

Maxios: Large-scale Nonnegative Matrix Factorization for Collaborative Filtering

Predicting ratings for recommendation

Movie ratings

Music ratings

Problem Description

Predicting missing values in User-Item matrix

	~ ~			ノ	
	moure	mouie	mouie	moule.	
User A	1	?	5	4	•••
User B	?	2	3	?	• • •
User C	4	1	2	?	• • •
User D	?	5	1	3	• • •
User E	1	2	?	?	•••
:	:	:	:	:	۰.

Problem characteristics: •Large scale: millions of users, submillions of items •Highly Sparse

•Need to **interpret** ratings

- non-negativity constraints

Limitation of Existing Methods

- EM based methods [Liu 2010]: time consuming to compute a full user-item matrix (HUGE!) each iter
- ALS based method [Zhang et al 2006, Kim & Choi 2009]: costly update in each iteration
- **Multiplicative updates [Lee &** Seung 1999]: slow convergence

Simon Shaolei Du, Yilin Liu, Boyi Chen, Lei Li {simonshaoleidu,daniel.liu,bchen91}@berkeley.edu, lilei22@baidu.com

Proposed Maxios

Weighted NMF formulation: $\min_{\substack{U \ge 0, V \ge 0}} ||A - W \odot (UV)||_F^2$

 $W_{ij} = 1$ if A_{ij} is not missing = 0 otherwise

• : elementwise product

Reformulation using ADMM

 $\min ||A - W \odot (UV)||_F^2 + I_+(X) + I_+(Y)|$ s.t.U = X, V = Y

Parallel update steps:

Update each row of U independently

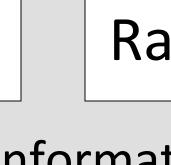
 $U_i^{t+1} = ((A_i \odot W_i)(V^t \odot W_i^k)^T + \alpha X_i^t - \Lambda_i^t)$ $\cdot ((V^t \odot W_i^k)(V^t \odot W_i^k)^T + \alpha I_k)^{-1}$

Update each row of X independently $X^{t+1} = P_+(U^{t+1} + \frac{\Lambda^{\iota}}{-})$

Updates for V and Y are in similar fashion.

Implementation

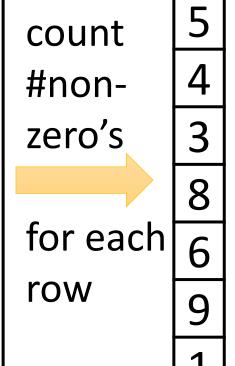
Maxios is built on top of sports, a distributed in-memory computing platform. Sparse data representation. maintain ed X. Y worker 1 duplicate A, W Master maintain Node ed X, Y (Parameter duplicate worker 2 Server) A, W ed X. Y duplicate worker 3 A, W

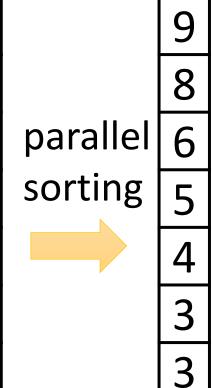


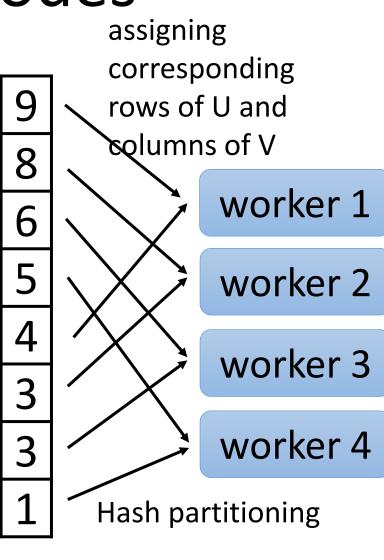
Workload Allocation

Preprocess to balance the workload of worker nodes

Data Matrix with missing values A







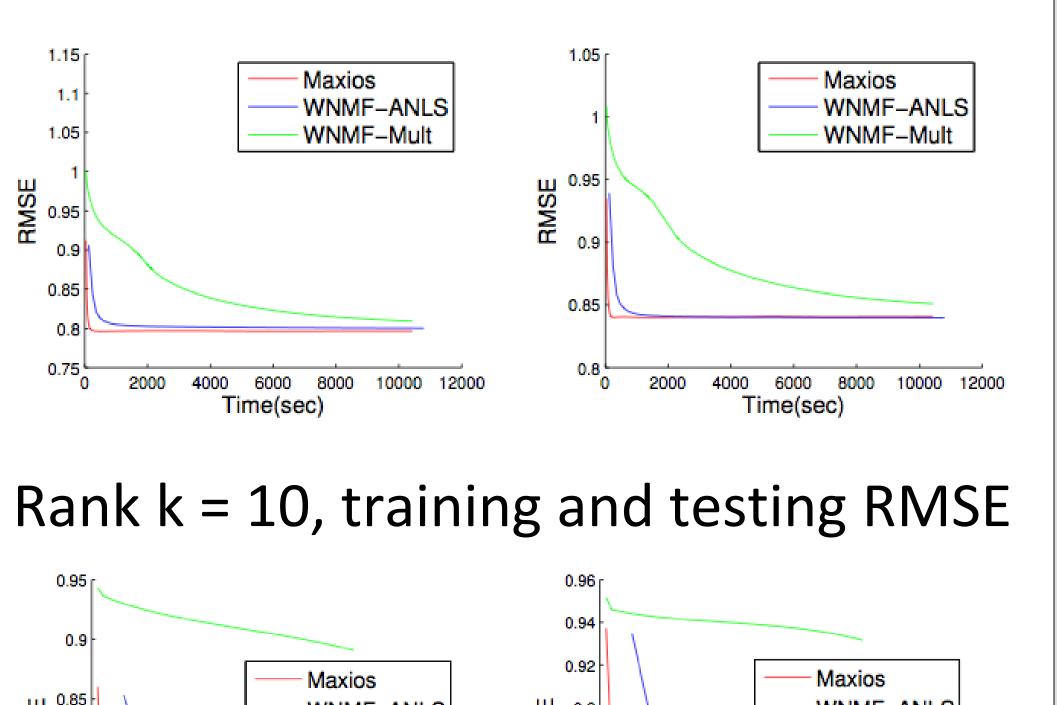
Experiments

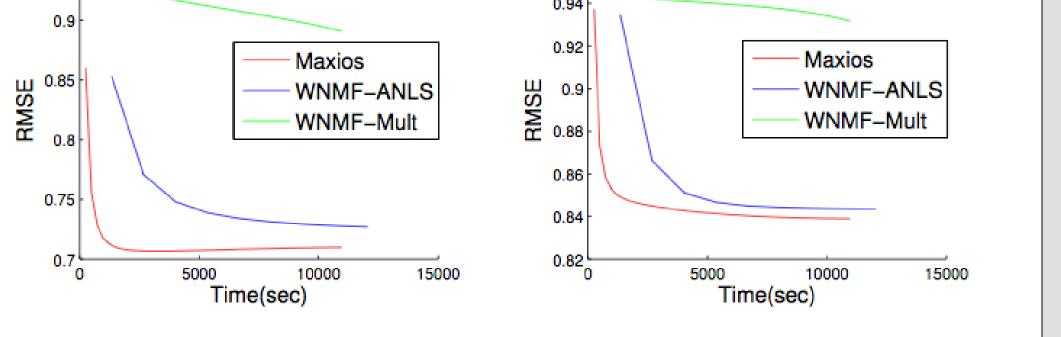
Data	users	Items	nnz	sparsity
Netflix	0.5M	17770	0.7B	1.18%
Yahoo	2M	98213	0.1B	0.06%

•Baseline Algorithms

- Multiplicative Updates
- Alternating Least Squares

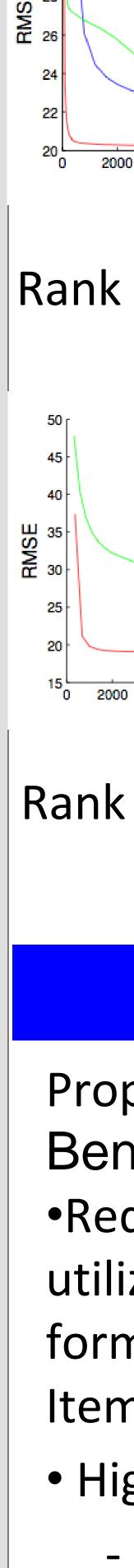
Netflix Results





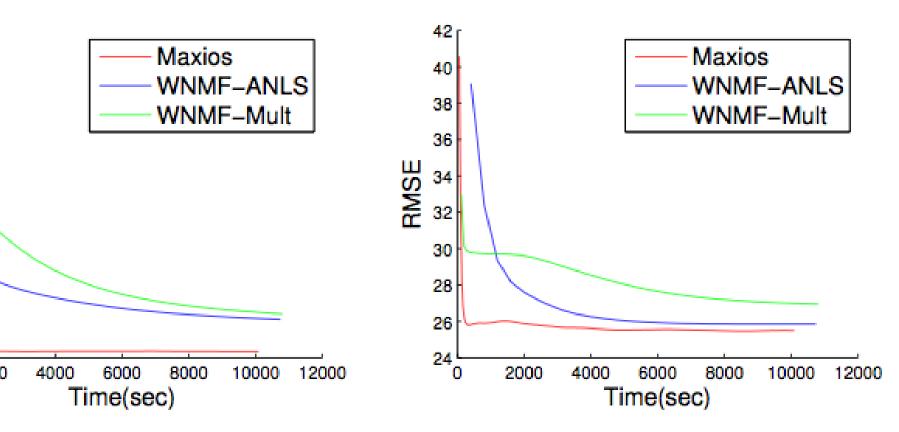
Rank k = 50, training and testing RMSE

Neural Information Processing Systems, 2014, Distributed Machine Learning and Matrix Computations workshop

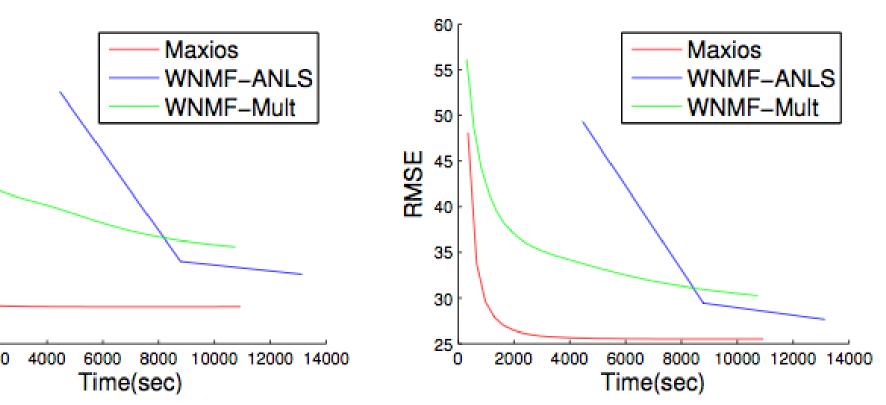


Proposed a scalable NMF solution. **Benefits of Maxios:** Reducing computation overhead by utilizing sparsity. Weighted formulation avoids computing a User-Item matrix in each iteration. • Highly scalable - independent update of each row of U,X and each column of V, Y • Fast Updating - Maxios enables closed-form updates for U,V,X,Y via ADMM - benefits from distributed inmemory computing in Spark

Yahoo! Music Results



Rank k = 10, training and testing RMSE



Rank k = 50, training and testing RMSE

Contribution