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Abstract— We present a framework for making computation
offloading decisions in computational grid settings in which
schedulers determine when to move parts of a computation to
more capable resources to improve performance. Such schedulers
must predict when an offloaded computation will outperform
one that is local by forecasting the local cost (execution time
for computing locally) and remote cost (execution time for
computing remotely and transmission time for the input/output
of the computation to/from the remote system). Typically, this
decision amounts to predicting the bandwidth between the local
and remote systems to estimate these costs. Our framework
unifies such decision models by formulating the problem as a
statistical decision problem that can either be treated “classically”
or using a Bayesian approach. Using an implementation of this
framework, we evaluate the efficacy of a number of different
decision strategies (several of which have been employed by
previous systems). Our results indicate that a Bayesian approach
employing automatic change-point detection when estimating the
prior distribution is the best-performing approach.

I. I NTRODUCTION

In computational grid settings [2], [8], when a new compu-
tation is initiated, the “scheduler” (either a human user oran
automatic system scheduler) must often decide whether to run
the computation locally, or to offload it to a more powerful
remote resource. The advantage of executing locally is thatthe
computation can be initiated immediately, with all of its input
data in place. Alternatively, to gain the performance advantage
offered by a faster remote machine, the input and output data
must be moved to and from the remote site respectively adding
an additional overhead. Thus, the scheduling decision in the
simple offloading scenario is based on whether the additional
performance offered by the remote system will be overshadowed
by the cost of the additional data movement. If the cost is
higher, then a local execution will be faster. If it is not, then
remote execution yields the faster execution time. This decision
is particularly important for systems that implement variants of
Grid RPC such as GridSolve [1], [25], Ninf [19], OmniRPC [18],
and others [10].

These systems, however, make this decision in some
implementation-specific way even though the decision problem
is essentially the same. In this paper, we present a methodology
for making computation offloading decisions that we believeis
general enough to unify the different approaches implemented
by most extant grid RPC systems (at least for the instances
where the computational resources are accessed interactively).
We describe our methodology and then detail its effectiveness
using performance measurement traces gathered from “live”ex-
ecution settings. Our results show that while different individual
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approaches may work well in specific circumstances, a com-
prehensive approach based on Bayesian risk evaluation [12]is
consistently the most successful.

Specifically, the key observation we make is that the offloading
decision is typically based on three predictions:

• a prediction of the time required to execute the computation
locally,

• a prediction of the time required to execute the computation
remotely (once the data is available at the remote site), and

• a prediction of the time required to move the input data from
the local site to the remote site, and to gather the results back
to the local site.

Moreover, for many scientific applications and libraries (e.g.
LINPACK [7]) high-quality execution time predictions for many
machines and architectures are readily available [5], [20]. Predict-
ing the transfer time, however, typically requires a prediction of
network bandwidth which many systems make by analyzing on-
line network measurements (e.g. by predicting future bandwidth
from historically observed network performance) [11], [13], [23].

Typically, the decision algorithm first predicts the bandwidth
between the local execution site and the remote site. Using that
bandwidth prediction, it then computes the predicted execution
time associated with transferring the program data, executing
remotely, and gathering the results. This overall time is then
compared with the local time prediction (that does not depend
on available bandwidth) and whichever is lower indicates the
decision to be taken.

In terms of making a “yes/no” (i.e. local or remote execution)
decision, if the bandwidth data can be considered to be modeled
in some way by a random process (as is typical), this prevalent
methodology can be considered a specific instance of a more gen-
eral Bayesian decision problem. In such a problem formulation,
the bandwidth is a phenomenon that is being modeled as a random
variable, and each predictor provides abelief or hint that tempers
the conditional distribution on that variable (termed aposterior
distribution), when computing the expected risk associated with
the decision either to offload or to keep the computation local.
We compare the usage of various predictors asad-hocconditional
expectation generators to an implementation of the full Bayesian
problem formulation. We also examine the value of automatic,
on-line, change-point identification in the bandwidth datatime
series as a method of improving the accuracy of the offloading
decision mechanism.

The advantage of this more general approach is that it formally
admits the notion of “update” to the state of the prediction system
as new data becomes available. On-line prediction techniques
like those described in [11], [13], [23] usually incorporate new
data (e.g. new bandwidth measurements) as soon as they become
available. Every time a new measurement is incorporated into the
predictor’s state, a new prediction is possible. The weightgiven



to each new prediction, however, modifies this new prediction in
different ways. As a Bayesian decision, however, the computation
of the new prediction is a well-defined function of the previously
computed prediction. Thus the prediction made by each individual
predictor is incorporated into the decision-making process in a
uniform way. That is, the methodology we present, and the im-
plementation of it we explore, incorporates the existing predicting
methods into a single, on-line prediction framework that produces
offloading decisions in this setting.

In summary, the contributions that we make in this paper are:

• a formulation of computation offloading as a statistical deci-
sion problem that provides a unified method for incorporat-
ing and comparing different network bandwidth predictors,

• a description of an implementation of this methodology
that functions on-line and that can be parameterized with
different individual prediction techniques,

• an evaluation of the approach using this implementation
using a pair of network bandwidth measurement traces,

• a performance evaluation comparing various prediction
methods documented in the literature and a number of
different decision strategies based on these predictions.

The remainder of the paper is organized as follows. We first
describe the offloading problem and its use in modern systems.
In addition, we articulate the generality of the statistical decision
approach we take. Section III describes the various decision
strategies we explore that are based on different techniques for
making on-line predictions from bandwidth data. In SectionIV
we analyze a series of experiments that compare the performance
of these strategies. We then present our conclusions in Section V.

II. COMPUTATION OFFLOADING

Computation offloading is a technique for improving the exe-
cution efficiency of a distributed system by moving computation
from a less-capable system to one that is more capable. This
capability can take the form of compute power, memory, system
load, as well as battery lifetime. Offloading is also referred
to in the literature as remote execution and is employed in
computational grid systems to improve the performance of an
application typically through the use of Grid RPC [1], [10],[18],
[19], to speed execution through parallelization and improved
task execution performance. Offloading has also been shown to
be effective for mobile, resource constrained devices, to extend
battery life and computational capacity [6], [9], [11], [15], [17],
[26].

Figure 1 shows the conceptual design of a simple computation
offloading system with one client (local computer) and one server
(remote computer). The scheduler must consider the expected cost
of both local and remote execution, requiring accurate predictions
of the demand and supply of several parameters both at the local
and the remote device during the lifetime of the task. There
are three fundamental parameters that the decision maker has
to predict: time needed to execute computation locally, time
needed to execute computation remotely (excluding the costof
data transfer), and time needed to move input data and results
back and forth between the local and remote computers.

In this work, we investigate a framework for decision making
strategies that attempt to maximize expected offloading perfor-
mance by using network bandwidth predictions the most effective
way. In particular, we assume that the local and remote task
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Fig. 1. Components of a Typical Offloading System. A decision process
forecasts network bandwidth to decide whether it is beneficial or not to offload
the computation to the remote system.

execution time is known by the scheduler. This assumption is
often true in scientific computing settings, particularly for calls
to highly tuned numerical libraries such as LAPACK [5]. We refer
to task execution time (in seconds) on the local machine asCl.

We define the ratio of local and remote execution, excluding
the network transfer cost, to beα. α is a unit-less metric that
reflects the fraction of local execution time that remote execution
takes if the task data is readily available at the remote system.
Consequently,1/α is the speed-up (i.e., how fast the remote
device is), relative to the local device (excluding transfer delay).
We assume that the total amount of data that has to be transferred
between client and server,s (measured in bits), is also known. If
the network bandwidth between the client and server during the
computation offloading isβ, then, we can compute the expected
cost of remote executionCr(β) as:

Cr(β) = Clα +
s

β
(1)

A computation offloading is beneficial only whenCl > Cr(β).
Thus, a decision manager should offload if;

Cl > Clα +
s

β
(2)

which we can rewrite as:

β >
s

Cl − αCl

(3)

Note that our cost formulas 1 and 2 are only approximations as
in reality other factors such as communication and computation
overlap impact the cost of remote execution. In this paper we
ignore such factors since our primary goal is to compare decision
making strategies and not to estimate the actual cost.

We define the smallestβ that makes the inequality above true
the critical network bandwidthand we denote it as the threshold
valueT . For a given local execution costCl, transfer sizes, and
speed ratioα, if the network bandwidth is larger than the critical
network bandwidthT , the cost of execution is minimized by
offloading the task. Otherwise, it is minimized by local execution
of the task. We use this fundamental cost model to explore
different decision making strategies presented in the restof this
work. In some sense, each strategy represents a different method
for estimating the relevant parameters in this model so thatthe
expectedexecution cost is minimized.

III. C OMPUTATION OFFLOADING AS A STATISTICAL

DECISION PROBLEM

In this section, we discuss several decision strategies that are
based on the cost model described in the previous section. While
many of these strategies have been implemented previously in



different settings [6], [9], [10], [17]–[19], [26], they are all in-
stances of either classical or Bayesian statistical decision-making
procedures [12]. As such, they can be represented and analyzed
using a common nomenclature, mathematical framework, and
software tool base. Thus it is possible to unify the various
approaches to minimizing execution time through computation
offloading. We begin by formulating the computation offloading
process as a statistical decision problem. We then discuss each
strategy in detail.

A. Offloading as A Classical Statistical Decision Problem

The simplest form of the decision problem requires that the
decision maker compute the expected local and remote costs at
each point where offloading is possible, and to choose the decision
corresponding to the lowest expected cost. WithCl known, the
problem is to compute the expected value ofCr(β) as a function
of the available network bandwidth as:

E[Cr] =

Z

Cr(β) ∗ f(β)dβ (4)

wheref(β) is the probability distribution function (PDF) describ-
ing the available bandwidthβ. SinceCl is constant,E[Cl] = Cl.
Thus an offloading decision is indicated whenE[Cr] < Cl.

Determining f(β), however, is difficult. A large body of
research has focused on determining good probabilistic models for
network bandwidth [3], [16], [21] with little agreement on the best
method, and some indication that purely analytical model may
not be possible. Moreover, in an on-line execution setting –one
where the decisions are being made “instantaneously” whilethe
application is executing – new information becomes available as
time progresses. The strictly classical formulation of theproblem
assumes that this new information does not indicate change in
the underlying dynamics of the system. That is, new bandwidth
measurements are assumed to be samples from the distribution
f(β) and thatf(β) does not change over time. Additionally,
the bandwidth distribution that is required here is forend-to-end
throughput which is subject to interactions with the operating
system scheduling discipline on both ends, buffer availability,
interrupt scheduling, etc.

Practically, one approach to estimating the potentially time-
varying distributional properties of end-to-end bandwidth is to use
a periodic series of measurements from which the distribution is
estimated empirically. Further, as new measurements are gathered,
the estimation is updated. In this paper, we will assume such
a methodology is in place. Namely, we assume that historical
measurement data (either gathered from a periodic probe or
via the logging of previous activity) is available. Moreover, as
time progresses and new data becomes available, that data is
incorporated as soon as possible.

Often, E[Cr(β)] (c.f. Equation 4) is computed asCr(E[β]).
That is, the expected cost is computed as the execution cost
derived from the expected value of the bandwidth. However,
becauseCr(β) is linear in the inverse of the bandwidth value (and
not the bandwidth value itself) this substitution is not valid for the
cost formulation we have chosen. Thus, we maintain a histogram
of previously observed bandwidths to compute an estimate ofthe
integral in Equation 4 using

P

[Cr(βi)Pi]. Here,Pi is the relative
frequency of the bandwidth observations that are in bini of the
histogram, andβi is the corresponding bandwidth (of that bin).
We update the histogram as new bandwidth values are observed.

Strictly speaking, because new data is incorporated in the
histogram that we use to approximatef(β), the problem might
not be viewed as a “classical” statistical decision problemsince
there is a data update phase in the procedure. Each time a decision
is made, however, the formulation simply uses its “best estimate”
at that moment forf(β) to compute the expected cost. That is,
each decision is “classical” even though the series of decisions
is essentially based on a time series of conditional distributions.
Since this methodology is often used in practice (i.e. the average
bandwidth is commonly, and perhaps incorrectly, used in the
cost calculation) we feel it is important to classify. In terms of
nomenclature it is truly a “best effort” attempt to implement a
statistical decision procedure that is based on an estimateof the
distributional properties associated with a single randomvariable.
In this sense, the methodology is most properly categorizedas
“classical.” Perhaps to avoid such ambiguity, this approach is
also often termed aData decision strategy since it uses the data
directly to compute expectations of risk. We will henceforth refer
to the classical strategy as theData strategy to follow suit.

B. Offloading as a Bayesian Decision Problem

Because approximatingf(β) can be so challenging, a number
of previous approaches have employed prediction techniques
(often statistical) to forecast future bandwidth values. The cost
functions are then computed from the forecasts in a decision
strategy. Again, because the dynamics of end-to-end network
bandwidth have yet to be fully understood, these forecasting tech-
niques are usually evaluated empirically and not analytically [6],
[9], [11], [17], [23], [24]. As such, however practically successful
they may be, in a formal setting they can be viewed as heuristics
that temper or weight the perceived probability associatedwith
future bandwidth values. From this perspective, then, “black-
box” predictors generate belief that weights the probabilities
described byf(β) leading to a Bayesian formulation of the
decision problem.

The Predictor Strategy:The most straightforward approach is
simply to accept the output of any predictor as having probability
1.0 of being correct. That is, to “believe” that the predictor is
correct and to ignore the previously observed bandwidth values.
We term this strategy the Predictor strategy.

The Predictor strategy uses the network forecast directly in
decision making. For a certain task, if the network bandwidth
forecast is larger than the critical network bandwidthT , it offloads
the task to a remote device, otherwise, it chooses local execution.
That is, in Predictor strategy the decision algorithm is “yes” if
the predicted bandwidth is> T and “no” otherwise.

When using the Predictor strategy, the critical question con-
cerns the degree to which a given predictor improves overall
execution performance and whether there is a significant dif-
ference in efficacy from one predictor to another. A popular
way of comparing network predictors is to use thempost facto
using a trace of network observations that are collected from
real and/or simulated networks. Letx be the observed network
bandwidth,y be the corresponding prediction andn be the number
of observations. To compare network predictors, one can compute
the mean square errorover the observed and predicted values.
Mean square error (MSE) is the average of the square prediction
error; i.e. MSE = (

P

i(xi − yi)
2)/n. The squaring of the

prediction error,(x− y), allows MSE to be particularly sensitive



for large incorrect predictions. It is generally assumed that the
lower the MSE, the better is the predictor.

In computation offloading, however, MSE is not necessarily the
best metric to measure predictor performance. Referring back to
Equation 3, the goal is to estimate when the network bandwidth is
less than, or over the critical network bandwidth,T . A predictor
that has a larger MSE could be better than (for the purpose of
offloading) another predictor that has a lower MSE, as long asthe
one with larger MSE estimates when network bandwidth is less
or more than the critical network bandwidth more accurately. In
other words, for computation offloading, a less accurate prediction
that none-the-less indicates a correct decision is preferable over a
more accurate prediction that indicates an incorrect decision. In
contrast, MSE is a symmetric metric that measures the distance
between the predicted and the actual value quadratically, and
therefore, it cannot capture the impact of predictor performance
in an offloading setting.

In the next subsection, we evaluate a wide range of predictors
in terms of their offloading efficacy and explore the differences
between sophisticated and adaptive predictors and simple,param-
eterized predictors in a computation offloading setting.

Bayesian Risk and Bayesian Strategies:The computation of-
floading systems that rely solely on network predictors suffer from
an important problem. The Predictor strategy does not take into
account how much a risk one takes by believing the network
predictor (i.e. it assumes a network predictor is correct 100% of
time). A Bayesian approach allows us to compute the expected
risk we take by believing the predictor, which we can then use
to give our decisions.

Assume thatCr(β) and Cl are defined as in the previous
section, andf(β|βp > T ) is the probability of observing a
network bandwidth valueβ, given the network forecastβp is
larger thanT . The Bayesian risk is the expected cost as a function
of the posteriordistribution associated with offloading:

Rr =

Z

Cr(β)f(β|βp > T )dβ (5)

Similarly, the risk that we take by locally executing the compu-
tation is:

Rl =

Z

Clf(β|βp < T )dβ (6)

Note that, it may not be immediately apperant why we compute
a risk factorRl for local execution. In computation offloading,
the goal is to choose the execution site (local vs. remote) that
minimizes execution cost. If we choose remote execution, and
if the network bandwidth turns out to be smaller thanT , local
execution becomes cheaper, and we pay a penalty for remote
execution decision. In the same way, if we choose local execution,
and if the network bandwidth turns out to be larger thanT ,
remote execution becomes cheaper, and we pay a penalty for
local execution decision. Since both decisions include a potential
penalty, we have to compute the risk for both before giving a
decision.

Thus, while computingRr, we need only consider the integral
from 0 to T computationally, because, whenβ is larger thanT ,
there is no penalty involved in offloading the computation (i.e.
remote execution is the lower cost decision). In the same way,
while computingRl, we take the integral starting fromT to
infinity, because, whenβ is smaller thanT , there is no penalty
involved in locally executing the computation. Also noticethat in
this case,Rl is not constant, even thoughCl is.

We can computef(β|βp > T ) and f(β|βp < T ) using Bayes
Theorem:

f(β|βp > T ) =
f(β)f(βp > T |β)

f(β > T )
(7)

f(β|βp < T ) =
f(β)f(βp < T |β)

f(β < T )
(8)

In the equation above,f(β) is the PDF associated with network
bandwidth (as before),f(βp > T ) is the PDF associated with the
predictor predicting a value above thresholdT , andf(βp > T |β)

is the conditional PDF for a prediction aboveT given an observed
bandwidth valueβ. Thus, the conditional PDF for bandwidth
given a predictionβp is greater thanT is the posterior PDF
based on theprior PDF for bandwidth (f(β)), the conditional
PDF on the predictor given a bandwidth value (f(βp > T |β))
and the absolute PDF on the predictor itself (f(β > T )). The
same is true for a predictionβp being less thatT except that the
inequalities are reversed.

In an implementation of this Bayesian formulation, we maintain
a histogram for theprior PDF f(β) as described previously. We
also implement an array of histograms (one per range of possible
bandwidth values) for the conditional PDFf(βp > T |β) and
a single histogram for the absolute PDFf(βp > T ). That is,
whenever a bandwidth valueβ is observed, we determine what the
predictor indicated just before the bandwidth value was recorded
with respect toT . The fraction of correct indications is maintained
in a bin indexed byβ to implement the conditional PDF for
bandwidth. Similarly, a single fraction capturing the proportion of
correct indications by the predictor is maintained as the absolute
PDF. Finally, to estimate the Bayesian risk values described in
Equations 5 and 6, we first compute the empiricalposteriorPDFs
shown in Equations 7 and 8, and then compute expectations using
theseposteriorPDFs as weighted sums.

To better explain this, assume that we use a histogram that has
10 bins and our maximum network bandwidth is 100Mb/s. In this
case, the first bin of the histogram that is associated withf(β)

gives the prior probability of observing a network bandwidth that
is less than 10Mb/s, the second bin gives the prior probability
of observing a network bandwidth that is larger than 10Mb/s but
less than 20Mb/s, and so forth. For computingf(βp > T |β), we
use one histogram with only two bins (one for conditionβp ≤ T

and the other for conditionβp > T ) per each of the 10Mb/s
range. As an example, assume thatT is larger than 20 Mb/s.
If a network observation is between 10Mb/s and 20Mb/s, and
the corresponding network prediction is less thanT , we update
the bin that counts the conditionβp ≤ T of the 2nd histogram.
Similarly, the histogram for thef(β > T ) also has two bins, each
of which giving the probability of observed value being lessthan
or more than T. We update this histogram the same way after
each observation.

Notice that the “machinery” necessary to compute expectations
based on empirically determinedposterior PDFs is somewhat
involved. If the data is correlated (and it is, in this case) and slowly
changing, it might be reasonable to assume that theposterior
PDFs required for the next offloading decision are similar to
the ones observed after the fact for the previous decisions.To
investigate this possibility, we also implement an Observed Bayes
strategy in which we simply record (again as empirical PDFs)
f(β|βp > T ) and f(β|βp < T ). That is, rather than computing
the next posterior PDF based on current observations of the
bandwidth and the predictor, we use the results of the previous



outcomes to record previously observed conditional distributions
of bandwidth based on predictor indication. If the “look ahead”
that the full posterior PDF computation is not important, the
Observed Bayes strategy should be as cost efficient (or more cost
efficient since fewer PDFs are being estimated) than the computed
Bayes Strategy with a significantly less complex implementation.

Bayes Strategy Incorporating Change-point Detection:Notice
that in all strategies discussed so far except for the Predictor
strategy, the estimation of the bandwidth PDFf(β) is critical
since it is necessary to compute expected risk. However, theend-
to-end bandwidth that is available between two machines may
change over time in a way that is better described by a series of
PDFs, each estimatingf(β) over a given time period. In previous
work [4], [14] we describe a method for detecting change-
points in highly autocorrelated, highly variable time series. This
methodology is based on a non-parametric quantile estimation
technique that uses empirically computed Binomial distributions
to identify unlikely sequences of values. When a sequence that
would have a low probability of occurring given the quantile
estimates occurs, the system indicates that the series has crossed
a change point. All data before the change point is then discarded
and new data is used to generate future estimates.

In this work, we apply our previously developed methodol-
ogy to the problem of estimatingf(β) as a function of time.
Specifically, we compute quantile estimates for the cumulative
distribution function (CDF) on bandwidth using the Binomial
method with change-point detection enabled. We then numerically
differentiate the CDF to generate an instantaneous approximation
of the PDFf(β). The result is a PDF representation that only
takes into account bandwidth data occurring since the last change
point, and which has been estimated using the Binomial quantile
estimator (which we have observed to be robust with respect to
high levels of autocorrelation). We then use this time-sensitive
f(β) to compute theposteriorPDFs required to implement a full
Bayes strategy.

A No-Data Strategy:Finally, it is important to compare strate-
gies (classical or Bayesian) that are based on risk expectations
derived from bandwidth observations, to a strategy that does not
rely on a direct probabilistic characterization of bandwidth. We
term such a strategy aNo Datastrategy since it does not rely on
estimating a PDF on the “data” (which is bandwidth data in this
case).

At the time of an offloading decision, letEl be the average
risk associated withalwaysmaking a local decision before each
previously observed bandwidth measurement occurred. Similarly,
let Er be the average risk associated with choosing a remote
execution are each point in time that has occurred previously.
The No-Data strategy chooses local execution, ifEl < Er and
remote execution ifEl > Er. That is, if “on the average” it has
been better to choose local execution over remote executionin
the past, choose local, otherwise, choose remote. To compute the
expected cost of local and remote execution decisions, the No-
Data strategy simply keeps track of cost of wrong decisions for
both local and and remote execution decisions each time a new
bandwidth value is observed.

IV. EVALUATION

In this section, we evaluate the efficacy of computation offload-
ing strategies that we described in the previous section. Wecouple
each strategy with a wide range of popular prediction algorithms,

TABLE I

THE NETWORK PREDICTORS THAT WE EVALUATE.

Name Description
Last Last value
Avg Running mean filter
ODY Exponential smoothing with gain 0.875
FlipFlop Adaptive filter combining two predictors [11]
NWS Network weather service forecaster [22]
NwsLite Extension to NWS for resource-restricted devices [9]

TABLE II

THE BANDWIDTH TRACES THAT WE CONSIDER.

Trace Size Avg Bw Network Configuration
Trace1 59101 48.9 100 Mb/s
Trace2 11316 553.9 1 Gb/s

and use trace based simulation to compare their performanceover
two large network traces that we collected from real networks.
Our preliminary results show thatBayes+Change Pointstrategy
(c.f. Subsection III-B) is significantly more powerful thanits
competitors, regardless of the specific predictor that it uses.

A. Experimental Methodology

Table I presents the predictors that we employ within our
framework as part of this evaluation.Last is a Last Value
predictor, it uses the last observation as a forecast for next
measurement. Last, thus, is very responsive to sudden changes
but very susceptible to noise in the measurements.Ody is an
exponential smoothing predictor. We employ a gain factor of
0.875 which enables Ody to filter noise while responding quickly
to the changes over time.FlipFlop is an extension of the Ody
predictor that consists of two exponential smoothing filters, one
agile and one stable, and a statistical control component. Both
filters run concurrently and the control component selects the
best-performing filter for each prediction.Avg is a running mean
predictor. NWS [23] is the forecasting component of Network
Weather Service [24]. NWS prediction uses a mixture-of-experts
approach to prediction. It implements a large set of time-series
forecasters, each having its own parameterization. NWS keeps
histories of observed measurements of different windows and
runs all models simultaneously for each window size. A control
component selects the forecaster with the lowest error for each
prediction it makes. NWSLite [9] is a scaled down version of the
NWS that trades off prediction overhead (execution time cost) for
predictor accuracy.

We evaluate each strategy and predictor using two real network
traces. These traces include network bandwidth measurements
that we collected using NWS sensor probes. Each probe is 512K
bytes in length and measures TCP/IP performance between two
computers. We show the basic characteristics of data tracesin
Table II. The first trace is for a 100Mb/s network and includes
59101 network observations. The second trace if for a 1Gb/s
network and includes 11316 network observations.

In our simulations, we emulate the transfer of a task’s in-
put/output data over the network. We assume all task parameters
except network bandwidth is known; we choose the task param-
eters according to the following:α, the speed-up ratio is equal to
0.25, i.e., the remote computer processes computation four times
faster than the local device.Cl is local execution cost is100

seconds. We fix these parameters and vary task size to evaluate
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Fig. 2. Network bandwidth observations for 100Mb/s trace for first 5000
observations.

the performance of offloading strategies. We use the first 5000
network observations as a warm-up period for our strategiesto
construct the histograms from which we compute the probability
density functions (PDFs), and use the remaining trace to evaluate
our predictors.

There are two implementation specific parameters in our eval-
uation. The first is the number of bins for the histogram to
approximate each PDF; the second is the number of quantiles
that our framework uses in the CDF for the change-point strategy.
We empirically identified the value of20 for both as the value at
which the improvement in accuracy levels off.

We compare the performance of predictors using aregret
metric. Regret is the penalty that an offloading system pays for
a wrong decision. Total regret is the sum of the regret across
all decisions made by a decision strategy across a network trace.
Total regret is zero when there are only correct decisions and
greater than zero when there are one or more incorrect decisions.
We compute regret as the absolute value of the difference between
the cost of local and remote execution.

B. 100 Mb/s Network Experiments

We first present the performance characteristics of the 100Mb/s
network trace. Figure 2 shows the first 5000 observations which
are representative of the entire trace. The y-axis is network
bandwidth and the x-axis is time. Most of the observations range
from 50-60 Mb/s with occasional drops (i.e. one such drop to
30 Mb/s is visible to the right of the figure). The bandwidth
measurements are almost always higher than 10Mb/s, although
there are several observations that are much lower; i.e. closer to
1Mb/s range.

We next evaluate the performance of various decision strategies
using our regret metric. Figure 3 presents the regret for the
different offloading strategies when we vary task size. The y-
axis is regret, in seconds, and the x-axis is task size. For each
graph, we present the Bayes strategy alone, Bayes with change-
points (Bayes+CP), the predictor alone (Predictor), and the no-
data (No Data) and data (Data) decision strategies. We present
two graphs, for two different predictors: NWS prediction in(a)
and Odyssey (Ody) prediction in (b). We omit the graphs for
the other predictors due to space constraints; however, these
predictors are representative of the others. Note that the Data
and No Data strategies do not use predictors; we include them
here for comparison. We include all predictors in our evaluation
of the different Bayes strategies in the next section.
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Fig. 3. Predictor performance (regret) for different task sizes and decision
strategies for the 100Mb/s trace for predictors NWS (a) and Ody (b).

We observe that the task size has a significant impact on
offloading strategy efficacy. As the task size increases from0.1 Gb
(i.e. gigabits) to 4 Gb, regret increases to a peak at approximately
3.5 Gb, then decreases. That is, the various strategies perform
relatively worse for task sizes that range from 3 to 4 Gb. This
is because, these task sizes correspond to a critical network
bandwidth values in the range of 45 to 55Mb/s.

In terms of relative performance, theBayes+CP strategy
matches or exceeds all other strategies in all cases. For smaller
transfer sizes (size≤ 3.5 Gb) Bayesand Predictor strategies
match the performance ofBayes+CPstrategy. For larger sizes,
they perform worse. TheNo Data strategy performs worse than
Bayes+CPfor smaller tasks, and matches it for larger sizes. NWS
prediction strategies perform significantly better than Ody. The
Data strategy is the worst strategy overall as its use results in the
most regret for both predictors, for all task sizes.

We next zoom in on the critical bandwidth range to analyze
the prediction-based strategies in greater detail. In particular, we
consider a transfer size of 4 Gb which equates to the critical
bandwidth 53.3Mb/s, in Figure 4. We present the regret for the
strategies (Predictor, Bayes, Observed Bayes (Ob. Bayes),and
Bayes with change-points (Bayes+CP) using all of the different
predictors: NWS, NWSLite, Ody, FlipFlop, Last, and Avg. We
omit Data and No Data strategies since they do not make use of
network predictors for their decision.

The non-adaptive predictors, Last and Ody, perform signifi-
cantly worse than adaptive predictors, NWS, NWSLite and Flip-
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Fig. 4. Predictor performance (regret) for all prediction-based strategies for
the critical bandwidth of 53Mb/s using the 100Mb/s network.

Flop, in Predictor and Ob. Bayes strategies. The Avg predictor,
which is also a non-adaptive predictor, performs remarkably
well for all decision strategies. Predictor, Ob. Bayes, andBayes
strategies introduce similar regret for all predictors, except for
Ody and Flip-Flop. For these two predictors, Bayes strategyper-
forms significantly better than Predictor and Ob. Bayes strategies.
Overall, the Bayes+CP strategy outperforms all others, andit
performs well regardless of the predictor that it employs.

C. 1 Gb/s Network Experiments

We next present our experimental data and analysis for the
1Gb/s network trace. Figure 5 plots the first 5000 network
observations in this trace. The y-axis is network bandwidthand
the x-axis is time.

There are important similarities and differences between this
trace and the 100Mb/s trace. In this trace, most observations
are within 500-700Mb/s, whereas in the 100Mb/s trace, most
measurements are within 50-60Mb/s. In this trace, there are
two dominant performance modes at approximately 550Mb/s and
650Mb/s. Moreover, this trace is quite noisy and there are many
observations between 100 and 500 Mb/s. The gap in the data on
the left side of the plot shows that there is a certain period that
no observations are collected, i.e., the network was unavailable.

Figure 6 presents the regret for the different offloading strate-
gies when we vary task size using the NWS and Ody predictors
(note that the Data and No Data strategies do not use the
predictors at all; we include them here for comparison). They-
axis is regret, in seconds, and the x-axis is task size. We employ
the same strategies as we do above in Figure 3. In simulations
of Gigabit trace, we investigate task sizes that are an orderof
magnitude larger than the tasks for the previous trace, since this
network is significantly faster.

As for the 100Mb/s experiments, total regret increases as we
increase the task size. The regret peaks for tasks approximately 40
Gb in size, and then decreases. For this network, NWS prediction
shows no significant differences across strategies for tasks smaller
than 35 Gb. For larger tasks, the Predictor strategy introduces
the most regret. As in the prior set of experiments, there is a
critical range of task sizes (between 30 and 50) that separates
the strategies in term of performance (regret). Ody (a) and NWS
(b) prediction perform similarly, however, the Predictor strategy
performs poorly for a much larger range of task sizes.
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Fig. 5. Network bandwidth observations for 1Gb/s trace for first 5000
observations.

We next zoom in on a critical task size, in this case 40 Gb,
in Figure 4. This task size equates to a bandwidth value of
533.3Mb/s. We again investigate strategies that employ prediction
and include all predictors. The Predictor strategy alone introduces
the most regret over all strategies. The different Bayes techniques
perform similarly for most predictors. Bayes+CP performs well
regardless of the predictor it integrates.

Result Summary.Our results show that there can be a significant
difference in computation offloading performance depending on
the decision strategy that we use. The efficacy of a Predictor
strategy, which uses a network forecast to make a “yes/no”
decision without considering the risk associated in doing so,
is strictly dependent on how well a predictor can forecast the
future network bandwidth. However, the relationship between
predictor forecasting quality and offloading efficacy is a complex
one. Consequently, even adaptive and sophisticated predictors
may not perform well on certain datasets at certain points. A
computation offloading decision, thus, must to take into account
the potential risks and benefits of a decision before taking an
action. The Bayes strategies provide a mechanism to compute
such risks and benefits. Bayes strategies use network forecasts as
a way to compute the expected state of network bandwidth for
the next offloading decision, which our results show, can avoid
bad decisions when in a critical bandwidth range. Moreover,our
results indicate that it is important for Bayes strategies to account
for change points in the data. By doing so, the predictors are
able to avoid considering history data that occur prior to a recent
change in network behavior. By coupling predictors, change-point
identification, into a Bayes decision formulation, we are able to
extract the best computational offloading performance, regardless
of the prediction technology available.

V. CONCLUSION

In this paper, we investigate how best to formulate decision
problems for computational offloading systems for computational
grid settings. We compare a classical approach to several vari-
ations of a Bayes decision model and a “no data” approach.
We also describe how all of these approaches (including some
used in previous systems) can be represented in a common
intellectual framework for which we have developed an effective
implementation.

We find that a Bayesian approach which incorporates change-
point detection in its formulation of theprior distribution is
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Fig. 6. Predictor performance (regret) for different task sizes and decision
strategies for the 1Gb/s trace for predictors NWS (a) and Ody (b).

the most efficacious of those we investigated. In addition, by
comparing a widely disparate set of techniques using a single
implementation of our framework, we demonstrate how the
heretofore separate approaches to making offloading decisions can
be unified.
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