165B
Machine Learning
Optimization Methods

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and
Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

Change of Office Hour

« Starting Feb 7. moving to Monday 4-5pm.
* On zoom or in person (HFH 2121)

Convergence of Gradient
Descent

Gradient Descent

» Finding the parameter 6 to minimize the
empirical risk over training data

D = (@)},
) — argminL(6) = — 3" £, f0x,:0)
argmgm Y 4 Voo J(X,5

o Start from initial value
» Update rule: 0,,, = 6, — n VL(0,)

Convergence Rate

« Assume fis convex, and its gradient is
Lipschitz continuous with constant L

IV/x) = VIWIl < Lllx -yl

 [f use learning rate »<1/L , after T steps
%o — x*]|

J(xX7) — f(x*) < onT

— Convergence rate 0/1)
— Toget rx,)-fx*) <e , Nneeds O(l/e) iterations

Proof

* Gradient L-Lipschitz means

T L 2
JY) = fX) + VX)) (y —x) +5lly —x||

+ Plugin ¥=x-1V/®

Ln 5
Jy) < f(x) - <1 —7> I VS|

O0<n<1/L
* Take 1) <) = 2V

Proof Il

« By the convexity: /®) <f&*)+ VAx)'(x—x*)
* Plug in to /) < /& - IVl

1¥) < £0¢%) + VIO (x = x%) = IV
£y) —F (%) < (27 VAT (x = x*) = 2 I VFGOI12) /21
(1% — x*[|2 + 27 VAT (x = x*) = 2 [VG012 = IIx = x*[12) /21
(1% = x*[|> = [Ix — 7 VAx) — x*|12) /21
(1% = x*[|2 = [ly — x*[12) /21

Proof lli

« Sum all T steps

T T
Zﬂx» —) <)7 (lxmy = x*[12 = [1x, — x*]1%) /27
=1 =1
= (IIxo = x*[I? = lIxy — x*[1) /25 < lIxo — x*|1/21

* fis decreasing every time:
— x|

2nT

Foen) — 10 < £ 3 iy — ey < 120
T — T p_ t —

Apply to Deep Learning

 fis the sum of loss over all training data, x
IS the learnable parameters

1 n
f(x) = o Z £iX) Z{(X) the loss for the i-th example
i=0

 fis often not convex, so the convergence
analysis before cannot be applied

gradient, at each step, ((‘

randomly select a sample t; Q \\&
\.\ —

X = X1~ ntVfti(Xt—l) N

Stochastic Gradient Descent
- Instead of compute the full N (

« Compare to gradient descent

X = X 1 va(xt 1)) (

%) = Z ORI

Minibatch Stochastic Gradient Descent

* Instead of full gradient, evaluate and
update on random minibatch of data
samples Bt

Xl = ‘Bt‘ Z V£, (x)

11

Stochastic Gradient Descents

 Benefits:

— Pre-step cost is smaller (and independent of
sample size)

— only need to compute one/batch gradient at a
time, smaller memory consumption

* Note stochastic gradient is unbiased
estimate of the full gradient at each step

ELVZ,(0)] = V£(0)

12

Learning rate

« SGD typically use diminishing step sizes,
eg.n, = 1/t
* Why not fixed learning rate?

13

Convergence Rate

« Assume fis convex with a diminishing learning
rate, = 1/1, e.g.

ELf(xp)] —f(x*) = O(1/\/T)

« Under the same assumption, for gradient descent
fxp) = f(x*) = O(11\/T)

« Assume gradient L-Lipschitz and fixed #
J(x7p) = fx*) = O0(/T)

— But does not improve for SGD

14

In Practice

* Does not diminish the learning rate so
dramatically

— We don’t care about optimizing to high
daCccuracy
» Despite converging slower, SGD is way
faster on computing the gradient than GD
In each iteration

— Specially for deep learning with complex
models and large-scale datasets

15

Example: Logistic Regression

0.65

fk

Criterion
0.60

0.55

0.50

Convergence in terms of computation

ull
tochastic
ini-batch, b=10
ini-batch, b=100
0
O
o
"
= o
c O
2 o
Io)
o
]
Lf)- —]
o
o
0
o

| | [
1e+02 1e+04 1e+06

ropcnt credit: R. Tibshirani

Summary

« SGD is effective in terms of per-iteration
cost/memory

* but SGD is slow to converge for strongly
convex functions

* New wave of “variance reduction”
techniques show modified SGD can
converge much faster for finite sums

—e.g. SVRG

18

Momentum Method

Plain gradient update With momentum

> G

The momentum method maintains a running average of all gradients
until the current step

Vip1 = P —nVE(x,)
Xep1 =X TV
— Typical f value is 0.9

The running average steps
— Get longer in directions where gradient retains the same sign
— Become shorter in directions where the sign keeps flipping

19

Momentum Method

E=»

e The momentum method

Vg1 = Py, —nVE(x)
« At any iteration, to compute the current step:

20

Momentum Method

&>

e The momentum method

Vi1 = Py, —nVE(x,)
« At any iteration, to compute the current step:
— First computes the gradient step at the current location

21

Momentum Method

>

e The momentum method
Virl = :th —H Vf(xt)

X1 = X TV
« At any iteration, to compute the current step:

— First computes the gradient step at the current location
— Then adds in the historical average step 22

o oawarth A 1 A FILIRNINA AV/IAFA A A

Momentum Method

&=

e The momentum method

Vi1 = Py, —nV£E(x)

Xyl = X TV
« At any iteration, to compute the current step:

— First computes the gradient step at the current location
— Then adds in the historical average step

. . . 23
— which is a running average

SGD with Momentum Updates

@ > SGD instance or
minibatch loss
e The momentum method /

Vip1 = PV, —=nVL(x)
* |Incremental SGD and mini-batch gradients tend to
have high variance

 Momentum smooths out the variations
— Smoother and faster convergence

24

Momentum Method

Sl

Momentum update steps are actually computed in two stages
— First: We take a step against the gradient at the current location
— Second: Then we add a scaled version of the previous step

The procedure can be made more optimal by reversing the
order of operations..

25

Nestorov’s Accelerated Gradient

CE=»

« Change the order of operations

« At any iteration, to compute the current step:

26

Nestorov’s Accelerated Gradient

« Change the order of operations
« At any iteration, to compute the current step:

— First extend the previous step

27

Nestorov’s Accelerated Gradient

=)

« Change the order of operations

« At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position

28

Nestorov’s Accelerated Gradient

&>

« Change the order of operations

« At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position
— Add the two to obtain the final step

[

29

Nestorov’s Accelerated Gradient

o

/ —_
X =X+ Py,

Vi1 = PV, =V (xg)

Xep1] =X TV,

30

Nestorov’s Accelerated Gradient

« Comparison with momentum (example
from Hinton)

« Converges much faster

31

Adaptive Gradient Methods

« Momentum and Nestorov’'s method improve
convergence by normalizing the mean of the

derivatives
* More recent methods take this one step further by
also considering their variance
— RMS Prop
— Adagrad

— AdaDelta
— ADAM: very popular in practice

32

Smoothing the trajectory

R e

1 +2.5
1 -3
2 +2.5
1 -2
1.5 1.5

o B~ W NN B

« QObservation: Steps in “oscillatory” directions show large total
movement

— In the example, total motion in the vertical direction is much greater
than in the horizontal direction

— Can happen even when momentum or Nesterov are used

* Improvement. Dampen step size in directions with high motion

— Second order moments
33

Normalizing steps by second moment

/\ /\‘ﬁ /\ /‘\A

Modify usual gradient-based update:

— Scale updates in every component in inverse proportion to the total

movement of that component in recent past
» According to their variation (not just their average)

This will change the relative update sizes for the individual
components
— In the above example it would scale down Y component

— And scale up X component (in comparison)

We will see two popular methods that embody this principle... ,,

Adaptive Gradient

Notation:
— Updates are by parameter

— Derivative of loss w.r.t any individual parameter x is shown as g

» Batch or minibatch loss, or individual divergence for batch/minibatch/
SGD

— The squared derivative is g2 = (Vf(x))z

» Short-hand notation represents the squared derivative, not the second
derivative

— The mean squared derivative is a running estimate of the average
squared derivative. We will show this as E[gz]

Modified update rule: We want to
— scale down updates with large mean squared derivatives
— scale up updates with small mean squared derivatives

35

AdaGrad

* AdaGrad (Duchi, Hazan, and Singer 2010)
very popular adaptive method.

G, =G + V(x)*

* Element-wise computation

36

AdaGrad

« AdaGrad (Duchi, Hazan, and Singer 2010) very
popular adaptive method.

G, =G +V(x)

element-wise

1
X1 =X —1 V{£(x,)

\/Gt+1 T €

« AdaGrad does not require tuning learning rate #

» Actual learning rate will decrease
« Can drastically improve over SGD

* Benefits:

37

Quiz

* https://edstem.org/us/courses/16390/
lessons/29666/slides/170130

38

RMSProp

« Similar to AdaGrad, accumulate the squared
gradients, but with running average

» Adagrad denominator monotonically increase ==>
diminishing updates for parameters

* why not decay the denominator

G, =pG+ (1 —-p) Vf(xt)2 element-wise

1]
X1l = X — 1 =VZ(x)

\/Gt+1 + €

39

ADAM: RMSprop + Momentum

RMS prop only considers a second-moment normalized version of the

current gradient
ADAM utilizes a smoothed version of the momentum-augmented

gradient
— Considers both first and second moments

my = pym,— (1 =) VE(x)

Ve = Bovi + (1 = B)(VE(x,))?
My
1 — pitl

My =

5 Vt+1

Al = X~ T = My

40

ADAM: RMSprop + Momentum

RMS prop only considers a second-moment normalized version of the

current gradient
ADAM utilizes a smoothed version of the momentum-augmented

gradient
— Considers both first and second moments

m = pm,—{A—-p)Velx)
Vo1 = By, + (1 = B)(VE(x))*

~ m;
Vil = | — gl
Xepl] = X — m;

41

Other variants of the same theme

* Many:
— AdaDelta
— AdaMax
* Generally no explicit learning rate to optimize
— But come with other hyper parameters to be optimized
— Typical params:
» AdaGrad: 1 = 0.001,

» RMSProp: # = 0.001, = 0.9
. ADAM: 7 = 0.001, 5, = 0.9, f, = 0.999

42

Visualization

11.84

BA7

a0

420

I \ 200

PO i

(=]

v

40 —

https://githab.cof}]/lilipads/gfadiengt_des%cent_viz

43

Newton’s Method

 Second-order method

. f(x,+ Ax) = f(x,) -

- AxTVflxt

1
> AxTvzflx Ax

. Letgradient g, = Vf| , Hessian H, = sz\x

. L
0AXx

_ —1
Xep1 =X, — 1 - H,

0 + A
of f(xt X) — 0

* 8

 updated on stochastic minibatch for large data

44

Newton’s method

» Faster convergence
* Higher per-iteration cost. O(d"3)
— also needs memory O(d”*2)

45

Tricks for Training

Learning Rate Warmup

* Alarge learning rate for randomly initialized
parameters may cause numerical issue

* The warmup trick uses a small learning
rate at beginning and then increases it to
the initial value. For example:

— If we choose the initial learning rate to be 0.1
and use 5 epochs for warmup

— Start the learning rate with O, linearly
iIncreases it to 0.1 in the first 5 epochs

47

Cosine Decay

* We need to decrease learning rate for
SGD to converge

— E.g. decreasing by 10x at epoch 30, 60, and
90
« Assume in total T iterations (batches), the

cosine decay computes learning rate at
iteration t by #,=1/2(1 +cos (tz/T)n

0.4 ===
2 : —Cosine Decay
0.3 - Step Decay
20.2
o=
c0.1
o | [L _____
@ ,
0.0 | R iy 15
0 20 40 60 80 100 120

Mixup Training Example

 Randomly select two examples /i and |,
sample a random number ieo.1]

 Compute the mixed new example
x=ﬂxl-+(1—/1)xj y=/1yl-+(1—/1)yj

* Train on mixed examples

0.9+ *01 =
. ks 4 T
bittern 8 bittern g) bittern 061
otter 8 otter g otter 8
analog_clock = 1 analog_clock 0 analog_clock 0.9

49

Label Smoothing

 Assume yeR”" |s the one-hot encoding of

label { 1 if belongs to class i
Yi = :
0 otherwise

* Approximating 0/1 values with softmax is hard

 The smoothed version

_[1-e€ If belongs to class i
T\ e/n—=1) otherwise

— Commonly use ¢=0.1

50

Synchronized Batch Normalization

« BatchNorm needs a large batch size for
reliable statistics

* Object detection tasks may allow a small
batch size due to GPU memory
constraints, e.g. 1 image per GPU

* In multi-GPU training, each GPU computes
mean/variance separately

* Synchronized BatchNorm computes
statistics over all GPUs

51

Random Batch Shapes

* Images are resized to same shape in a
batch, e.g. 224 width and 224 height

* We can vary this shape:

— For each batch, choose a random width/height
from 224 (7x32), 256 (8x32), 228 (9x32), ...

— Resize all images into this shape

52

Image Classification

Refinements ResNet-50-D Inception-V3 MobileNet
Top-1 A Top-1 A Top-1 A

Efficient 77.16 77.50 71.90

+ cosine decay 7791 | +0.75 | 78.19 | +0.69 | 72.83 | +0.93

+ label smoothing | 78.31 | +04 | 78.40 | +0.21 | 72.93 | +0.1

+ mixup 79.15 | +0.84 | 78.77 | +0.37 | 73.28 | +0.35

Hang et.al Bag of Tricks for Image
Classification with Convolutional
Neural Networks

53

Summary

« Gradient descent can be sped up by incremental
updates

— Convergence is guaranteed under most conditions
> Learning rate must shrink with time for convergence

— Stochastic gradient descent: update after each observation.
Can be much faster than batch learning

— Mini-batch updates: update after batches. Can be more
efficient than SGD

« Convergence can be improved using smoothed
updates

— AdaGrad, RMSprop, Adam and more advanced techniques

54

Next Up

* Detecting objects in images

55

