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Qutline for today

e Recap of probability concepts

e Maximum likelihood estimation

e Recap of linear algebra concepts
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Random Variable (RV)

e A random variable is a variable that can take on different values
randomly.

e A probability distribution is a description of how likely a random
variable or set of random variables is to take on each of its possible

states.
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Random Variable (RV)

e [Example
Sample space Number of Heads Aty many possub!e ways C“"."'h's
(outcomes) (Random Variable X) happen, if you flip a coin twice?
(Probability of X)
HH 2 1 out of 4 outcomes
HT
1 2 out of 4 outcomes
TH
LA 0 1 out of 4 outcomes
Value of X 2 1 0
Probability of X: 1 9 |
p(x) or f(x) 4 n 2
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Discrete random variable

e [he probabillity distribution of a discrete RV is given by its probability
mass function, or PMF.

e o be a probability mass function on a random variable X, a function
P must satisfy the following properties:

» The domain of P must be the set of all possible states of X.

» Vx e X,0< P(x) L 1.

T P() =1

@ UC SANTA BARBARA Week 1 Recitation



Continuous random variable

e [0 be a probability density function, a function p must satisfy the
following properties:

» The domain of p must be the set of all possible states of x.

»  Vx e X, p(x) > 0. Note that we don’t require p(x) < 1.
, Jp(x)dx =1

e \Ve can integrate the density function to find the actual probability
mass of a set of points.

Probability that x lies in the interval [a, b] is given by J p(x)dx.
[a,D]
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Joint and marginal probability

e A probability distribution over multiple RVs is known as a joint
probabillity distribution.

e P(X=x,y = y)denotes the probability that X = xandy =y
simultaneously.

e For discrete RVs, given the joint distribution P(x, y), we can get the
marginal distribution P(x) by the sum rule:

P(x=x) =2 PX=Xxy =)

e [or continuous RVs,

px) = Jp(x, y)
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Conditional probability

* Probability of an event given that another event has happened:
P(y =y,x =x)
P(X = x)

Py =y|x=1x) =

e (Chain rule of probability:
Px x®  xW)y = px) H?ZZP(x(i) |x(D] L, xD)y

e The rule follows directly from the definition of conditional probability:

P(a,b,c) = P(a|b,c)P(b,c)
P(b,c) = P(b|c)P(c)
P(a,b,c) = P(a|b,c)P(b|c)P(c).
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Independence

e [wo random variables X and y are independent it their probability
distribution can be expressed as,

Px=x,y=y)=PX=x)P(y =Yy)
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—Xpectation and Variance

e The expectation or expected value of some function f(x) with respect

to a probability distribution P(x) is the average or mean value that f
takes on when X is drawn from P.

e [or discrete RVs,

e [or continuous RVs,

nplf ()] = | p(2)f(2)d2
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—Xpectation and Variance

e [EXxpectations are linear,

laf(z) + By(x)] = aBx[f(x)] + BEx|[g()]

e [he variance gives a measure of how much the values of a function of
a random variable x vary as we sample different values of x from its
probabillity distribution:

Var(f(z)) = E| (f(z) — E[f(2)])*

» The square root of the variance is called the standard deviation.
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Useful probability distributions

e [he Bernoulli distribution is a distribution over a single binary random

variable. It is controlled by a single parameter ¢p € [0,1], which gives
the probabllity of this variable being equal to 1:

Px=1)=¢
P(x — 0) =1—9¢
e [he Multinoulli distribution extends the above 1o the case when x can

take k states. It is controlled by k — 1 parameters that specify the
probabilities at the k states.
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Useful probability distributions

e [he most commonly used distribution over real numbers is the normal
distribution, also known as the Gaussian distribution:

1 1
N(ﬁ,[ﬁ, 02) — \/27('0'2 exXp ( 20_2(£U o ,11,)2)

e [he expectation of this distribution is u and it’s variance is o’

@ UC SANTA BARBARA Week 1 Recitation 13



Useful probability distributions

The normal distribution
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e U gives the location of the central peak and o controls the width of the
peak. In the above plot, u = 0, 0 = 1.
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Sayes Rule

e Sometimes we know P(y | x) and need to compute P(x|y). In this
case, if we also know P(Xx), we can use Bayes’ rule,

P(x.
P(x|y) = ;f(cyf)
P(x)P
P(x]y) = (X)P((yy)‘x))
Py = POPO1Y

> exPQ)P(y [ x)
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Maximum likelihood estimation

Example: Xi,..., X, - i.i.d. random variables with
probability py(x|8) = P(X=x) where 6 is a
parameter

3 likelihood function L(6|x) where x=(x;,...,X,)
IS set of observations

LOIx)=]]_ px(x10)

A maximum likelihood estimate 6(x)
maximizer of L(0|x)
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3 typically easier to work with log-likelihood
function, C(6|x) = log L(B]x)
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MLE example

e Suppose we have three data points they have been generated from a
process that is adequately described by a Gaussian distribution.
These points are 9, 9.5 and 11.

e [How do we calculate the maximum likelihood estimates of the
parameter values of the Gaussian distribution u and o?

e [he Gaussian density function is given by,

1 (x — p)*
Pl(x: —
('/I;7 /’L7 O-) O 27'(' eXp 20_2
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ML

- example

The likelihood or the joint density of the data is given by,

l 9 — p)° 1 9.5 — p1)?
P(9.9.5.11: . 0) = exp (_( ) ) . o (_( 5 — 1) )

oV 2T 202 22

o\ 2T

The log-likelihood is given by,

In(P(z; 1, o)) = 1n( . __) _0- )" Hn( 1 ) _ 05 — )
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MLE example

e This can be further simplified to,

In(P(z;p,0)) = —3In(o) - :Eln(?ﬂ') - L [(9 —p)? + (9.5 — pu)* + (11 — /1)2]
2 202
e T[his expression attains it’s maximum for 4 when the partial derivative

with respect to u is O,

dlll(P‘(IE;lle)) _ i 94+95+11-3u] =0
o o*
. 9+95+11
p= 20T 9833
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Recap of linear algebra concepts
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Scalars and Vectors

e Scalars: A scalar is just a single number. Example: 5, 10, 15

e \/ectors: A vector is an ordered array of numbers. We can identity
each individual number by its index in that ordering. Example:
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Matrices and tensors

o Matrices: A matrix is a rectangular array of numbers, and we can
identify each number using its row and column indices.

m-by-n matrix

a,; ncolumns HENGESN)

m — LA

IOWS

e Jensors: A tensor is like a high-dimensional matrix that can be
indexed similarly. For example, the element at (i, j, k) coordinate of a
3D tensor A is denoted by A, ;.
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Matrix and vector operations

o Matrix addition: Matrices can be added as long as their shapes match

C =A+ B, where Cl-,j = A,-,j T Bi,j

e Scalar multiplication and addition: Scalars can be multiplied and
added to each element of a matrix

D=a-B+cwhereD;;=a-b;;+c

e Broadcasting: Vectors can be added to matrices (shapes must match)

C — A —+ B, where Cl,] — Al,] + B]
The vector B gets added to every row in A.
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Matrix and vector operations

e Dot product of two vectors xTy — yTx = 2, XV,

e Product of two matrices C = AB is defined as

Ci, i ZkAi,kBk, j

C; ;is the dot product of the ith row of A and jth column of B.
Number of columns in A must match number of rows in B.

e [istributive law:

AB+C)=AB+AC
e Associativity: A(BC) =(AB)C

e Commutativity does not always hold: AB # BA
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Matrix and vector operations

e [ranspose of a matrix is obtained by “flipping” along the diagonal.

T A Ao
A= A;T \A;:z = A" = [ A fox Aan
A3’1 A3’2 Aro Azs Aso

 J[ranspose of a product:

(AB) = BTA'
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Some special matrices

e A square matrix has the same number of rows and columns. The
identity matrix 1s a square matrix with 1s along the diagonal:

1 0 0 - 0
- 7 0o 1 0 - 0

- 1 0 0
1‘:212'12:[ ]'132 01 0f, ..., 0,=|0 0 1 - 0}
0 0 1

o 0 0 - 1

e The inverse of a square matrix A is a matrix A ™! that satisfies:

AA Tl =A"1A =7
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Norms

>

Norm is a function that intuitively measures the size of a vector.

1
L* norm :||x||; = Z;| x;|

2
L* norm lxll, = \/Zi‘xz"

L norm :||x|| ,, = max | x;|. Also known as the max norm.
i

We can also assign a norm to a matrix. The most commonly used is
. 2
the Frobenius norm: ||Al|p = \/Zij |A; 1™

This is analogous to the L, norm of a vector.
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References

e Probability and linear algebra recap: Chapters 2 and 3 of the
Deep learning book (GBC).

e Maximum likelihood estimation: https://towardsdatascience.com/
probability-concepts-explained-maximum-likelihood-estimation-
c/b4342fdbb1
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