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Abstract

Nonnegative matrix factorization proved useful in many applications, including
collaborative filtering – from existing ratings data one would like to predict new
product ratings by users. However, factorizing a user-product score matrix is
computation and memory intensive. We propose Maxios, a novel approach to
fill missing values for large scale and highly sparse matrices efficiently and ac-
curately. We formulate the matrix-completion problem as weighted nonnegative
matrix factorization. In addition, we develop distributed update rules using alter-
nating direction method of multipliers. We have implemented the Maxios system
on top of Spark, a distributed in-memory computation framework. Experiments
on commercial clusters show that Maxios is competitive in terms of scalability
and accuracy against the existing solutions on a variety of datasets.

1 Introduction

Matrix factorization techniques have been successfully applied to missing value imputation [10, 12,
1, 5, 4, 3, 2]. In this paper, we exploit a matrix factorization tool, non-negative matrix factorization
(NMF), to recover missing values for large and sparse matrices. We present a reformulation of the
NMF objective. To solve the NMF efficiently and in a scalable way, we propose Maxios, an iterative
algorithm that can distribute the computation over multiple machines. The proposed mathematical
formalism and implemented system can be generalized to other matrix factorization techniques such
as singular value decomposition (SVD).

We consider the following objective of non-negative matrix factorization with missing values,

arg min
U≥0,V≥0

1

2
‖W � (D − U · V )‖2F (1)

Where D is a n ×m matrix, and W is an indicating matrix for missing values (0=missing). Such
formulation is different from the traditional NMF formulation without the weight matrix W , which
is unsuitable for matrices with missing observations. U and V are latent factors to search for and
should be nonnegative. The formulation is first introduced as weighted NMF implicitly by Zhang et
al [17] and later formally by Kim and Choi [9].

Without missing observations, there exist two classes of solutions for NMF: algorithms using mul-
tiplicative update to maintain non-negativity, pioneered by Lee and Seung [11, 12], and (block-
)coordinate descent algorithms such as alternating least square [6, 7] and active-set methods [8].
These algorithms have been ported to distributed computing platform with carefully engineered data-
partition schemes [13]. In case of missing observations, the existing solutions can be categorized
into two types: (a) using traditional NMF solutions in Expectation-Maximization framework [17];
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and (b) alternating least square (ALS) for weighted NMF formulation Equation (1) [17, 9]. For large
scale problems, one could extend the EM-NMF approach to map-reduce framework using the same
techniques proposed in [13]. Unfortunately, such approach requires in each iteration instantiating
the full prediction matrix (millions by hundreds of thousands), which will be enormous even on to-
day’s cloud platform. ALS based solutions need to find optimal latent factors inside each iteration,
which itself is expensive. Therefore neither approach scales well to the size of the data.

Our goal is to produce a scalable solution when the data matrix D is large and sparse. To accelerate
computations of each iteration and improve the recovery accuracy, we are motivated by a few key
properties of the data and the nature of such kind of computation.

Data sparsity: The data matrix has very large dimensions. However, there are very few observed
entries. A full instantiation will take long to compute and take huge memory store. The problem
gets worse in the distributed setting because transferring a full instantiation across machines can take
very long time. Therefore an efficient algorithm need not compute the full instantiation during its
intermediate steps. Alternating least square NMF(ALS-NMF) utilizes these properties to speedup
the process [9] while expectation-maximization based approaches EM-NMF needs to evaluate the
whole missing part [17].

Non-negativity constraints: Inside each iteration of the algorithm, the computation should be rela-
tively fast. Directly solving for non-negativity constraints usually takes a nontrivial calculation step.
Alternating direction methods of multiplier approaches (ADMM) provides a framework to separate
the minimization objective from the constraints [1, 15].

Distributed in-memory computation: By partitioning the data and latent factors, an ideal approach
should be strongly scalable with respect to the number of partitions. Hadoop-based implementation
for NMF (but not for missing values) is an early success to distributed NMF [13], however it is
limited by additional disk-writes. Instead of using Hadoop, we could further significantly reduce the
overhead per iteration by using a distributed in-memory computation framework.

To construct a both faster and more accurate algorithm, we design Maxios specifically to address the
following aspects:

• Maxios formulates the optimization problem using weights on the objective. The missing
values are only calculated at the end of the algorithm once; therefore the computation time
is independent of the number of missing entries.

• Maxios reformulates the non-negativity constrained optimization using ADMM, which
leads to faster computation for each iteration. This is because ADMM separates the ob-
jective from the constraints.

• Maxios is implemented on top of Spark [16]. Spark enables distributed in-memory map-
reduce computation, and it achieves 100x speedup on analytical tasks [16]. In addition, our
algorithm only requires exchanging small partitions of U and V (note both U and V are
much smaller than the data matrix), thus diminishing the communication overhead.

We evaluate our system on MovieLens(1 millon observed 22 million missing)1, Netflix Movie Rat-
ings(100 million observed, 8.5 billion missing), and Yahoo! Music Ratings dataset (120 million
observed, 191 billion missing)2. We also do our best to implement base algorithms. Our experi-
ments on commercial clusters show expected improvement in recovering accuracy within a fixed
amount of computation time. The experimental settings and results are presented in Section 3.

2 Proposed Method

In this section, we will describe our proposed Maxios. We start with the mathematical formalism of
the original problem, then describe how to use ADMM framework to derive the main algorithm. We
also analyze the complexity and a property about the convergence to provide the theoretical grantee
of Maxios. In addition, we will discuss several further extensions to the base case.

1http://movielens.umn.edu/
2http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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2.1 Formulation and Update Rule

To enable embarrassingly parallel computation, we take the non-negative constraints out and con-
sider the following equivalent formulation of the original problem in Equation (1):

min
1

2
‖D −W � (UV )‖2F s.t.U = X,V = Y,X, Y ≥ 0 (2)

Where U,X ∈ Rm×q and V, Y ∈ Rq×n. X and Y are axillary matrices. The augmented Lagrangian
of Equation (2) is

L(U, V,X, Y,Λ1,Λ2)
X,Y≥0

=
1

2
‖D −W � (UV )‖2F + Λ1 • (U −X) + Λ2 • (V − Y )

+
α1

2
‖U −X‖2F +

α2

2
‖V − Y ‖2F

(3)

Where Λ1 ∈ Rm×q,Λ2 ∈ Rq×n are Lagrangian multipliers, and α1, α2 are penalty parameters.
Note that unlike conventional full Lagrangian accommodating all constraints, Equation (3) only
includes the penalties for equality constraints, and leaves the non-negativity intact. Therefore we
name it augmented partial Lagrangian. The reason to keep non-negativity constraints is to facilitate
our calculation of auxiliary matrices X and Y . Such treatment leads to our ADMM solution.

The ADMM method for (3) can be derived by successively minimizing the Lagrangian with respect
to U, V,X, Y one at time while fixing others, i.e.,

Uk+1 = arg min
U

1

2

∥∥D −W � (UV k)
∥∥2
F

+ Λk
1 · (U −Xk) +

α1

2

∥∥U −Xk
∥∥2
F

V k+1 = arg min
V

1

2

∥∥D −W � (Uk+1V )
∥∥2
F

+ Λk
2 • (V − Y k) +

α2

2

∥∥V − Y k
∥∥2
F

Xk+1 = arg min
X≥0

Λ1 • (Uk+1 −X) +
α1

2

∥∥Uk+1 −X
∥∥2
F

Y k+1 = arg min
Y≥0

Λ2 • (V k+1 − Y ) +
α2

2

∥∥V k+1 − Y
∥∥2
F

All of the update rules above could be written in closed forms as opposed to methods like ALS-
WNMF[9], which need iterative updates. For U’s update, every row is independent of the others,
so we can update U in parallel. Similarly, we can update V’s columns in parallel. After updating
U, V,X , and Y we update multipliers using standard ADMM formulas. The specific update rules
for U, V,X, Y,Λ1,Λ2 are described in Algorithm 1

2.2 `2 regularization

There is often risk of over-fitting when the number non-zero entries are small comparing to the miss-
ing values. One commonly used solution is to penalize, either with `1 or `2 penalty. Both penalty
will constrain the complexity of the model. Here we illustrate the case with `2. Our algorithm still
works when adding `2 penalty to prevent over-fitting problem. With the `2 penalty, the new ADMM
formulation is:

min
1

2
‖D −W � (UV )‖2F +

λ

2
(‖U‖2 |

2 + ‖V ‖22)s.t.U = X,V = Y,X, Y ≥ 0

Where λ is the L2 penalty Note that the penalty term is only relevant to U and V. Therefore we only
need to change the update rule of U and V:

Uk+1
i• =((V k �W q

i•)TDi• + α1X
k
i• − Λk

1,i•) · ((V k �W q
i•)(V k �W q

i•)T + (α1 + λ)Iq)−1

V k+1
•j =((U �W q

•j)
T (U �W q

•j) + (α2 + λ)Iq)−1 · (Uj• �W•jD•j + α2Y•j − Λ2,•,j)

Maxios can be easily generalized to a family of loss functions induced by Bregman Divergence[14].
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Algorithm 1 Maxios
input : C with missing values as NaN, maxIter > 0, U0 ∈ Rm×q ≥ 0, V0 ∈

Rq×n, εpri, εdual, α1, α2 > 0
output: U ∈ Rm×q ≥ 0, V ∈ Rq×n ≥ 0

Construct W using C such that Wij = 0 if Cij = NaN, Wij = 1 if Cij 6= NaN
Construct D using C such that Dij = 0 if Cij = NaN, Dij = Cij if Cij 6= NaN
Set X = U0, Y = V0
Set Λ1 a zero matrix ∈ Rm×q , Λ2 a zero matrix ∈ Rq×n

for k ← 0 to maxIter do

for i = 1,2,...m, update each row of U in parallel

Uk+1
i• =((V k �W q

i•)TDi• + α1X
k
i• − Λk

1,i•) · ((V k �W q
i•)(V k �W q

i•)T + α1Iq)−1

(4)
for j = 1,2,...n, update each column of V in parallel

V k+1
•j =((Uk+1 �W q

•j)
T (Uk+1 �W q

•j) + α2Iq)−1 · ((Uk+1 �W q
•j)

TD•j + α2Y
k
•j − Λk

2,•j)

(5)

Xk+1 =P+(Uk+1 +
Λk
1

α1
) (6)

Y k+1 =P+(V k+1 +
Λk
2

α2
) (7)

Λk+1
1 =Λk

1 + α1(Uk+1 −Xk+1) (8)

Λk+1
2 =Λk

2 + α2(V k+1 − Y k+1) (9)

rk+1 = ‖D −W � (UV )‖2F / ‖W‖
2
F (10)

sk+1 =(‖U −X‖2F + ‖V − Y ‖2F )/q(m+ n) (11)

if sk+1 − sk| < εpri and s < εdual and k ≥ maxIter then
exit and output(Uk,V k)
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2.3 Complexity

One main advantage of our algorithm is that Maxios does not require computing the full recov-
ered data matrix explicitly during the iterations. Therefore, our algorithm works much faster than
traditional Expectation-Maximization based algorithms [17]. In algorithm 1, we do not actually
instantiate matrix W . Operations V �W q

i• and U �W q
•j are equivalent to select columns of V ac-

cording to the nonzero entries of Wi• and select rows of U according to the nonzero entries of Wj•.
Therefore, (4) takes O(q2mrmax) where rmax is the biggest number of non-zeros of all rows of W .
Similarly (5) takes O(q2ncmax) where cmax is the biggest number of non-zeros of all columns of
W . For (6), (8), (7), and (9) we just need to iterate U, V,X, Y,Λ1,and Λ2, which take O((m+ n)q)
total. Thus the algorithm takes O(q2(mrmax +ncmax)) for each iteration. Notice that the dominat-
ing part (4),(5) can be implemented in parallel. The more detailed memory efficient implementation
is described in next section.

2.4 Implementation

It is straightforward to implement the above algorithm on a single-threaded machine. However,
technical challenges arise when we want to parallelize and distribute the computation over multiple
machines. More specifically, there are a couple of optimizations we did in our implementation to
speed up the system. We implement our method using Spark [16], a distributed in-memory map-
reduce framework. Each row of U and X are stored and computed on worker nodes, and similarly
each column of V and Y . The sparse data matrix is replicated on each of the worker nodes too.
These latent factors are then broadcast to worker nodes in each iteration. Thanks to the high sparsity
of the observation matrix, Maxios does not produce full prediction matrices and therefore reduce
the communication overhead. We also implemented a special purpose scheduler to accommodate
the straggler problem – worker nodes with smaller number of observations will wait for those with
larger portion of data.

3 Experiments

We are concerned about four key properties of each algorithm:

Convergence Rate and Accuracy: The algorithm we want should converge fast with good ac-
curacy. Thus we plot training and testing root mean squared error(RMSE) VS time to compare
algorithms’ convergence rate and prediction accuracy.

Scalability with Data Matrix: The desire algorithm should scale well with number of rows, number
of columns, sparsity and scale of the ratings. Therefore we chose matrices of various sizes from real
world to test how algorithms scale with different input data.

Scalability with Number of Latent Factor: Often we want try out different number of latent
features(q) to see which one is the best fit for the data matrix. The desire algorithm should not be
prohibited by the increase of number of latent factors. To see this property of the algorithms, we test
each dataset using different q.

We compared Maxios, a distributed version of WNMF-ANLS[9] and a distributed version of
WNMF-Mult[17] in terms of convergence speed, prediction accuracy and scalability. We only com-
pared these three methods because they do not need to instantiate the user-item matrix and thus
converge much faster than EM-based methods. In particular, it is infeasible to run the distributed
NMF [13] for large dataset with missing values, because direct use of distributed NMF in an EM
framework for missing observations require huge memory to instantiate the full prediction matrix.

We tested these algorithms on real commercial datasets, ranging from different number of columns
and rows, sparsity and scales of ratings. All datasets we used is summarized in table 1. For all
datasets, we uniformly sampled 4/5 observed entries for training and 1/5 entries for testing. For
small dataset MoviLens Movie Ratings, which has 1000209 ratings on 3952 movies rated by 6040
users, we implemented all three algorithms in Matlab R2011 and ran on Macbook Pro with dual
cores of 2.2G i7 CPU and 8GB memory. For large datasets, Yahoo! Music Ratings, which has
contains 11557943 ratings of 98211 artists, and Netflix Movie Ratings, which consists of 17770
movies and 480189 users with more than 100 million ratings , we implemented algorithms in Scala,
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Table 1: Dataset Summary.
Data Set # of rows # of columns sparsity score range
MovieLens 6040 3952 4.19% [0, 5]
Netflix Movie Ratings 480189 17770 1.18 % [0,5]
Yahoo! Music Ratings 1947155 98213 0.06% [0,100]

and used Spark as cluster computing framework and EC2 r1 extra large instances with each instance
having 4 threads.

Prediction Accuracy and Convergence Rate

First we compared the training and testing reconstruction error. For MovieLens dataset, we ran each
algorithm with number of latent factor q = 10, 30, 50 and stopped running when the running time
exceeded 1000s. For Yahoo! Music Ratings, and Netflix Movie Ratings datasets, we also ran each
algorithm with q = 10, 30, 50 and stopped running when the running time exceeded 3h or has run
1000 iterations. For MovieLens dataset, we set εpri = 5× 10−4, εdual = 5× 10−4, α1 = 1, α2 =
α1m/n. and L2 penalty λ = 1, 9, 25 for different number of latent factors q = 10, 30, 50.

For Netflix Movie Rating dataset, we set εpri = 5×10−4, εdual = 5×10−4, α1 = 1, α2 = α1m/n.
and L2 penalty λ = 1, 9, 25 for different number of latent factors q = 10, 30, 50.

For Yahoo! Music Rating dataset, we set εpri = 5×10−4, εdual = 5×10−4, α1 = 10, α2 = α1m/n.
and L2 penalty λ = 100, 900, 2500 for different number of latent factors q = 10, 30, 50.

Fig(1)-Fig(4) show the training and testing RMSE against time on different numbers of nodes with
different numbers of latent factor. Maxios always converges faster than the other two methods no
matter what number of latent factors and how many machines we used.

WNMF-ANLS always converges faster than WNMF-Mult when q is small however when q becomes
larger, some time WNMF-ANLS is slower than WNMF-Mult. The reason is that each iteration
WNMF-ANLS needs to optimize (m + n) vectors with length q. We used projected-newton opti-
mization method as stated in [9], which has complexity O(q3) and usually needs tens of iterations
to converge.

Note that for Netflix dataset, WNMF-ANLS needs to optimize about 500K vectors and for Yahoo!
dataset, WNMF-ANLS needs to optimize 2M vectors. This is why WNMF-ANLS behaves dif-
ferently for these two datasets. On the other hand, Maxios and WNMF-Mult do not have inner
optimization step, so they scale well with q and fully utilize the sparse property of the input matrix.

4 Conclusion

Large scale collaborative filtering is a challenge task. In this paper, we formulated the problem
as weighted nonnegative matrix factorization. We proposed Maxios, a distributed algorithm that
can complete user-product matrices effectively and efficiently. We implemented our algorithm on
top of Spark, an in-memory cloud computing framework. Our experiments demonstrated our pro-
posed Maxios not only generates more accurate predictions but also converges faster than existing
solutions.

While we focus on the NMF with square loss, it is straightforward to generalize the system to handle
other loss functions such as Bregman divergence, or losses induced from Poisson and Exponential
prior [13].
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Figure 1: Convergence Rate and Accuracy of MovieLens Movie Rating Dataset. Maxios always
converges faster than the other two methods and they have similar testing RMSE when they con-
verge. WNMF-ANLS behaves better than WNMF-Mult when q is small, but it converges slower
than WNMF-Mult when q = 50.
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Figure 2: Convergence Rate and Accuracy of Netflix Dataset with q = 50. For Netflix Movie
Ratings dataset, even q = 50, Maxios and WNMF-ANLS have similar performance. The reason is
that in this case WNMF-ANLS only needs to optimize about 500K vectors with length q ,which is
not the dominating part of the update.
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(b) 1 node q=10 Testing
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(c) 2 nodes q=10 Training
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(d) 2 nodes q=10 Testing
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(e) 4 nodes q=10 Training

0 2000 4000 6000 8000 10000 12000
24

26

28

30

32

34

36

38

40

42

Time(sec)

R
M

S
E

 

 
Maxios

WNMF−ANLS

WNMF−Mult

(f) 4 nodes q=10 Testing

Figure 3: Convergence Rate and Accuracy of Yahoo! Music Rating with q = 10. Maxios converges
faster than the other two and has lower prediction error. Also observe that WNMF-ANLS behaves
better than WNMF-Mult. The reason is that q is very small in this case.
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(c) 2 nodes q=50 Training
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Figure 4: Convergence Rate and Accuracy of Yahoo! Music Rating with q = 50. When q = 50,
it takes very long time for each iteration of WNMF-ANLS. When running on 1 machine, WNMF-
ANLS only completed 3 iterations and used 13000s. Compared with Netflix Movie Rating dataset,
here WNMF-ANLS needs to optimize about 2M vectors and so the dominating part is the inner
optimization step. On the other hand, Maxios and WNMF-Mult scale well with the increase of q.
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