
165B  
Machine Learning 

Generative Adversarial Networks

Lei Li (leili@cs)

UCSB

1

• https://esci.id.ucsb.edu

• Feedback is important and helpful for improving the course

• Encourage narrative comments:

– specific aspects of the course and instruction

2

Course Evaluation

0%

20%

40%

60%

80%

Excellent (1) Very Good (2) Good (3) Fair (4) Poor (5)

1%2%
8%

18%

71%
How do student normally rate for UCSB courses?

https://esci.id.ucsb.edu/

• Auto-Encoder: learning representation by
reconstruction

• Variational Auto-Encoder: put prior on
latent representation and use variational
method to train

3

Summary

• Assuming data X is generated from a latent
variable

• Generation process

– draw

– draw , defined by a neural
network f

• The goal is to maximize the data log-likelihood

• Hard to optimize over , if f(Z) is very complex
such as a CNN, RNN, or Transformer.

𝑍

𝑍~𝑁(𝜇, Σ)
𝑋 |𝑍 ~ 𝑝(𝑓(𝑍))

log𝑝(𝑋; 𝜃) = log∫ 𝑝(𝑋 𝑍)𝑝(𝑍)𝑑𝑍

𝜃

4

Graphical Model for VAE

z

x

μ, Σ

gradient descent(ascent for max)

Computing gradient:

max
θ

max
ϕ

ELBO = ∑
n

Eq(zn|xn;θ) [log
p(xn |zn; θ)p0(zn)

q(zn |xn; θ)]
= ∑

n

Eq(zn|xn;θ) [r(θ, zn, xn)]

r(θ, zn, xn) = log
p(xn |zn; θ)p0(zn)

q(zn |xn; θ)

∇θEq(zn|xn;θ) [r(θ, zn, xn)]
5

Training VAE

• Density estimation

• Generate new and similar data

• Sample generation

6

Generative Model

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

7

Density Estimation

Training Data Density Function

• Fitting a distribution is hard, maximum-
likelihood estimation may have issues
(overestimate/underestimate)

• Why don’t we simultaneous train a
generative model and a model to measure
the quality of fitting?

• Likelihood-free: could not explicitly write
down a likelihood, but will be able to
generate samples.

8

Motivation for Generative Adversarial
Training

• Learn a generative model that has
distribution close to empirical distribution

• Game theoretic idea: two networks playing
adversarial games against each other

• Generator: a neural network with
distribution Pg, trying to mimic real data

• Discriminator: a neural network to
distinguish the samples generated from the
model and the real data

9

Generative Adversarial Network (GAN)

• Generator: trying to
mimic real data to
fool discriminator

• Discriminator: a
neural network to
identify generated
samples

10

GAN

GeneratorWhite
Noise

Discriminator

Real
or

fake
?e.g. CNN

• Generator: G(z), z~N(0,1)

• Discriminator: D(x) either taking a real

sample as input or a generated sample

• Objective:

– G tries to maximize the chances that
Discriminator will think the generated samples
are real, D(G(z))

– D tries to maximize the probability to identify real
data D(x), and minimize the chances that the
generated samples will pass checking D(G(z))

11

Adversarial Game

• Generator: G(z), z~N(0,1)

• Discriminator: D(x) either taking a real
sample (=0) as input or a fake sample (=1)

• Combine together:

min
G

ℓG = Ez [log D(G(z))]

min
D

ℓD = −
1
2

Ex∼Pdata [log(1 − D(x))] −
1
2

Ez [log D(G(z))]

min
G

max
D

ℓ =
1
2

Ex∼Pdata [log(1 − D(x))] +
1
2

Ez [log D(G(z))]
12

Training Loss of GAN

• What is theoretically optimal Discriminator?

max
D

ℓ =
1
2

Ex∼Pdata [log(1 − D(x))] +
1
2

Ez [log D(G(z))]

=
1
2 (Ex∼Pdata [log(1 − D(x))] +

1
2

Ex∼PG [log D(x)])
=

1
2 ∫ (pdata(x)log(1 − D(x)) + pG(x)log D(x)) dx

D*(x) =
pG(x)

pdata(x) + pG(x)
13

What does GAN actually optimize?

• What is theoretically optimal Discriminator?

max
D

ℓ =
1
2

Ex∼Pdata [log(1 − D(x))] +
1
2

Ez [log D(G(z))]

=
1
2 (Ex∼Pdata [log(1 − D(x))] +

1
2

Ex∼PG [log D(x)])
=

1
2 ∫ (pdata(x)log(1 − D(x)) + pG(x)log D(x)) dx

D*(x) =
pG(x)

pdata(x) + pG(x)
14

What does GAN actually optimize?

Plug in in

D* ℓ

D*(x) =
pG(x)

pdata(x) + pG(x)
min

G
max

D
ℓ = min

G
max

D

1
2 ∫ (pdata(x)log(1 − D(x)) + pG(x)log D(x)) dx

= min
G

1
2 ∫ (pdata(x)log(1 − D*(x)) + pG(x)log D*(x)) dx

= min
G

1
2 ∫ (pdata(x)log

pdata(x)
pdata(x) + pG(x)

+ pG(x)log
pG(x)

pdata(x) + pG(x)) dx

= min
G

1
2 (KL (pdata∥

pdata(x) + pG(x)
2) + KL (pG∥

pdata(x) + pG(x)
2)) − log 2

= min
G

JSD (pdata∥pG) − log 2

15

What does GAN actually optimize?

GAN is essentially minimizing Jensen-Shannon divergence
between observed data distribution and generation distribution

Instead of using Jensen-Shannon Divergence, use
Wasserstein distance (or Earth-Moving Distance)

and EMD is the minimum cost to transfer a
distribution p(x) into q(y).

s.t and

min
G

EMD(pdata∥pG)

EMD(p(x)∥q(y)) = inf
π(x,y)

E(x,y)∼π[|x − y |]

∫ π(x, y)dx = q(y) ∫ π(x, y)dy = p(x)

16

Better distance in GAN?

17

Earth Moving Distance

(Wasserstein Distance)

Moving yellow distribution to green one

• Wasserstein is smooth while JSD may not
be

18

Why Wasserstein?

• Instead of directly optimizing EMD, which
is intractable.

• From Kantorovich-Rubinstein duality,

• Therefore, the objective becomes

EMD(p∥q) = sup
f

Ex∼Pdata
[f(x)] − Ex∼PG

[f(x)]

min
G

max
f

Ex∼Pdata
[f(x)] − Ex∼PG

[f(x)]

19

Wasserstein GAN

20

Training WGAN

21

Generative modeling reveals a face

(Yeh et al., 2016)

22

Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al., 2016)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.

1

ar
X

iv
:1

61
1.

07
00

4v
1

 [c
s.C

V
]

21
 N

ov
 2

01
6

23

Unsupervised Image-to-Image
Translation

(Liu et al., 2017)

Day to night

24

CycleGAN

(Zhu et al., 2017)

25

Text-to-Image Synthesis

(Zhang et al., 2016)

This bird has
a yellow belly
and tarsus,
grey back,
wings, and
brown throat,
nape with a
black face

• GAN as a minimax game

– Generator tries to fool the discriminator

– Discriminator tries to distinguish real from

fake.

• Original GAN corresponds to minimizing the

Jensen-Shannon divergence

• WGAN improves by using Earth-Moving distance.

– another minimax game.

26

Summary

