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• Starting Feb 7. moving to Monday 4-5pm.

• On zoom or in person (HFH 2121)
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Change of Office Hour



Convergence of Gradient 
Descent



• Finding the parameter  to minimize the 
empirical risk over training data 




   


• Start from initial value

• Update rule: 

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

θt+1 = θt − η∇L(θt)
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Gradient Descent



• Assume f is convex, and its gradient is 
Lipschitz continuous with constant L


• If use learning rate             , after T steps


– Convergence rate 

– To get                         , needs            iterations
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Convergence Rate

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥

f(xT) − f(x*) ≤
∥x0 − x*∥2

2ηT

η ≤ 1/L

O(1/T )

f(xT) − f(x*) ≤ ϵ O(1/ϵ)



• Gradient L-Lipschitz means


• Plug in 


• Take 
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Proof

f(y) ≤ f(x) + ∇f(x)T(y − x) +
L
2

∥y − x∥2

y = x − η∇f(x)

f(y) ≤ f(x) − (1 −
Lη
2 ) η∥∇f(x)∥2

0 < η ≤ 1/L

f(y) ≤ f(x) −
η
2

∥∇f(x)∥2
f decreases 
every time



• By the convexity:

• Plug in to 
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Proof II
f(x) ≤ f (x*) + ∇f(x)T(x − x*)

f(y) ≤ f(x*) + ∇f(x)T(x − x*) −
η
2

∥∇f(x)∥2

f(y) ≤ f(x) −
η
2

∥∇f(x)∥2

f(y) − f (x*) ≤ (2η∇f(x)T(x − x*) − η2∥∇f(x)∥2)/2η

= (∥x − x*∥2 + 2η∇f(x)T(x − x*) − η2∥∇f(x)∥2 − ∥x − x*∥2)/2η

= (∥x − x*∥2 − ∥x − η∇f(x) − x*∥2)/2η

= (∥x − x*∥2 − ∥y − x*∥2)/2η



• Sum all T steps


• f is decreasing every time:
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Proof III 

T

∑
t=1

f(xt) − f(x*) ≤
T

∑
t=1

(∥xt−1 − x*∥2 − ∥xt − x*∥2)/2η

= (∥x0 − x*∥2 − ∥xT − x*∥2)/2η ≤ ∥x0 − x*∥2/2η

f(xT) − f(x*) ≤
1
T

T

∑
t=1

f(xt) − f(x*) ≤
∥x0 − x*∥2

2ηT



• f is the sum of loss over all training data, x 
is the learnable parameters


• f is often not convex, so the convergence 
analysis before cannot be applied
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Apply to Deep Learning

f(x) =
1
n

n

∑
i=0

ℓi(x) ℓi(x) the loss for the i-th example



• Instead of compute the full 
gradient, at each step, 
randomly select a sample 





• Compare to gradient descent


ti
xt = xt−1 − ηt ∇ℓti(xt−1)

xt = xt−1 − η∇f(xt−1)

f(x) =
1
n

n

∑
i=0

ℓi(x)
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Stochastic Gradient Descent



• Instead of full gradient, evaluate and 
update on random minibatch of data 
samples Bt


xt+1 = xt −
η

|Bt | ∑
tn∈Bt

∇ℓtn(xt)
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Minibatch Stochastic Gradient Descent



• Benefits:

– Pre-step cost is smaller (and independent of 

sample size)

– only need to compute one/batch gradient at a 

time, smaller memory consumption

• Note stochastic gradient is unbiased 

estimate of the full gradient at each step

E[∇ℓtn(θ)] = ∇ℓ(θ)
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Stochastic Gradient Descents



• SGD typically use diminishing step sizes, 
e.g. 


• Why not fixed learning rate?
ηt = 1/t

13

Learning rate



• Assume f is convex with a diminishing learning 
rate , e.g.  


• Under the same assumption, for gradient descent


• Assume gradient L-Lipschitz and fixed 


– But does not improve for SGD

ηt = 1/t

η
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Convergence Rate

𝔼[ f(xT)] − f(x*) = O(1/ T )

f(xT) − f(x*) = O(1/ T )

f(xT) − f(x*) = O(1/T )



• Does not diminish the learning rate so 
dramatically 

– We don’t care about optimizing to high 

accuracy

• Despite converging slower, SGD is way 

faster on computing the gradient than GD 
in each iteration

– Specially for deep learning with complex 

models and large-scale datasets
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In Practice
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Example: Logistic Regression

credit: R. Tibshirani
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Convergence in terms of computation

credit: R. Tibshirani



• SGD is effective in terms of per-iteration 
cost/memory


• but SGD is slow to converge for strongly 
convex functions


• New wave of “variance reduction” 
techniques show modified SGD can 
converge much faster for finite sums

– e.g. SVRG
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Summary



• The momentum method maintains a running average of all gradients 
until the current step


– Typical  value is 0.9

• The running average steps 


– Get longer in directions where gradient retains the same sign

– Become shorter in directions where the sign keeps flipping

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt

𝛽

Plain gradient update With momentum
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Momentum Method



• The momentum method




• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step

vt+1 = βvt − η∇ℓ(xt)
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Momentum Method



• The momentum method




• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step

vt+1 = βvt − η∇ℓ(xt)

21

Momentum Method



• The momentum method







• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step


– which is a running average

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt
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Momentum Method



• The momentum method







• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step


– which is a running average

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt
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Momentum Method



• The momentum method


• Incremental SGD and mini-batch gradients tend to 
have high variance


• Momentum smooths out the variations

– Smoother and faster convergence

vt+1 = βvt − η∇ℓ(xt)
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SGD with Momentum Updates

SGD instance or 
minibatch loss



• Momentum update steps are actually computed in two stages

– First: We take a step against the gradient at the current location

– Second: Then we add a scaled version of the previous step


• The procedure can be made more optimal by reversing the 
order of operations..
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Momentum Method
1

2



Nestorov’s Accelerated Gradient

• Change the order of operations


• At any iteration, to compute the current step:


– First extend by the (scaled) historical average


– Then compute the gradient at the resultant position


– Add the two to obtain the final step
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• Change the order of operations

• At any iteration, to compute the current step:


– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
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Nestorov’s Accelerated Gradient



• Change the order of operations

• At any iteration, to compute the current step:


– First extend the previous step

– Then compute the gradient step at the resultant 

position

– Add the two to obtain the final step
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Nestorov’s Accelerated Gradient



• Change the order of operations

• At any iteration, to compute the current step:


– First extend the previous step

– Then compute the gradient step at the resultant 

position

– Add the two to obtain the final step
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Nestorov’s Accelerated Gradient









x′￼t+1 = xt + βvt

vt+1 = βvt − η∇ℓ(x′￼t+1)
xt+1 = xt + vt

30

Nestorov’s Accelerated Gradient



• Comparison with momentum (example 
from Hinton)


• Converges much faster
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Nestorov’s Accelerated Gradient



• Momentum and Nestorov’s method improve 
convergence by normalizing the mean of the 
derivatives


• More recent methods take this one step further by 
also considering their variance

– RMS Prop

– Adagrad

– AdaDelta

– ADAM: very popular in practice

– …
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Adaptive Gradient Methods



• Observation:  Steps in “oscillatory” directions show large total 
movement

– In the example, total motion in the vertical direction is much greater 

than in the horizontal direction

– Can happen even when momentum or Nesterov are used


• Improvement:  Dampen step size in directions with high motion

– Second order moments
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Smoothing the trajectory

1 2
3

4
5

Step X component Y component

1 1 +2.5
2 1 -3

3 2 +2.5

4 1 -2

5 1.5 1.5



• Modify usual gradient-based update: 

– Scale updates in every component in inverse proportion to the total 

movement of that component in recent past

‣ According to their variation (not just their average)


• This will change the relative update sizes for the individual 
components

– In the above example it would scale down Y component

– And scale up X component (in comparison)


• We will see two popular methods that embody this principle… 34

Normalizing steps by second moment



• Notation:

– Updates are by parameter


– Derivative of loss w.r.t any individual parameter  is shown as 

‣ Batch or minibatch loss, or individual divergence for batch/minibatch/

SGD


– The squared derivative is 

‣ Short-hand notation represents the squared derivative, not the second 

derivative


– The mean squared derivative is a running estimate of the average 
squared derivative. We will show this as 


• Modified update rule:  We want to 

– scale down updates with large mean squared derivatives

– scale up updates with small mean squared derivatives

x g

g2 = (∇ℓ(x))2

E[g2]
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Adaptive Gradient



• AdaGrad (Duchi, Hazan, and Singer 2010) 
very popular adaptive method. 








• Element-wise computation

Gt+1 = Gt + ∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)
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AdaGrad



• AdaGrad (Duchi, Hazan, and Singer 2010) very 
popular adaptive method. 








• Benefits:

• AdaGrad does not require tuning learning rate 

• Actual learning rate will decrease 

• Can drastically improve over SGD

Gt+1 = Gt + ∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)

η
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AdaGrad

element-wise



• https://edstem.org/us/courses/16390/
lessons/29666/slides/170130
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Quiz



• Similar to AdaGrad, accumulate the squared 
gradients, but with running average

• Adagrad denominator monotonically increase ==> 

diminishing updates for parameters

• why not decay the denominator








•

Gt+1 = βGt + (1 − β)∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)
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RMSProp

element-wise



• RMS prop only considers a second-moment normalized version of the 
current gradient


• ADAM utilizes a smoothed version of  the momentum-augmented 
gradient


– Considers both first and second moments


mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1

40

ADAM: RMSprop + Momentum



• RMS prop only considers a second-moment normalized version of the 
current gradient


• ADAM utilizes a smoothed version of  the momentum-augmented 
gradient


– Considers both first and second moments


mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1
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ADAM: RMSprop + Momentum

Why?



• Many: 

– AdaDelta

– AdaMax

– …


• Generally no explicit learning rate to optimize

– But come with other hyper parameters to be optimized

– Typical params:


‣ AdaGrad: , 

‣ RMSProp: , 

‣ ADAM:  , , 

𝜂 = 0.001
𝜂 = 0.001 β = 0.9

𝜂 = 0.001 β1 = 0.9 β2 = 0.999

42

Other variants of the same theme
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Visualization

https://github.com/lilipads/gradient_descent_viz



• Second-order method


• 


• Let gradient , Hessian 


• Let 




• updated on stochastic minibatch for large data

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt
+

1
2

ΔxT ∇2f |xt
Δx

gt = ∇f |xt
Ht = ∇2f |xt

∂f(xt + Δx)
∂Δx

= 0

xt+1 = xt − η ⋅ H−1
t ⋅ gt
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Newton’s Method



• Faster convergence

• Higher per-iteration cost. O(d^3)


– also needs memory O(d^2)

•
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Newton’s method



Tricks for Training



• A large learning rate for randomly initialized 
parameters may cause numerical issue


• The warmup trick uses a small learning 
rate at beginning and then increases it to 
the initial value. For example:

– If we choose the initial learning rate to be 0.1 

and use 5 epochs for warmup

– Start the learning rate with 0, linearly 

increases it to 0.1 in the first 5 epochs
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Learning Rate Warmup



• We need to decrease learning rate for 
SGD to converge

– E.g. decreasing by 10x at epoch 30, 60, and 

90

• Assume in total T iterations (batches), the 

cosine decay computes learning rate at 
iteration t by
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Cosine Decay

ηt = 1/2 (1 + cos (tπ /T )) η



• Randomly select two examples i and j, 
sample a random number 


• Compute the mixed new example


• Train on mixed examples
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Mixup Training Example

λ ∈ [0,1]

x = λxi + (1 − λ)xj y = λyi + (1 − λ)yj



• Assume            is the one-hot encoding of 
label


• Approximating 0/1 values with softmax is hard

• The smoothed version


– Commonly use 
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Label Smoothing
y ∈ ℝn

yi = {1 if belongs to class i
0 otherwise

yi = {1 − ϵ if belongs to class i
ϵ/(n − 1) otherwise

ϵ = 0.1



• BatchNorm needs a large batch size for 
reliable statistics


• Object detection tasks may allow a small 
batch size due to GPU memory 
constraints, e.g. 1 image per GPU


• In multi-GPU training, each GPU computes 
mean/variance separately 


• Synchronized BatchNorm computes 
statistics over all GPUs 
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Synchronized Batch Normalization



• Images are resized to same shape in a 
batch, e.g. 224 width and 224 height


• We can vary this shape:

– For each batch, choose a random width/height 

from 224 (7x32), 256 (8x32), 228 (9x32), …

– Resize all images into this shape
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Random Batch Shapes
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Image Classification

Hang et.al Bag of Tricks for Image 
Classification with Convolutional 
Neural Networks

79 . 15 94 . 58

+0.75
+0.4
+0.84

+0.69
+0.21
+0.37

+0.93
+0.1
+0.35



• Gradient descent can be sped up by incremental 
updates


– Convergence is guaranteed under most conditions

‣ Learning rate must shrink with time for convergence


– Stochastic gradient descent: update after each observation. 
Can be much faster than batch learning


– Mini-batch updates:  update after batches.  Can be more 
efficient than SGD


• Convergence can be improved using smoothed 
updates


– AdaGrad, RMSprop, Adam and more advanced techniques
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Summary



• Detecting objects in images
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Next Up


