

enables to compare the performance and cost of different cloud queue offerings. We

investigate one internal and four external pull queue services: RabbitMQ (internal to

AppScale), Amazon SQS, Microsoft Azure Storage Queue, and Google App Engine’s

pull queue. We employ Amazon S3 as the storage service for each task and deploy an

AppScale cloud over Amazon EC2, in the manner shown in Figure5.2. Specifically, we

instruct AppScale to automatically deploy a single virtualmachine instance as the Task

Manager, and in all of our Neptune job requests, we indicate that no more than two Task

Workers should be dynamically acquired and used (to limit the monetary costs we can

incur). The Task Manager creates Task Workers whenever it detects that the number

of tasks waiting to be executed in all queues is non-zero. ForTask Workers, we utilize

Amazon’sm2.4xlarge instance type, each of which has 8 virtual cores and 68GB of

memory. This instance type is one of the more powerful machines offered by Amazon,

and costs $1.60 per hour to lease.
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Figure 5.2: Deployment strategy used for the n-body simulation benchmark to evaluate
different pull queue technologies.
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For this evaluation, we run ten instances of our n-body simulation program (ten

tasks) in parallel and report the time that Task Workers spend dequeuing tasks from the

queue. Note that the task’s payload is nearly constant for all queues used, and only

varies when more or fewer credentials are needed to access the queue. The Neptune

code that we run for each queue to dispatch the tasks and report the resulting time

incurred is:

t a s k i n f o = [ ]

10 . t imes { | i |

t a s k i n f o << b a b e l ( params )

}

t a s k i n f o . each { | t a s k |

i f t a s k . r e t u r n v a l u e != 0

a b o r t ( ‘ ‘ A n a l y s i s f a i l e d : ’ ’ +

t a s k . s t d e r r )

end

p u t s t a s k . queuepop t ime ( )

}

The results of running this code for our n-body simulation oneach of the four sup-

ported queues is shown in Figure5.3. RabbitMQ performs the best, because Task
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Workers in EC2 always have a RabbitMQ server running on their local machine and

thus either need only talk to it or to another machine in the AppScale deployment a

short distance away. This improves performance but at the cost of fault-tolerance: in

the rare case of an availability zone failing in Amazon EC2, itwould also cause our

RabbitMQ servers to fail with it. Conversely, Amazon SQS and Microsoft Azure Stor-

age Queue have added fault-tolerance, but perform an order of magnitude slower than

RabbitMQ, but outperform Google App Engine’s pull queue. This is likely due to the

latency between our Task Workers and Google App Engine’s pull queue.

These results should not be considered a final evaluation of available cloud queuing

services, as such services are constantly upgraded and evolve and improve over time.

However, since AppScale can be used at any time, users can employ it to snapshot the

current performance of the various queue offerings, evaluate that tradeoff against the

cost of using the queue, and choose any queue implementationon demand.

5.4.2 Computational Systems Biology Evaluation

We next evaluate the compute engine offerings that are enabled by making App-

Scale MEDEA-compatible. The application we use for this study is a Stochastic Sim-

ulation Algorithm (SSA) [42]. SSA is form of kinetic Monte Carlo simulation used

extensively in computational systems biology. These algorithms are embarrassingly

parallel and probabilistic in nature, and require a large number of independent simula-
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Figure 5.3: Average dequeue time for the Python n-body simulation, when task data is
stored in Azure Storage Queue, Google App Engine’s pull queue, RabbitMQ, and SQS.
Each value shown here represents the average of ten runs.

tions to be executed to achieve an acceptable level of statistical accuracy. The specific

algorithm we focus on is the Diffusive Finite State Projection Algorithm (DFSP) [36],

which simulates spatially inhomogeneous stochastic biochemical systems. In our study,

this algorithm is used to simulate a model of the mating pheromone induced G-protein

cycle in budding yeast. We employ this application because it is a canonical example of

a compute and data-intensive eScience workflow, thus allowing us to illustrate the per-

formance and cost benefits of executing scientific applications via cloud-based systems.

However, it is also an example of an application that is not a web service and thus is
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not likely to have a user-written MVC interface (which the Task Manager automatically

constructs).

Our evaluation considers the Amazon EC2 IaaS, Google App Engine PaaS, and

Microsoft Azure IaaS. For the IaaS offerings, we must manually choose the number of

instances (virtual machines) that execute tasks, so we experiment with the performance

and cost implications of using 1, 2, 4, and 8 workers. For the Google App Engine

PaaS, users cannot dictate the exact number of instances to be used (as it dynamically

scales up and down in response to user traffic). To provide a fair comparison, we

use them1.small instance type within Amazon EC2, the Small instance type within

Microsoft Azure, and theF1 instance type within Google App Engine. These instances

minimize the cost incurred to end users, and provide a comparable amount of CPU and

memory between one another.

Figure5.4 shows the time taken to run a varying number of tasks within Amazon

EC2 and Microsoft Azure, for varying numbers of workers. As weincrease the number

of simulations, we see a roughly linear increase in the amount of time taken to execute

these tasks. We also note a standard deviation proportionalto the number of tasks run.

For Amazon EC2, this is due to the performance variability of tasks that execute within

it, a result that has been confirmed by the works of others [10] [62]. As we increase the

number of workers used to execute tasks, we also note a corresponding speedup in the

total execution time. Note that the x-axis is on a logarithmic scale.
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Figure 5.4: Running time for execution of SSA simulations in Amazon EC2 (left) and
Microsoft Azure (right), when a varying number of workers are utilized. Each value
represents the average of five runs. Note that the x-axis is ona logarithmic scale.
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App Engine. Each value represents the average of five runs.
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Figure5.5 shows the time taken and the cost incurred when using the maximum

number of workers in Amazon EC2 and Microsoft Azure (here, 8 workers) and com-

pares it with Google App Engine, which autoscales and does not allow us to dictate the

exact number of workers to use. We note that Google App Engineperforms the best

of the three engines compared here, and because of its per-minute pricing model, costs

less than the other offerings for the lower numbers of simulations. Amazon EC2 and

Microsoft Azure both cost the same, which is simply the priceof eight machines for a

single hour. All three cost a similar amount when the total execution time approaches

an hour, which agrees with the per-hour pricing model employed by Amazon EC2 and

Microsoft Azure.

5.4.3 Programming Language Shootout Evaluation

In the previous sections, we showed that the MEDEA executionmodel can be used

to enable programs to be executed simply and easily over disparate cloud systems. In

this section, we use AppScale’s MEDEA support to compare theperformance and cost

of using different programming language implementations of programs over different

public cloud fabrics.

It can be useful to test the performance of a given language, which itself evolves into

numerous versions over time. Additionally, creators of a new programming language

may wish to compare the performance of their language with other programming lan-
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guages on a set of reference implementations. In the spirit of the Computer Language

Benchmarks Game [91], we can use AppScale (augmented with MEDEA) to provide a

community cloud PaaS that can be used to benchmark algorithms with implementations

in different languages on various cloud compute, storage, and queue services.

We evaluate AppScale’s MEDEA support in this use case in Figure 5.6. Here,

we have taken eleven implementations of the n-body simulation benchmark from [91],

written in programming languages of varying programming paradigms, type checking

systems, and other language-level design and implementation details. This data shows

that most of the implementations of this benchmark perform within the same order

of magnitude, with the exceptions of Python and Ruby, which perform two orders of

magnitude slower than the others. These results are roughlyin agreement with the

values published by [91].

While the MEDEA execution model provides users with support for different pro-

gramming languages and different programming models, it also enables users to inves-

tigate and understand the monetary costs of using a particular programming language in

a public cloud setting. Moreover, it enables users to investigate the costs of the different

pricing models employed by public cloud vendors.

For example, the cost to run the n-body benchmark in different languages using

AppScale over Amazon EC2 is shown in Table5.1. We consider both the cost to run

each benchmark via an hourly pricing model (the standard employed by Amazon) and a
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Figure 5.6: Average running time for implementations of then-body benchmark in
different programming languages. Only the time taken to execute the task is considered
here. This does not include the time taken to message the system, enqueue the task,
dequeue it, or the final result in the remote datastore. Each value represents the average
over ten runs.
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per-second pricing model (similar to the per-minute pricing model employed by Google

App Engine). For the hourly pricing model, all of the benchmarks employed ran within

a single hour (except for Ruby), and thus cost $1.80 to run. ForRuby, it took more than

an hour to run, so we were assessed charges for two hours of computation, a total of

$3.60. If Amazon were to employ a per-second pricing model (as shown in the table),

the results exhibit larger differences between language technologies. Specifically, C is

the cheapest, with Fortran, Java, Scala, and Ada closely following it. Python and Ruby

perform the slowest, costing one to two orders of magnitude more to run.

AppScale, with MEDEA support, thus provides users with a tool that they can use

to measure the costs of running their application in a given language or under the dif-

ferent pricing models employed by cloud vendors. Such a toolis important for the

investigation of new pricing models and to assess application costs when pricing mod-

els change.

Next, we consider the performance and cost of running the Python and Java n-body

simulations in Amazon EC2, Google App Engine, and Microsoft Azure. We elect to

use only Python and Java (as opposed to all the languages we have implementations

for) because Google App Engine only supports programs written in Python, Java, and

Go. Here, we utilize am1.large instance in Amazon EC2, aF4 instance in Google

App Engine, and anExtra Small instance in Microsoft Azure. We vary the number
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Language Cost Per Task
Ada $0.0076± $0.0002
C $0.0069± $0.0002
C# $0.0105± $0.0000

Fortran $0.0073± $0.0003
Go $0.0105± $0.0000

Haskell $0.0120± $0.0000
Java $0.0075± $0.0000

OCaml $0.0110± $0.0000
Python $0.5876± $0.0057
Ruby $2.1944± $0.0198
Scala $0.0075± $0.0000

Table 5.1: Average monetary cost (in U.S. dollars) incurredto run the benchmarks
shown in Figure5.6via a per-second pricing model. These costs only include thecost
incurred for the virtual machines used. Each value shown here represents the average
cost incurred over ten runs.

of bodies to simulate between5× 103 and5× 107, and run each simulation ten times,

reporting the average and standard deviation.

The average running time for the n-body simulation benchmark is shown in Fig-

ure5.7. Amazon EC2 performs the fastest at the lower number of bodiesto simulate

because it does not dispatch workers to a queue and backend storage service - it simply

runs them as it receives them. At the higher number of bodies to simulate, the queue

and storage service time no longer dominates the total execution time, and the three

services perform roughly the same to one another. We were unable to run the Python

n-body simulation at5 × 107 bodies, because our instances used more than 512MB of

memory (the maximum memory allowed forF4 instances) and were killed by the App

Engine runtime. Even without this memory restriction, it would have likely taken more
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than 10 minutes to execute (the maximum time allowed for background tasks to exe-

cute within Google App Engine) and still have been killed by the Google App Engine

runtime.

The average cost to run the n-body simulation benchmark is shown in Table5.2.

Amazon EC2 and Microsoft Azure charge users on a per-hour basis, and because all

of the n-body simulation times for the Python and Java implementations ran in less

than an hour, we were charged for a full hour in these systems.This was $0.32 for

am1.large instance in Amazon EC2, and $0.02 for anExtra Small instance in

Microsoft Azure. Google App Engine charges on a per-minute basis, and because all

of the Java n-body simulation times ran in less than a minute,we were charged for

a full minute in Google App Engine (as opposed to a full hour inAmazon EC2 and

Microsoft Azure). As we used the most expensive instance type in Google App Engine

(theF4 instance type), we were charged $0.0013 for the minute that our program took

to execute. We used the same instance type for our Python n-body simulation, but as

the larger number of bodies to simulate took more than a single minute to execute, we

were charged for more than a single minute of time. Table5.2shows the cost incurred

by simulating5× 107 bodies.

These cost values are not intended to reflect the optimal costs of running the n-body

simulation code in Amazon EC2, Google App Engine, and Microsoft Azure. We could

have picked instance types that cost less within each of these providers, which could
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Cloud Service Cost

Amazon EC2 $0.3200± $0.0000
Google App Engine (Java) $0.0013± $0.0000

Google App Engine (Python) $0.0049± $0.0006
Microsoft Azure Worker Roles $0.0200± $0.0000

Table 5.2: Monetary cost incurred to run the n-body simulation code shown in Fig-
ure5.7across Amazon EC2, Google App Engine, and Microsoft Azure. Costs are as-
sessed on a per-hour basis for Amazon EC2 and Microsoft Azure,and on a per-minute
basis for Google App Engine. The value presented for the Python Google App Engine
simulation reflects only the most expensive simulation size(all others are identical to
the Java Google App Engine simulation).

have then increased the total execution time for each, whichcould have then increased

the cost incurred (depending on the pricing model used). As was the case for the cloud

queue services, implementations of MEDEA provides users with a system that can be

used to snapshot the performance and cost of using a cloud IaaS or PaaS system to

execute their code.

5.5 Extending MEDEA

The MEDEA execution model enables cloud interoperability for supported pro-

grams. In this section, we consider extensions to this modelto facilitate greater porta-

bility across and ease of use of cloud systems. The extensions we consider in the

subsections that follow include simplifying the use of the MEDEA scripting language

component via a parallel future construct, task inlining (bypassing the queuing sys-

tem in some cases), making task deployment more efficient viabatching, and utilizing
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Figure 5.7: Running time for execution of n-body simulationswritten in Python (left)
and Java (right), using Amazon EC2, Google App Engine, and Microsoft Azure. Note
that both axes are on logarithmic scales.
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caching on Task Workers to eliminate unnecessary data retrieval. Throughout this sec-

tion, we also consider the impact of these optimizations on the popular MapReduce

programming model, popularized in [33], with an emphasis on the single embarrass-

ingly parallel applications that this model supports.

5.5.1 Automatic Polling via Futures

We begin by considering ways to improve the use of the MEDEA scripting language

component for distributed, multi-cloud application deployment. Towards this end, the

result of an invocation ofbabel() returns an object that encapsulates information

about the task’s execution. Users can poll for the output of the task from within a

MEDEA script, to determine when a task has completed. The MEDEA script for doing

so would look similar to the following:

r e s u l t = b a b e l ( params )

o u t p u t p a r a m s = params . dup

o u t p u t p a r a m s [ : t ype ] = ” o u t p u t ”

loop {

i f b a b e l ( o u t p u t p a r a m s ) [ : done ]

b reak

end

s l e e p ( 1 0 )
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}

p u t s r e s u l t . s t d o u t

p u t s r e s u l t . s t d e r r

p u t s r e s u l t . me tada ta

To automate the process of polling (reducing the amount of work a user must per-

form) and to enable the script to do other work while waiting for the task to finish

(e.g. execute more tasks), we investigate implementing thebabel function as a fu-

ture [51, 98, 97]. A future is a simple and elegant programming language construct that

enables developers to introduce asynchronous computationinto their programs.

To enable this in our scripting language support, we modify the design and imple-

mentation of thebabel function to return a future for the object (the task’s result)

instead of the object itself. Whenbabel is invoked, a background thread is spawned

that dispatches a message to the MEDEA Task Manager, polls for its output, and blocks

if the user calls any of its methods or accesses any of its fields before the task has com-

pleted. We employ Ruby’s metaprogramming features to implement implicit future

semantics for thebabel function, so users need not know that the object they are ac-

cessing is a future. The previous example, which used polling, can be rewritten when

futures are used, as follows:

r e s u l t = b a b e l ( params )
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p u t s r e s u l t . s t d o u t # t h i s w i l l b lock u n t i l

p u t s r e s u l t . s t d e r r # t h e t a s k comp le tes

p u t s r e s u l t . me tada ta

5.5.2 Inlining Task Execution

MEDEA provides a task execution model that utilizes a distributed queue service to

pass information between the Task Manager and Task Workers.Yet for short-running

tasks, the overhead incurred by storing tasks in a queue may be longer than running the

task immediately within the Task Manager. Therefore, we enable users to specify the

value of:worker to beinline to indicate that the task should be “inlined” - that

is, it should not follow the standard MEDEA execution model,and instead should be

immediately executed inline within the Task Manager.

To evaluate the benefits and drawbacks of task inlining in MEDEA, we deploy a

set of tasks that count the number of words in an input corpus using the map-reduce

programming model [33]. Here, each Map task performs a word count on the works

of William Shakespeare (roughly 5MB in size), and each Reducetask aggregates the

results from each Map task. Our extensions to the MEDEA scripting language support

that facilitate the use of futures enables supported programs to be “chained” together in

a manner similar to that of a workflow system, except that thissystem is fully Turing-
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complete, as opposed to the XML-based systems that most workflow systems employ.

Here, we pass the output of each Map task as an input to the finalReduce task. The

MEDEA script for this MapReduce job looks like the following:

common params = {

: s t o r a g e => ” s3 ” ,

: queue => ” sqs ” ,

: i n s t a n c e t y p e => ”m2. 4 x l a r g e ” ,

: max nodes => 3 ,

: worker => ” i n l i n e ”

}

map params = commonparams . dup

map params [ : code ] = ” / . . . / wc . py ”

map params [ : a rgv ] = [ ” / . . . / s h a k e s p e a r e . t x t ” ]

num mappers . t imes{ | i |

p a r a m l i s t << map params

}

map tasks = b a b e l ( p a r a ml i s t )
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o u t p u t s = maptasks . map{ | t a s k |

t a s k . o u t p u t l o c a t i o n

}

r educe pa rams = commonparams . dup

reduce pa rams [ : code ] = ” / . . . / r educe . py ”

reduce pa rams [ : a rgv ] = o u t p u t s

r e d u c e t a s k = b a b e l ( reducepa rams )

In this experiment, we vary the number of Map tasks dispatched when inlining is

used and when it is not used, and report the results in Figure5.8. The data shows that

when we inline a small number of tasks, inlining performs better than the non-inlined

case, but as we inline more tasks, it causes a near-linear slowdown on the system (as all

inlined tasks are run on the Task Manager, who runs them serially). In the non-inlined

case, the number of tasks we run are smaller than the number ofavailable cores, so the

total execution time is roughly constant.

As part of ongoing and future work, we are investigating how to automatically de-

tect when a task can and should be inlined vs deployed via the tasking system. Such

support will remove the burden from the programmer to decidewhen it is best to do so.

Since the MEDEA Task Manager collects performance data and task behavior, we will

use this information to guide this inlining functionality that we currently have in place.
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Figure 5.8: Average end-to-end time to run inlined and non-inlined tasks for the Python
MapReduce WordCount code for varying numbers of Map tasks and asingle Reduce
task. Each value here represents the average of five runs.

As a first step, we augment the Task Manager to automatically inline up to one task per

core on its node (to avoid CPU thrashing from overprovisioning tasks).

5.5.3 Batch Task Execution

As many real-world use cases need to run more than a single task, the ability to

batch task invocations can be useful. Our next MEDEA extension therefore facilitates

batch task invocation.

To enable this, we modify the invocation ofbabel to take advantage of Ruby’s

duck typing capabilities so that it can receive either a Ruby hash (a single task invo-
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cation) or a Ruby array of hashes (multiple task invocations)as arguments. In case

of the latter, the multiple task requests are dispatched allat once to the MEDEA Task

Manager within AppScale, and a Ruby array of futures of task objects is returned as

a result. A code example that runs ten n-body simulations in Google App Engine and

prints their outputs is:

t a s k s = [ ]

10 . t imes { | i |

t a s k s << b a b e l ( params )

}

t a s k s . each{ | t a s k |

p u t s t a s k . s t d o u t

}

That example dispatches 10 tasks individually to MEDEA to beexecuted, and prints

the result of each task. Alternatively, the 10 tasks could bedispatched in a single batch

request as follows:

p a r a m l i s t = [ ]

10 . t imes { | i |

p a r a m l i s t << params

}
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t a s k s = b a b e l ( p a r a ml i s t )

t a s k s . each{ | t a s k |

p u t s t a s k . s t d o u t

}

Figure5.9 shows the performance improvements that are possible from batching

requests for the Python MapReduce WordCount code. When only a single Map task is

used, the two systems perform roughly equally. However, as the number of tasks to run

increases, batching the tasks into a single request saves a significant amount of time.

The amount of time spent is linear in the number of tasks in both cases, as the MEDEA

scripting language checks that the inputs and code to run arein the remote datastore

(or copy them to the datastore if they are on the local disk), and that the output location

specified does not exist (to avoid accidentally overwritingexisting data).

5.5.4 Caching Support

Many use cases, such as those in the MapReduce programming paradigm, can exe-

cute many instances of a single program (here, the Map program) on a single machine.

Our final MEDEA extension is therefore concerned with providing caching for pro-

grams and inputs on machines.
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Figure 5.9: Average time to dispatch requests in a batched fashion and a non-batched
fashion for the Python MapReduce WordCount code for varying numbers of Map tasks.
Each value here represents the average of ten runs.

To implement caching support, whenever Task Workers would normally download

a program or an input file, they first check to see if they have the file already stored

locally in/var/cache/medea. If so, they do not attempt to download the file again

(otherwise, they download the file from the remote datastoreas usual).

Figure5.10shows the results of executing WordCount Map tasks over the baseline

MEDEA system, as well as the performance improvements that occur when we batch

the tasks into a single request. Finally, we also consider the performance improvements

of using batching as well as caching the Map program and its input file (the works of

William Shakespeare). Although batching does improve performance (by 23% at 64
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Figure 5.10: Average time taken to execute a varying number of WordCount Map tasks,
when the baseline system is used, when batch task support is enabled, and when batch
task support and caching is employed. Each value here represents the average of five
runs.

Map tasks), adding caching support has a much greater impacton total execution time

(by 65% at 64 Map tasks). This is because the input file is 5MB insize, so not re-

downloading it for every Map task reduces the normal “download-execute” process to

simply “execute”.

5.6 Related Work

The MEDEA execution model builds upon and expands upon the works of oth-

ers. Primarily, MEDEA is implemented by repurposing AppScale and Neptune. App-
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Scale enables automatic deployment of Google App Engine applications written in

Python, Java, and Go, and Neptune expands this to support HPCapplications written in

MPI [48], UPC [38], X10 [25], KDT [67], and others. The implementation of MEDEA

via AppScale and Neptune goes further by enabling automatedexecution of programs

written in any programming language, across compute, storage, and queue services of-

fered by Amazon, Google, and Microsoft. Furthermore, our extensions automatically

collect and expose metadata about the program, allowing users to write programs that

quantify the performance characteristics of the programs they execute.

MEDEA is inspired in part by the YCSB project [30] and its successor, YCSB++ [74].

These projects enable users to benchmark popular non-relational datastores (e.g., HBase [52],

Cassandra [23]) on a consistent workload to provide information about their underlying

performance characteristics. MEDEA goes a step in an orthogonal direction: instead

of providing a system that can be used to benchmark datastores in a single cloud IaaS,

implementations of MEDEA can be used to benchmark compute, storage, and queue

services tied together in a single cloud IaaS or PaaS, or utilized as a hybrid cloud.

Elastisizer [53] provides users with the ability to automatically acquire IaaS re-

sources and run tasks over them, and like Neptune, provides alanguage-like inter-

face to abstract away resource usage. Elastisizer differs from MEDEA in two critical

ways. First, Elastisizer can run only Java tasks that conform to the Hadoop MapRe-

duce framework / programming model, whereas our implementation of MEDEA can
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run tasks written in any programming language, in any programming model. Secondly,

Elastisizer’s declarative language serves a different purpose than Neptune does. Elasti-

sizer enables users to query the system about the performance of their tasks for certain

data sets, while Neptune enables users to specify the tasks themselves and chain them

together with other tasks.

Other offerings provide either a library or runtime component similar in nature to

MEDEA. At the library level, the Google App Engine Pipeline API [46] offers devel-

opers writing Python or Java applications the ability to chain together functions that

should be asynchronously executed. Pipeline differs from MEDEA in that it is not a

published work and that its primary implementation runs on aclosed runtime stack

within Google’s infrastructure. Furthermore, arbitrary languages are not supported, as

the Google App Engine runtime stack only supports applications written in Python and

Java that use whitelisted APIs. Finally, only functions that were uploaded with the

user’s application can be executed (that is, arbitrary Python or Java functions cannot be

uploaded and executed).

In a similar vein, Pegasus [34] and Swift [35] allow users to specify an execution

plan (typically in XML) to connect programs together. In contrast to our language sup-

port, these execution plans are not Turing-complete, whichprevents them from being

used in scenarios where the result of a computation can causean arbitrary piece of code

to be executed or require some type of human interaction (which may be the case when
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an expert user is needed to analyze the result of a computation). Furthermore, these

systems are not designed to be pluggable in nature: they intend only to utilize a single,

statically owned set of resources to run applications.

Workflow systems execute and connect programs together automatically, which is

conceptually similar to what MEDEA offers. AME [99], Condor [90], StratUm [73],

and Amazon Simple Workflow Service (SWF) [7] are recent works that seek to address

this problem, for differing domains. AME is designed to run on supercomputers, where

millions of cores may be present, while Condor and StratUm utilize grids, which do

not provide elasticity and thus do not allow users to dynamically acquire nodes. While

Amazon SWF does operate within a cloud environment, it is specialized to the Amazon

cloud, which encourages lock-in to Amazon’s compute, storage, and queue services.

Furthermore, the specification language that connects computation together in Amazon

SWF is not Turing-complete, limiting the types of computation that can be run in a

manner similar to Pegasus and Swift.

5.7 Summary and Conclusions

MEDEA provides users with an execution model whose implementation automati-

cally deploys applications to compute, storage, and queue services offered by popular

cloud IaaS and PaaS systems. The motivation behind MEDEA is to reduce the com-
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plexity with learning the myriad APIs, cost models, and bestpractices needed to utilize

these cloud services effectively. To achieve this goal, MEDEA leverages the Neptune

domain specific language and uses it to provide users with a Turing-complete language

that they can program in to detail what services should execute their application, and

not have to be concerned about learning how to execute their application. Our evalu-

ation of MEDEA shows that, while cloud systems may perform similarly for a given

piece of code, they can vary greatly with respect to the priceusers pay to run their code

in these systems, due to the pricing models that clouds enforce. MEDEA enables users

to evaluate these systems easily for their own applications, and enables users to com-

pare and to contrast the performance and cost of each of theseservices, as the services

and their applications evolve over time.

The text of this chapter is, in part, a reprint of the materialas it appears in [20] .
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Chapter 6

Exodus: An Application Programming
Interface for Cost-Aware,
Cloud-Aware Program Execution

In this chapter, we present Exodus, an application programming interface for auto-

matically estimating the total execution time and cost incurred to execute applications

via cloud Infrastructure-as-a-Service offerings. Exodusabstracts away the details of

cloud-based program execution by providing library support to enable users to pro-

grammatically dictate (via a Turing-complete language) how to optimally execute their

applications. Exodus provides optimizers that schedule application execution based on

performance as well as cost, and considers heterogeneous resource types provided by

the Amazon EC2 public cloud and the Eucalyptus private cloud.By doing so, Exodus

provides users with the ability to estimate how long it will take and how much it will

cost to execute their application over cloud resources, without first needing to become

an expert in each cloud service that they wish to utilize. We investigate the potential of

172



Chapter 6. Exodus: An Application Programming Interface forCost-Aware, Cloud-
Aware Program Execution

Exodus by employing it for computational systems biology applications (where scien-

tists are typically not cloud experts) written in low-leveland high-level programming

languages. Exodus is able to predict total execution time with 2%-16% error for the

applications surveyed, when optimizing for total execution time or cost.

6.1 Introduction and Motivation

The myriad types of cloud service offerings and instance types that each provider

offers makes it challenging and time consuming for new and expert users alike to de-

termine which cloud, instance type, and how many instance types are optimal for their

application. Furthermore, what is “optimal” varies from one user to another, and can

include minimizing overall cost incurred, minimizing the total amount of time needed

to execute the user’s code, or a variety of user-defined metrics (e.g., execution must fin-

ish before a particular deadline). The complexity of estimating how much it will cost

to run in the cloud is therefore often done in an ad-hoc manner, typically resorting to

back-of-the-envelope style calculations, which in practice can be extremely inaccurate.

This work attempts to reduce this complexity by proposing anapplication pro-

gramming interface for cloud-aware program executionthat can consider perfor-

mance, cost, or user-defined metrics. This interface, whichwe call Exodus, profiles

bag-of-tasks applications and automatically determines the ideal instance type to use.
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Optimization is performed based on total execution time, monetary cost, or via user-

provided metrics. After determining which resources are optimal to execute a user’s

application, Exodus executes the application without userintervention.

Applications can be executed in the Amazon EC2 public cloud aswell as in on-

premise Eucalyptus clouds. In both cases, Exodus automatically determines how to

use resources optimally to execute a user’s application, and uses the AppScale cloud

platform [16] [27] to automatically configure and deploy applications. To implement

the Exodus API, we leverage the Neptune HPC configuration language [19] [21]. To

investigate the potential of Exodus, we employ the system for a number of different use

cases, in which we compare and contrast scientific and general-purpose applications in

terms of performance, price, and a weighted average of the two in the Amazon EC2

public cloud.

In summary, we contribute:

• The design of an application programming interface that enables users of any

programming language to automatically determine which cloud resources are op-

timal for their application, for some user-provided definition of “optimal”.

• An implementation of this API in the Neptune domain specific language, that

automatically executes applications via Amazon EC2 and Eucalyptus.

174



Chapter 6. Exodus: An Application Programming Interface forCost-Aware, Cloud-
Aware Program Execution

• An experimental evaluation of bag-of-tasks applications from computational sys-

tems biology as well as general purpose applications, demonstrating how Exodus

is able to automatically determine the instance types needed and the number of

instances needed to minimize the cost to execute these programs or maximize

their performance via popular cloud infrastructures.

In the sections that follow, we present the design and implementation of Exodus.

We describe how we provide an API that is able to determine howto optimally exe-

cute a user’s program, for various definitions of “optimal”.We then investigate the cost

and performance of executing programs via Exodus by evaluating scientific and gen-

eral purpose applications written in different programming languages. We then discuss

related work and conclude.

6.2 Design

By providing a solution at the level of an application programming interface (API),

we aim to abstract away the complexities associated with cost and performance man-

agement of user-provided applications. This enables usersto focus on programming

their applications, instead of having to spend time to become an expert on each cloud

service they wish to potentially use. This also increases application portability, as appli-
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cations can be executed over supported clouds without needing to manually port their

application from one cloud to another. In this work, we focuson providing an API that:

• Estimates the total execution time and monetary cost of executing a user’s appli-

cation via a cloud IaaS

• Uses time and cost estimates to optimize the execution of a user’s application,

via standard or user-defined metrics

• Is aware of the differing types of hardware profiles (“instance types”) offered by

cloud IaaS vendors, specifically how they vary with respect to performance and

cost

• Automatically executes applications via a cloud IaaS

Our realization of this API in Exodus is designed to accomplish the above to facil-

itate cloud program execution that is both cost-aware and performance-aware, and can

leverage existing research that schedules applications based on performance character-

istics [94] [11]. The latter feature is designed to provide a “pluggable” optimizer, to

serve use cases where application-specific metrics drive the underlying execution.

One such use case is a deadline: a scientist may have a paper deadline at a certain

time, and needs the execution of their experiments to finish before that deadline, re-

gardless of the cost incurred. Alternatively, a company mayhave a budget that they
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have allocated for use with public clouds, and may want to execute as many programs

as they can without exceeding that budget. Other use cases may evolve over time, so

our API must be pluggable to accommodate user-provided metrics.

The Exodus API consists of a single function call that users invoke to specify the

execution environment, deployment preferences for their program, and credentials for

each cloud IaaS they wish Exodus to consider. The execution environment includes

information about where the program is stored locally, a list of arguments to invoke the

program with, and (if necessary) the name of the executable that should be used to run

the program. The formal syntax of calls toexodus is as follows:

S −> exodus E

E −> : e x e c u t a b l e => ’ b i na ry ’ , C

C −> : code => ’ l o c a t i o n , A

A −> : a rgv => ” a rguments ” , N

A −> : a rgv => [ ” a rguments ” ] , N

A −> : a rgv => Proc . new { | i | u s e r code } , N

N −> : num tasks => i n t , O
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O −> : o p t i m i z e f o r => : per fo rmance , M

O −> : o p t i m i z e f o r => : cos t , M

O −> : o p t i m i z e f o r => Proc . new { | t , c | u s e r code } , M

M −> : m a x i n s t a n c e s => i n t , I1

I1 −> : c l o u d s t o u s e => [ I2 ]

I2 −> : AmazonEC2 , I2 | : AmazonEC2

I2 −> : Euca lyp tus , I2 | : E u c a l y p t u s

The execution of invocations to Exodus follows the pattern shown in Figure6.1.

Once the user’s program invokes Exodus, the runtime validates the parameters that

specify their execution environment, deployment preferences, and cloud credentials.

Then the runtime dispatches a message to a specialized service running within the App-

Scale cloud platform, which is then charged with the task of acquiring virtual machines

in each cloud the user specifies, with the given credentials.The application is then ex-

ecuted, the result of the job (its standard output and standard error) saved to the cloud

storage service that the user requests, and is retrieved by Exodus and passed to the user

(if their program requests it).
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User calls 
exodus()

AppScale

Amazon EC2
(Public)

Eucalyptus
(Private)

Amazon
S3

Walrus

run(params)

ec2-run-instances euca-run-instances

retrieve code/inputs,
save outputs

Figure 6.1: An overview of how Exodus abstracts away cloud IaaS interaction via the
AppScale cloud platform.

6.3 Implementation

Exodus provides an application programming interface to users that abstracts away

how to optimally deploy applications via cloud Infrastructure-as-a-Service offerings.

Our implementation of this API in the Neptune domain specificlanguage, itself a su-

perset of the Ruby programming language, facilitates the useof Turing-complete pro-

grams to execute programs (as opposed to XML-based or rule-based solutions). This

enables users to deploy their applications and take arbitrary actions based on their re-

sulting outputs. For example, scripts that interact with Exodus can e-mail the outputs

of their code to a user for expert analysis, or integrate withother libraries to perform

statistical analysis on a user’s behalf.
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We detail the types of parameters that Exodus API calls require, how profiling in-

formation is generated, and how this information is harnessed to optimally decide how

to execute user-provided applications.

6.3.1 Application Programming Interface

Our implementation of the Exodus API provides users of the Neptune domain spe-

cific language with a single function call, namedexodus, that users invoke to spec-

ify the execution environment, deployment preferences, and credentials for each cloud

IaaS they wish Exodus to consider. Specifically, the following parameters are required

to specify the execution environment that the user’s code should run under:

1. :code - The location on the local filesystem where the user’s code islocated.

2. :argv - An Array of Strings that represents the arguments that should be passed

when the code is executed. Any files specified here are copied to the remote cloud

service prior to code execution.

Users must then specify deployment preferences for their application, which in-

clude:

1. :num tasks - The number of times that Exodus should execute this code in a

cloud service, for bag-of-tasks applications.
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2. :optimize for - The definition of how to optimally execute the user’s appli-

cation. Users may provide the Ruby Symbol (String constants):performance

to indicate that their application should be executed as quickly as possible, or

:cost to indicate that their application should be executed as inexpensively as

possible. Users may also provide a Function (a Proc in Ruby nomenclature) that

is given Exodus’ projected total execution time and cost incurred as inputs, and

returns a Float, which our optimizer will attempt to minimize amongst the in-

stance types available.

3. :max instances - The maximum number of instances that should be utilized

to execute a user’s code over. By default, 19 instances are setas an upper limit

for Amazon EC2 (since 20 instances are the maximum number a user can acquire

without contacting Amazon beforehand, and one instance is dedicated within

AppScale to application management), but a user may wish to limit the number

of instances employed to execute their applications.

Additionally, users must also specify credentials for eachcloud IaaS that they wish

Exodus to consider executing programs over. This is done viathe:clouds to use

parameter, which can include:AmazonEC2 for the publicly available Amazon Elastic

Compute Cloud and:Eucalyptus for an on-premise Eucalyptus cloud.
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Both of the clouds that we currently support require similar credentials to be spec-

ified, including certificates, private keys, and access keys. Exodus validates that each

set of credentials given are able to access the cloud servicebefore attempting to execute

the user’s application.

For applications that require unique identifiers or seeds for random-number gener-

ators, executing a number of identical applications via Exodus would produce identical

results. To better serve these applications, we amend the:argv parameter to also ac-

cept a Function from users. This function is invoked once forevery task that Exodus

should execute, and receives the sequence ID of this task. This enables applications to

seed their random-number generator with the sequence ID andproduce unique results

in their applications.

6.3.2 Cloud-Aware Program Execution

Once a user invokesexodus in their Neptune script, the Neptune runtime (ex-

tended in this work to support Exodus API calls) checks to seeif the code has profiling

data available. The current implementation checks on the local filesystem for this in-

formation, but is extensible to utilize remotely availablesources. If no profiling data is

found, the Neptune runtime then invokes the profiler that theuser has specified. This

work contributes two profilers: Naı̈veCPUProfiler and RemoteCloudProfiler.
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The Neptune runtime implements Naı̈veCPUProfiler by invoking one or more copies

of the application locally (once by default) to generate this profiling information, noting

both the total execution time (average execution time if more than one run is performed)

and the speed of the CPU on the local machine. This informationis written to the local

filesystem for future deployments.

The Neptune runtime then examines the:clouds to use parameter, and for

each cloud specified, determines which instance type, and the number of machines

for that instance type is optimal to execute the desired number of invocations of the

user’s program. It begins executions by estimating the total execution time needed to

execute:num tasks programs on each instance:

tnp =
: num tasks× t1

n× p
(6.1)

wheretn represents the time required (in seconds) to execute:num tasks programs

onn machines, withp processors each, andt1 represents the time needed to execute one

program on one machine with one processor. To estimate the amount of time needed

to execute one program on each instance type, we scale the local execution time of the

profiled application to the CPU speed of each instance type:

tremote =
cpuremote × tlocal

cpulocal

(6.2)
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wheretremote represents the estimated time to execute the user’s application on a CPU

at a clock speed ofcpuremote MHz, andtlocal represents the time needed to execute the

user’s application locally on a CPU at a clock speed ofcpulocal MHz.

Our optimizer estimates the total execution time via Equation 6.1 for each instance

type, when between 1 and a maximum (max) number of instances are utilized. Our

application executor within the AppScale cloud platform dedicates a single node to

manage applications.

Next, our optimizer estimates the cost incurred for each instance type, and for be-

tween 1 andmax instances at each instance type to execute the user’s application. This

cost estimate is given by:

cnp = Ceiling(tnp, 3600)× n× c1,EC2 (6.3)

wherecnp represents the estimated cost to utilizen instances, each withp processors,

with a cost ofc1,EC2 U.S. dollars for one hour of use. This pricing model is specific

to the per-hour metering that Amazon EC2 employs, and is easily adaptable to the cost

model that Google App Engine employs (per-minute, with a minimum charge of 15

minutes) as follows:

cnp = Max(15 ∗ 60, Ceiling(tnp, 60))× n× c1,GAE (6.4)
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For the Eucalyptus IaaS offering, we assume that it is hostedon-premise, and is

offered freely to all users. This means that we setc1 to 0.

Once we have calculatedtnp and cnp for each instance type, for each number of

instances we can acquire, we compute an “aggregate score” that factors in both total

execution time and cost incurred:

snp = αtnp + (1− α)cnp (6.5)

where snp represents the aggregate score for executing our code overn instances,

each withp processors, andα is a value between zero and one that indicates whether

we should bias the calculation towards being performance-effective or cost-effective.

For the case when a user indicates:optimize for => :cost, the optimizer sets

α = 0, thus considering only cost in Equation6.5. Similarly, if a user indicates

:optimize for => :performance, the optimizer setsα = 1, thus consider-

ing only total execution time (performance) in Equation6.5. Users may also explicitly

stateα’s value.

The Neptune runtime then calculates the aggregate score foreach instance type,

for each number of nodes available, for each cloud that the user wishes to execute

code over. It finds the minimum value, and if:recommend only => true is set,
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reports the projected execution time and cost, aggregate score, recommended instance

type and number of nodes, and cloud to use.

Instead of scaling solely on CPU speed, as Naı̈veCPUProfiler does, we also provide

RemoteCloudProfiler. RemoteCloudProfiler sends a SOAP message to the AppScale

cloud platform that instructs it to acquire one of each instance type within each cloud

the user has specified to use, and records the total executiontime to execute one invo-

cation of the user’s program. This process is not free in public clouds: for the Amazon

EC2 public cloud, profiling an application that executes in less than one hour on all in-

stance types would charge the end-user $6.71. Work is ongoing to utilize Spot Instances

to reduce this cost, although this is only applicable for Amazon EC2, and would sig-

nificantly increase profiling time (as Spot Instances are notalways immediately made

available).

If :recommend only is not set (or is set tofalse), then the Neptune runtime

proceeds to execute the user’s application. To do so, it constructs:num tasks Nep-

tune tasks and executes them, via the AppScale cloud platform (as detailed in [21]).

The Exodus API then returns an Array of length:num tasks, which users can access

to query the standard output and standard error of their programs.
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6.3.3 Pluggable Optimizers

To leverage the vast array of existing literature on programoptimization as well

as to support unique use cases with Exodus, we provide a pluggable optimizer within

Exodus. To that end, Exodus enables users to specify their own aggregate scoring

function that should be executed in lieu of the one in Equation 6.5. The user’s function

must receive two inputs: the projected total execution timeand the projected cost. The

user’s function should return an Integer or Float value, so that the Neptune runtime

can attempt to find the minimum aggregate score across each instance type, for each

number of nodes available.

As an example, consider the use case where a user wishes to runtheir application

and does not wish the total cost to exceed one dollar. The usercould invoke the Exodus

API as follows, to serve this use case:

exodus (

: code =>”/home / u s e r / g−p r o t e i n . d f sp ” ,

: o p t i m i z e f o r=>Proc . new{ | t ime , c o s t|

i f c o s t > 100 # c e n t s

r e t u r n INFINITY

e l s e

r e t u r n c o s t
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end

}

)

Here, the user passes in a function that overrides the built-in optimizers provided by

Exodus. This function is fairly straightforward: if the estimated cost exceeds one dollar,

it returns a score of infinity, effectively eliminating thatinstance type and number of

instances from being considered for execution. In all othercases, it simply returns the

cost to execute the code, so the least expensive instance type and number of instances

will still be considered.

A similar use case encountered by scientists is the desire toexecute an application

by a certain deadline, but still try to do so as inexpensivelyas possible. We can thus

amend the previous example to serve that use case as follows:

exodus (

: code =>”/home / u s e r / g−p r o t e i n . d f sp ” ,

: o p t i m i z e f o r=>Proc . new{ | t ime , c o s t|

i f Time . now + t ime > DEADLINE

r e t u r n INFINITY

e l s e

r e t u r n c o s t
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end

}

)

This example returns a score of infinity (eliminating this instance type and number

of instances) if the projected time would cause the user to miss their deadline, and if not,

we return the projected cost. Therefore, this example attempts to minimize cost while

meeting the deadline. If we replacedcostwith time in that example, it would instead

attempt to minimize only the time spent, possibly incurringa substantially larger bill.

6.4 Evaluation

We next use our implementation of Exodus to empirically evaluate how well it

optimizes program execution within cloud IaaS offerings. Because Exodus is imple-

mented via the Neptune domain specific language, it is able toleverage the open source

AppScale cloud platform to automatically configure and execute programs over IaaS

resources. We begin by evaluating Exodus’ ability to selectresources and execute sci-

entific and general-purpose applications, and then proceedto analyze the accuracy of

Exodus’ profilers.
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6.4.1 Scientific Application Evaluation

We begin by using the optimizer that Exodus provides to compare the performance

and cost of different IaaS offerings when executing scientific applications. We inves-

tigate two scientific applications that use a specific type ofkinetic Monte Carlo algo-

rithm (known as the Stochastic Simulation Algorithm [42]), as these applications are

representative of probablistic applications that scientists execute. These applications

are from the field of computational systems biology, and require a large number of in-

dependent simulations to be executed (due to their probablistic nature) to achieve an

acceptable level of statistical accuracy.

The two scientific applications we focus on here are the Diffusive Finite State Pro-

jection Algorithm (DFSP) [36] and the doubly weighted SSA coupled with the cross-

entropy method (dwSSA) [31]. DFSP simulates spatially inhomogeneous stochastic

biochemical systems. The application that we test here employs DFSP to simulate a

model of the mating pheromone induced G-protein cycle in budding yeast. The dwSSA

is a method for accurate estimation of rare event probabilities in stochastic biochemical

systems; the application employs dwSSA to simulate the birth-death process described

in [31]. In this process, there is a rare event that can occur that doubles the population of

the chemical species; accurately characterizing the rare event’s probability is the goal

of the application.
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Figure 6.2: Running time (left) and cost incurred (right) forexecution of DFSP simula-
tions in Amazon EC2. We vary the optimizers used to schedule application execution
between the cost-focused optimizer, the time-focused optimizer, and an optimizer that
setsα = 0.5. Each value represents the average of five runs. Note that in (left), both
axes are on a logarithmic scale, and in (right), the x-axis ison a logarithmic scale.
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For our first experiment, we execute 1, 10, and 100 DFSP simulations via Amazon

EC2, and measure how long it takes to do so when we optimize our application to run

quickly (α = 1), run inexpensively (α = 0), and a balance of the two (α = 0.5).

We execute each of these experiments five times and report theaverage and standard

deviation. Here, we consider only the time spent executing tasks and omit the time

spent dispatching simulations from Neptune, processing them in AppScale (hosted in

EC2), and storing their results in S3.

The results of our DFSP evaluation are shown in Figure6.2. As expected, the opti-

mizer that focuses on fast execution performs the fastest, but at the greatest cost to the

user, as it acquires 1 of the most expensive instances (c1.xlarge in Amazon EC2) to

execute 1 simulation, 10 instances to execute 10 simulations, and 19 instances (the max-

imum that we can acquire from Amazon without contacting themto request more) to

execute 100 simulations. Similarly, the optimizer that focuses on executing code inex-

pensively accrues the smallest costs, but executes code slower than the other optimizers.

This is because it always acquires 1 of the least expensive instances (m1.small).

Figure6.2 shows interesting behavior for our optimizer that setsα = 0.5. With

respect to total execution time it performs similarly to theperformance-focused op-

timizer, but it is able to execute code at less cost to the user. This is because the

NäıveCPUProfiler estimates total execution time to be linear with CPU speed, so it
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incorrectly estimates that the fastest instance type in Amazon EC2 is proportionally

faster than their slower (and cheaper) counterparts.

We next move on to evaluating our support of the birth/death model via the dwSSA.

We increase the number of simulations we perform here to105 per execution of our R

script, and vary the number of simulations we perform between 105, 106, and107. We

use the same three optimizers from the DFSP evaluation, focusing on executing code

quickly, inexpensively, and a balance of the two. This code requires a unique seed to

be passed to it to seed its random number generator, so we amend the previous Exodus

API invocation as follows to pass in this seed:

exodus (

: e x e c u t a b l e =>” R s c r i p t ” ,

: code =>”/home / u s e r / runcewssa . r ” ,

: a rgv=>Proc . new { | i | [ i ] } ,

: o p t i m i z e f o r =>: cos t ,

: num tasks=>NUM TASKS

)

Strictly speaking, this is not truly random (as simulationsreceive monotonically

increasing numbers as their seeds), and we could replacei with rand() to instead call

the pseudo-random number generator. However, this would increase the complexity of

the underlying code, as we would now have to make sure the value returned byrand()
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Figure 6.3: Running time (left) and cost incurred (right) forexecution of dwSSA simu-
lations in Amazon EC2. We vary the optimizers used to scheduleapplication execution
between the cost-focused optimizer, the time-focused optimizer, and an optimizer that
setsα = 0.5. Each value represents the average of five runs. Note that in (left), both
axes are on logarithmic scales, and in (right), the x-axis ison a logarithmic scale.
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was a seed not passed to any other simulation (as then the simulations would return the

same result, and not provide unique simulation data).

The results of executing the dwSSA simulation in Amazon EC2 are shown in Fig-

ure 6.3. Here, we see that the performance-oriented optimizer and the optimizer that

balances performance and cost choose the same instance typeand number of instances,

so they cost the same for all simulations and perform roughlysimilarly. We see the

same expected trends as we did for the DFSP simulation in Figure6.2: the performance-

oriented optimizer executes code the fastest, but at the greatest cost to the user, and the

cost-oriented optimizer executes code at the least expenseto the user, but in the slowest

amount of time.

The primary difference with respect to the cost-oriented optimizer is that, unlike

with DFSP, the cost-oriented optimizer does not always pick1 of the smallest instance

types for all executions. This is because it projects the total execution time for the 100

programs to execute (where each program performs105 simulations) at being greater

than an hour to execute, and thus could use a single machine for several hours or several

machines for two hours. Our tie-breaking mechanism comes into play here: whenever

there are multiple instance types and number of instances that charge equally, the cost-

focused optimizer chooses the option that performs the fastest.
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6.4.2 General-Purpose Application Evaluation

We continue by comparing the performance and cost of the Amazon EC2 public

cloud to execute general-purpose applications. We investigate two applications here,

originally proposed by the seminal MapReduce paper [33], the WordCount and Grep

benchmarks, written in the Python programming language. Asthe original Google pa-

per indicates, these applications are representative of programs written in the MapRe-

duce programming paradigm. For the WordCount benchmark, we pass as input the

works of William Shakespeare, and allow it to count the number of occurences of each

word in that input corpus.

For the Grep benchmark, we again pass as input the works of William Shakespeare,

and ask the user to tell us which words they would like the benchmark to search for. In

this evaluation, we only ask Grep to return lines that contain the word “Hamlet”. The

Exodus API invocation for this benchmark is as follows (wheregets() is the Neptune

function that queries the user for a line of input):

exodus (

: e x e c u t a b l e =>”py thon ” ,

: code =>”/home / u s e r / g rep . py ” ,

: a rgv => [” / tmp / i n p u t . t x t ” , g e t s ( ) ] ,

: o p t i m i z e f o r =>: cos t ,
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Simulations Execution Time Näıve (Error) Remote (Error)
1 3.56 s 1.68 s (52%) 3.63 s (2%)
10 3.45 s 1.68 s (51%) 3.63 s (5%)
100 17.86 s 8.84 s (50%) 19.12 s (7%)

Table 6.1: A comparison of the time taken to execute the DFSP application in the Ama-
zon EC2 public cloud with estimates provided by Exodus’ profilers (NäıveCPUProfiler
and RemoteCloudProfiler).

: num tasks=>NUM TASKS

)

The results of executing the WordCount and Grep applicationsin Amazon EC2

are shown in Figure6.4. Here, we see a linear relationship between the number of

tasks executed and the total execution time. This is to be expected, as the cost-oriented

optimizer estimates that the total execution time will be less than one hour for both

the WordCount and Grep applications, and thus always picks onem1.small instance.

Therefore, this one instance simply polls Amazon SQS for more work and executes the

varying number of Map tasks in serial.

6.4.3 Error Analysis

We next move on to evaluating how effective Exodus’ Naı̈veCPUProfiler and Re-

moteCloudProfiler are at correctly estimating total execution time and cost. We perform

this analysis for the DFSP application with the performance-oriented optimizer, and the

dwSSA application with the cost-oriented optimizer, in theAmazon EC2 public cloud.
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Figure 6.4: Running time for execution of WordCount (left) andGrep (right) applica-
tions in Amazon EC2. We fix the optimizer to focus on optimizingcost incurred, and
vary the number of Map tasks executed. Each value representsthe average of five runs.
Note that both axes are on logarithmic scales.
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Simulations Execution Time Näıve (% Error) Remote (% Error)
1 160.45 s 101.94 s (36%) 145.50 s (9%)
10 1594.27 s 1019.44 s (36%) 1455.04 s (9%)
100 12504.72 s 10194.43 s (18%) 14550.40 s (16%)

Table 6.2: A comparison of the time taken to execute the dwSSAapplication
in the Amazon EC2 public cloud with estimates provided by Exodus’ profilers
(NäıveCPUProfiler and RemoteCloudProfiler).

We begin by evaluating Exodus’ profilers with the DFSP application, shown in

Table6.1. We note that, as expected, the performance-oriented optimizer always picks

the fastest instance types (c1.xlarge), and uses as many instances as possible to

execute the given simulations (1, 10, and 19 instances for 1,10, and 100 simulations,

respectively). However, we note that the profilers differ significantly in their estimates

for the total execution time. The Naı̈veCPUProfiler has an average error of 51% when

estimating DFSP execution time, but is able to do so at no costto the user. In contrast,

the RemoteCloudProfiler provides a significantly smaller error to the user (4.67%), but

costs $6.71 to the user to execute (one hour of time on each instance in Amazon EC2).

We continue by evaluating Exodus’ profilers with the dwsSA application, shown in

Table6.2. We again note that, as expected, the cost-oriented optimizer always picks

the cheapest instance types (m1.small), and uses one of them to execute105 and106

simulations. However, due to the significant error in Naı̈veCPUProfiler’s estimation of

the total execution time (30%, on average), it incorrectly recommends to utilize three

instances in the case of107 simulations. It does so, believing that they will finish in
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3398.15 seconds (thus charging the user for three compute-hours of time), but due to

this estimation error, actually executes for 4494.96 seconds, which on three machines

charges the user for two hours on each machine, or six compute-hours of time. The Re-

moteCloudProfiler, in contrast, provides a significantly lower estimation error (11.33%,

on average) and instead utilizes one instance for four hours, charging the user a total

of four compute-hours (albeit at an increased cost to the user to profile the application

itself).

6.5 Related Work

The Exodus application programming interface builds upon and expands upon the

work of others. Exodus was implemented by repurposing the Neptune domain specific

language, which provides users with a Turing-complete language to specify how pro-

grams should be executed in clouds. The actual execution of these programs is then

handled by the AppScale cloud platform. This is because its PaaS-level offering au-

tomatically manages, configures, and deploys IaaS-level resources. This work goes

further with Neptune and enables it to predict the performance and cost incurred to run

a user’s application.

RO-BURST [94] aims to solve the problem of cost estimation in a similar vein

as Exodus. However, RO-BURST differs from Exodus in three critical ways. First,
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while RO-BURST claims to solve the problem of cost estimationfor IaaS vendors

(specifically citing Amazon EC2), their evaluation does not use any cloud services.

Instead, it assigns a cost to the owner of the datacenter for every machine that they

would have to purchase to execute the given workload (at $100per server or hard drive).

This style of cost estimation ignores the various instance types and pricing models

popularized by Amazon EC2, which is considered when executing applications via

Exodus.

Second, RO-BURST cannot perform cost estimationa priori, and requires intense

workload characterization. Each of the twenty workloads in[94] were run for twenty

days, and analyzed every five minutes to gather the 5,760 datapoints used to perform

RO-BURST’s cost estimation. In contrast, Exodus is able to estimate total execution

time and performance with only a single, local execution of the user’s program, and can

significantly reduce the error of this estimate by utilizingcloud resources (at a minor

cost to the user).

Third, it is not clear how users interact with RO-BURST. [94] does not explain how

users interface their programs to it and receive cost estimates, and is not designed to

be extensible with respect to how a user’s code can be optimized. In contrast, Exodus

provides a clear API that estimates the cost of executing a user’s application, and, be-

cause it is implemented via a Turing-complete language, provides users with the ability

to provide application-specific optimizers. This engenders support for a wider array of
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use cases than is currently possible, and facilitates greater experimentation with opti-

mizers on a per-application basis.

Alternatively to RO-BURST, [11] provides and evaluates a middleware offering

that is able to execute MapReduce programs over local clusters and in the Amazon

EC2 public cloud. It considers time deadlines and cost budgets when executing a user’s

MapReduce program. Three primary differences separate thiswork from Exodus. First,

[11] only targets MapReduce programs, while Exodus can execute any application that

eventually terminates, regardless of programming paradigm. Second, [11] considers

only cost or execution time exclusively of one another, while Exodus is able to balance

the two or enable a user to plug in their own function to optimize program execution.

Third, [11] does not consider heterogeneous resource types in Amazon EC2, and limits

itself to the fastest, most expensive resource type in Amazon EC2 (c1.xlarge), which is

not well-suited to use cases where minimizing cost is paramount.

6.6 Summary and Conclusions

Exodus provides users with an API whose implementation automatically deter-

mines which cloud resources are optimal to use for their application, as well as how

many resources to utilize. The motivation behind Exodus is to reduce the complexity

associated with opaque cost models for the wide array of services offered by cloud ven-
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dors. To serve this goal, Exodus enables users to define what “optimal” means to them

by writing functions in a Turing-complete language, providing users with the ability to

optimize execution on an application-specific basis. We evaluate how Exodus is able to

effectively recommend resource usage for scientific and general-purpose applications,

serving a variety of use cases. Exodus is transparently integrated with the Neptune

domain specific language and automatically utilizes the AppScale cloud platform to

harness IaaS-layer resources in Amazon EC2 and Eucalyptus, without user interven-

tion. This engenders efficient use of cloud resources without requiring users to become

an expert with each cloud technology they wish to consider executing their applications

over, and saves users time and money when executing their applications.

The text of this chapter is, in part, a reprint of the materialas it appears in [18] .

203



Chapter 7

Conclusion

In this dissertation, we investigate how to simplify the deployment of scientific ap-

plications on cloud systems, which offer differing services, meter via competing pricing

models, and provide programmatic access via vendor-specific APIs. Cloud services are

seeing increased usage for a number of reasons. First, cloudservices offer simple access

to a number of familiar abstractions, including compute, storage, and queue services.

These services are made available to the public at a previously unprecedented scale.

Second, cloud services charge on a pay-per-use basis, providing users with potentially

vast amounts of resources for only as long as they wish to pay for them. This allows

scientists to temporarily acquire large numbers of computenodes for their computa-

tions without needing their organization to permanently acquire and maintain them.

Similarly, it provides scientists with the ability to experiment with a small number of

resources, at a proportionally lower cost to their organization. Third, cloud services ex-

pose access to resources to users via first-party APIs, providing scientists with a simple
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way to access these services, if their application is written in a language compatible

with those APIs.

The goal of our work is to utilize the automated configurationand deployment capa-

bilities that cloud Platform-as-a-Service (PaaS) offers to benefit scientific applications.

We investigate new techniques to further this end at both thePaaS-level and at the pro-

gramming language level. More specifically, we design, implement, and evaluate PaaS

solutions that automatically configure and deploy applications from various application

domains. These extensions are described in detail in Chapters 3–6 and provide new

PaaS and programming language support for cloud-based execution of:

• Web-enabled applications.We design and implement a pluggable autoscaler at

the PaaS layer, and thus has access to information at the entire runtime stack on

each machine that hosted applications execute over. This autoscaler can there-

fore make scaling decisions based on Infrastructure-levelinformation (pertaining

to virtual machines), Platform-level information (pertaining to load balancers,

application servers, and databases), and Software-level information (pertaining

to the hosted applications themselves). We leverage our pluggable autoscaler to

provide high availability, enforce Quality-of-Service requirements for hosted ap-

plications, and to do both of these in a cost-aware fashion. This cost awareness

can be utilized to reduce the cost incurred to host applications, by colocating

critical services on a smaller number of nodes.
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• High performance computing applications. To facilitate greater ease of use

when deploying HPC applications, we develop a hybrid PaaS/programming lan-

guage solution, named Neptune. Neptune provides a programming language

that scientists can write Turing-complete scripts in to deploy their applications

to supported clouds, as well as PaaS-level support that automatically acquires

resources, configures them, executes their applications, and releases those re-

sources. Neptune’s PaaS-level support considers the cost models of cloud ser-

vices when acquiring and releasing resources, enabling resources to be used as

hot spares. This reduces the amount of time needed to executeprograms and

amortizes the cost of resources over repeated executions.

• General purpose applications. We design a specialized program execution

model, named MEDEA, whose PaaS-level implementation automatically incor-

porates compute, storage, and queue services from popular cloud vendors. This

enables scientists to evaluate their applications over these services without need-

ing to become familiar with the intricacies and best practices of each service, and

facilitates portability of these applications between services. Exodus provides

programming language support that predicts how to best execute a scientist’s ap-

plications, based on performance, cost, or user-defined metrics. We investigate

how to leverage MEDEA’s PaaS-level implementation to gather this information

for scientists automatically, and for a wide array of cloud services.
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Finally, we provide detailed empirical evaluations of our solutions and show that

they enable scientific applications to be executed in the webservice, high performance

computing, and general purpose application domains. In addition, the automation with

respect to application configuration and deployment at the PaaS and programming lan-

guage levels facilitates greater ease of use by scientists when using cloud services.

7.1 Contributions and Impact

In this section, we summarize our main contributions and discuss their impact.

Our primary contribution is Platform-as-a-Service and programming language support

within and across cloud compute, storage, and queue offerings, which enable automatic

configuration and deployment of applications in the web service, high performance

computing, and general purpose domains. Other contributions that we make in this

dissertation include performance and cost awareness for hosted applications, increased

portability of applications between otherwise incompatible Infrastructure-as-a-Service

vendors (including on-premise offerings), and something else.

The results of our research have been appeared in the proceedings of high-quality,

peer-reviewed conferences and journals. Combining the automated configuration and

deployment capabilities that Platform-as-a-Service cloud computing offers with the

ease of use and expressitivity of a Turing-complete programming language has never
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been investigated in the literature before. In particular,our original Neptune publica-

tion was granted the Best Paper Award at HPDC’s ScienceCloud based on its novelty

and on the strength of its contributions.

Besides their scientific impact, our contributions have a significant practical value.

The systems produced as part of our research have been released and actively main-

tained as open source projects since their inception. To date, the AppScale PaaS has

been downloaded over 10,000 times and has an active worldwide user community. In

summary, the key contributions we make with this disseration are:

• A pluggable autoscaling system.We contribute an open source, pluggable au-

toscaler that runs at the cloud PaaS layer. By realizing high availability (HA) as

being part of maintaining an elastic cloud PaaS, we are able to provide an extensi-

ble autoscaling solution that adds both HA-awareness as well as QoS-awareness

for web applications. We find that utilizing hot spares within our system can

decrease the amount of time needed to recover from certain types of failures by

an average of 48%, with a slight increase in the monetary costthat the end-user

incurs. Similarly, a slight increase in monetary cost can beutilized to ensure a

higher QoS to end users, with an increased performance of up to 32% for the

applications tested.

We also contribute a cost-aware autoscaler that is able to automatically save users

91% for the instances utilized in the AppScale PaaS for the HA-aware or QoS-
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aware autoscalers, albeit with an order of magnitude increase in the amount of

time needed to respond to failures or low QoS. We contribute all of these au-

toscalers to the open source AppScale code base, to engendernew types of re-

search as well as the inclusion and experimentation of existing scaling algorithms

within cloud PaaS systems.

• A domain specific language to automate program execution.We develop and

implement Neptune, a Domain Specific Language (DSL) that abstracts away the

complexities of deploying and using high performance computing services within

cloud platforms. We integrate support for Neptune into AppScale, an open-

source cloud platform and add cloud software support for MPI, X10, MapReduce,

UPC, Erlang, and the SSA packages StochKit, DFSP and dwSSA. Neptune al-

lows users to deploy supported software packages over varying numbers of nodes

with minimal effort, simply, uniformly, and scalably.

We also contribute techniques for placement support of components within cloud

platforms, while ensuring that running cloud software doesnot negatively im-

pact other services. This entails hybrid cloud placement techniques, facilitating

application deployment across cloud infrastructures without modification. We

implement these techniques within AppScale and provide sharing support that

allows users to share the results of Neptune jobs, and to publish data to the scien-
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tific community. The system is flexible enough to allow users to reuse Neptune

job outputs as inputs to other Neptune jobs.

• An execution model for heterogeneous cloud execution.We develop MEDEA,

an execution model whose implementation automatically deploys user programs

to cloud IaaS and PaaS systems (compute, storage, and queue services), without

requiring that users modify their applications. To providethis pluggable service,

MEDEA repurposes an open source cloud PaaS and domain specific language to

enable arbitrary programs to be deployed and executed. Our implementation of

MEDEA encapsulates such programs automatically so that they can be executed

over a wide variety of cloud systems, and can execute programs on-premise or

off-premise in Amazon EC2, Google App Engine, Microsoft Azure, or some

combination.

We experiment with and evaluate MEDEA’s implementation using a number of

different programs, programming languages, benchmarks, and use cases. We find

that while cloud systems may perform similarly for a given piece of code, they

can vary greatly with respect to the price users pay to run their code in these

systems, due to the pricing models that clouds enforce. Overall, the MEDEA

execution model significantly simplifies and makes cloud IaaS and PaaS systems

portable and reusable through abstraction and a cloud PaaS system. With our
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implementation of MEDEA, users can “snapshot” the performance and cost of

their programs in cloud systems, and run them where it is fastest or cheapest to

do so.

• A cost and performance aware application programming interface.We con-

tribute Exodus, an application programming interface (API) whose implementa-

tion in the Neptune domain specific language automatically determines how to

optimally execute user programs over cloud IaaS systems. Users may decide that

“optimally” executing their program means that it should beexecuted quickly,

inexpensively, or via user-provided metrics. Enabling users to provide these met-

rics via a Turing-complete language improves the expressitivity of the optimizer

itself, and provides users with the ability to optimize execution on a application-

specific basis.

We experiment with and evaluate Exodus’ implementation using a number of

different scientific applications, written in different programming languages and

solving non-trivial biochemical problems. Exodus is able to correctly select the

optimal instance type and number of instances for its performance and cost-

oriented optimizers with 2%-16% error for the applicationsevaluated in this

work. Furthermore, we find that there is a significant, but quantifiable and pre-

dictable, difference between the number of machines and machine type to use
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when executing applications quickly or inexpensively. Exodus provides the abil-

ity to estimate this quantitya priori, without requiring users first to become an

expert with each cloud IaaS system that they wish to considerexecuting their ap-

plication over. This increases the portability of their applications, enabling users

to execute their programs wherever it is fastest or cheapestto do so.

Our contributions advance the state-of-the-art in Platform-as-a-Service cloud com-

puting primarily by enabling scientific applications to be executed over cloud services,

which provide differing services, assess fees via unique pricing structures, and sup-

ply users with access to their services by means of programmatic API support. Our

contributions include techniques and implementations that have the potential to im-

pact scientists, end users, cloud vendors, as well as researchers operating within the

Infrastructure-as-a-Service and Platform-as-a-Servicecommunities.

7.2 Future Research Directions

In this section, we identify several avenues for future research work. Our con-

tributions described in this dissertation motivate and facilitate designing and building

new systems that further advance the state-of-the-art in cloud Platform-as-a-Service,

Infrastructure-as-a-Service, programming languages, and beyond. We discuss a num-

ber of research directions that we believe are worth exploring based on our empirical
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results and observations as well as design and implementation intuition that we have

gained while developing the systems we described in Chapters3–6. We overview both

extensions to our contributions and completely new research projects along with their

potential impact.

The pluggable autoscaling system provided by AppScale can be a starting point

for a number of different research paths. We identify and briefly overview the most

interesting and promising ones below.

• Pluggable autoscaling for applications outside the web services domain.Au-

toscaling systems have been well investigated for web service applications, and

for programs within specialized frameworks. The MapReduce programming

model, and its open source implementation in Hadoop MapReduce, in particu-

lar have benefitted from research on how to serve programs that conform to its

requirements. Yet an investigation has not been done to enable autoscalers from

previous research systems to be interchanged (or “plugged in”) or combined in

a manner similar to that which is done with AppScale’s pluggable autoscaling

system. Such a system would foster greater research, collaboration, and use of

the autoscalers themselves as scientific tools, wherein costs could be minimized

or a specified Quality-of-Service could be maintained for supported, possibly

general-purpose, applications.
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• A language for autoscaling.Domain specific languages are becoming increas-

ingly common, in response to programming languages with powerful metapro-

gramming capabilities. The Ruby programming language in particular provides

both high writability and metaprogramming constructs thathave facilitated its

use for web service applications (e.g., Sinatra [87], Slim [88]), process moni-

toring (e.g., God [43]), and role-playing games that execute within interactive

terminals (e.g., Dwemthy’s Array [37] for the Interactive Ruby Shell). Yet the

literature has not, to date, seen the use of a domain specific language that aids

users in designing, implementing, and evaluating autoscalers for applications of

any domain. APIs and rule-based systems currently are provided for autoscal-

ing, but do not provide the flexibility or fine-grained scaling capabilities that a

Turing-complete PaaS-level language solution could support.

• Autoscaling based on service placement at the IaaS layer.The pluggable au-

toscaler that this work contributes operates at the Platform-as-a-Service layer,

which is abstracted away from the underlying Infrastructure-as-a-Service. This

lack of cooperation between the PaaS and IaaS layers means that the PaaS could

aggressively spawn virtual machines to provide high availability, but the IaaS

could be oblivious of this goal and place these virtual machines on a single hard-

ware rack. This would then defeat the purpose of providing high availability, as

the system is reliant on the survival of the hardware rack itself. If the pluggable
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autoscaler could instead communicate with the IaaS layer and indicate where

virtual machines should be placed, then end users could be served more reliably.

We believe that leveraging domain specific languages to provide simple, power-

ful interactions with Platform-as-a-Service offerings (which in turn can automatically

configure and deploy applications across hybrid cloud deployments) can be extended

further. Below, we describe a number of potential research directions that seem worth

exploring and may lead to interesting results.

• Adaptive profiling for application execution. Executing applications locally to

predict performance encountered in cloud compute servicescauses errors in the

predictions given by our Exodus system. One way we minimize this error is to

execute the profiling runs on the actual cloud compute resources, thus acquiring

a more accurate performance profile. However, this solutionis valid only if in-

stances within a given instance type perform similarly, which [10] and [62] have

shown is not always the case. Therefore, future work is needed to adaptively

schedule application execution among machines that are advertised as being the

same by a cloud vendor but in reality perform significantly differently.

• Cost-aware fault tolerance for application execution.Research has been done

that details how execution can be performed in a fault-tolerant manner for a num-

ber of classes of applications. Yet these works have not considered what the

215



Chapter 7. Conclusion

monetary cost of fault-tolerance is – that is, the cost to maintain more resources

as hot spares or to have speculatively executing tasks. Therefore, a system that

could optimally heal from faults with respect to cost (perhaps at the expense of

performance) would be a beneficial research tool for executing scientific applica-

tions.

• Budgetting Exodus programs as a whole.While the Exodus system does pro-

vide users with the ability to indicate that executed programs should cost no more

than a certain limit, it does not provide the ability to perform this in aggregate.

What this means is that scientists cannot specify their budget for all of their com-

putations, and must individually break their budget down into chunks for each

application to run. Providing users with the ability to run functions (which them-

selves could execute more than one application via cloud services) with a budget

on all computations that it executes would alleviate this problem, and relieve

scientists of the burden of breaking up their budget if more than one set of appli-

cations needs to be run.

• Deadlines for Exodus programs. Conceptually similar to setting a program-

wide cost budget, scientists also need to be able to specify that their program

should complete by a certain deadline. Research is needed to investigate how to
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minimize the amount of error in Exodus predictions and thus ensure that execu-

tion plans can be produced that obey these deadlines.

In summary, this dissertation work open up several promising research opportuni-

ties in Platform-as-a-Service cloud computing. Moreover,they lay the foundation for

further improvements in cloud service offerings, cost model analysis, and API interop-

erability, as well as automation and negotiation of the use of these services across cloud

providers.
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