
Carnegie Mellon University

Maxios: Large-scale Nonnegative Matrix Factorization for Collaborative Filtering

Motivation Yahoo! Music Results

Contribution

Proposed a scalable NMF solution.

Benefits of Maxios:

•Reducing computation overhead by
utilizing sparsity. Weighted
formulation avoids computing a User-
Item matrix in each iteration.

• Highly scalable

- independent update of each row
of U,X and each column of V, Y

• Fast Updating

- Maxios enables closed-form
updates for U,V,X,Y via ADMM

- benefits from distributed in-
memory computing in Spark

• EM based methods [Liu 2010]:
time consuming to compute a full
user-item matrix (HUGE!) each iter

• ALS based method [Zhang et al
2006, Kim & Choi 2009]: costly
update in each iteration

• Multiplicative updates [Lee &
Seung 1999]: slow convergence

{simonshaoleidu,daniel.liu,bchen91}@berkeley.edu, lilei22@baidu.com
UC Berkeley

Proposed Maxios

Implementation

Maxios is built on top of Spark, a
distributed in-memory computing
platform. Sparse data
representation.

Neural Information Processing Systems, 2014, Distributed Machine Learning and Matrix Computations workshop

Experiments

Netflix Results

Rank k = 10, training and testing RMSE

Rank k = 50, training and testing RMSE

Rank k = 10, training and testing RMSE

Rank k = 50, training and testing RMSE

Update each row of U independently

Update each row of X independently

Updates for V and Y are in similar
fashion.

Data users Items nnz sparsity

Netflix 0.5M 17770 0.7B 1.18%

Yahoo 2M 98213 0.1B 0.06%

•Baseline Algorithms

• Multiplicative Updates

• Alternating Least Squares

Predicting ratings for recommendation

Movie ratings Music ratings

Problem Description

Weighted NMF formulation:

Reformulation using ADMM

Baidu Research

Workload Allocation

Preprocess to balance the
workload of worker nodes

Simon Shaolei Du, Yilin Liu, Boyi Chen, Lei Li

Predicting missing values in User-
Item matrix

Parallel update steps:

9
8
6
5
4
3
3
1

3
5
4
3
8
6
9
1

worker 1

worker 2

worker 3

worker 4

count
#non-
zero’s

for each
row

Data
Matrix
with

missing
values

A

assigning
corresponding
rows of U and
columns of V

parallel
sorting

Hash partitioning

worker 1

worker 2

worker 3

Master
Node

(Parameter
Server)

U, V

duplicate
A, W

duplicate
A, W

duplicate
A, W

locally

maintain

ed X, Y

locally

maintain

ed X, Y

locally

maintain

ed X, Y

Limitation of Existing Methods

Problem characteristics:
•Large scale: millions of users, sub-
millions of items
•Highly Sparse

•Need to interpret ratings

- non-negativity constraints

