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Abstract

With the explosive growth of video data in real appli-
cations, near-duplicate video retrieval (NDVR) has become
indispensable and challenging, especially for short videos.
However, all existing NDVR datasets are introduced for
long videos. Furthermore, most of them are small-scale and
lack of diversity due to the high cost of collecting and la-
beling near-duplicate videos. In this paper, we introduce
a large-scale short video dataset, called SVD, for the ND-
VR task. SVD contains over 500,000 short videos and over
30,000 labeled videos of near-duplicates. We use multi-
ple video mining techniques to construct positive/negative
pairs. Furthermore, we design temporal and spatial trans-
formations to mimic user-attack behavior in real applica-
tions for constructing more difficult variants of SVD. Ex-
periments show that existing state-of-the-art NDVR method-
s, including real-value based and hashing based methods,
fail to achieve satisfactory performance on this challenging
dataset. The release of SVD dataset will foster research and
system engineering in the NDVR area. The SVD dataset is
available at https://svdbase.github.io.

1. Introduction

Over the past decades, we have witnessed the explosive
growth of video data in a variety of video sharing web-
sites like YouTube1, Instagram2, and TikTok3. For exam-
ple, 400 hours of new videos were uploaded to Youtube ev-
ery minute and one billion hours of content was watched
on YouTube every day in February 20174. With billions of
videos being available on the internet, it becomes a major
challenge to perform near-duplicate video retrieval (NDVR)

1https://www.youtube.com
2https://www.instagram.com
3https://www.tiktok.com
4https://en.wikipedia.org/wiki/YouTube

from a large-scale video database. NDVR aims to retrieve
the near-duplicate videos from a massive video database,
where near-duplicate videos are defined as videos that are
visually close to the original videos [32]. For example, the
videos might be slightly modified by the users to bypass
the detection, and the modified videos can be treated as
near-duplicate videos of the original videos. These modi-
fications can be caption insertion, border insertion and so
on. An NDVR system has been a necessity on content plat-
forms with many applications, including video recommen-
dation, video search, and copyright infringement detection.
Hence, NDVR has become a hot research topic, and there
have appeared a lot of methods for NDVR [32, 10, 8, 4, 33,
29, 1, 24, 16, 18, 2, 23, 13, 30, 19, 6].

Existing NDVR methods can be divided as video-level
methods and frame-level methods. Video-level method-
s, including layer-wise convolutional neural network (C-
NNL) [12], vector-wise convolutional neural network (C-
NNV) [12] and deep metric learning (DML) [13], try to
represent each video as a global feature. Frame-level meth-
ods, including spatio-temporal post-filtering [4], circulant
temporal encoding (CTE) [24] and temporal matching k-
ernel (TMK) [23], extract features for each frame of the
video. In the meantime, to advance the research of ND-
VR, several video datasets have been introduced in recen-
t years, including CCWEB [32], UQ VIDEO [29], VCD-
B [9], MUSCLE VCD [14], TRECVID [22] and so on.
However, all of them are for long videos with average dura-
tion longer than 60 seconds.

In recent years, short videos with duration less than 60
seconds have become increasingly popular on social me-
dia platforms. Users have strong incentive to copy a hot
short video and upload a modified version on these plat-
forms to gain attention. With the increasing in short video
data, there appear new difficulties and challenges for detect-
ing near-duplicate short videos. Some of the new difficul-
ties and challenges are listed as follows. Firstly, most long
videos are generated by professional photographers with



cameras, while most short videos are generated by amateurs
with mobile devices. Hence, the short videos might contain
some new types of near-duplicates, e.g., horizontal/vertical
screen videos and camera shaking videos. Secondly, as the
cost of editing a short video is cheaper, users might prefer
to edit a short video. Hence, the number of near-duplicate
short videos is larger than that of near-duplicate long videos.
Therefore, there is an urgent need of a large-scale short
video dataset for NDVR task.

In this paper, we introduce a new large-scale short video
dataset, called SVD, to foster research of NDVR for short
videos. The main contributions of this paper are listed as
follows:

• The introduced SVD dataset contains over 500,000
short videos and over 30,000 labeled videos for ND-
VR task. To the best of our knowledge, SVD is the first
large-scale short video dataset for NDVR task. Com-
pared with existing NDVR datasets, SVD dataset is the
largest one.

• With hard labeled positive/negative videos mined by
multiple strategies, SVD dataset is challenging for
NDVR. Furthermore, we design some temporal and s-
patial transformations to mimic user behavior in real
applications and construct more difficult and challeng-
ing variants of SVD.

• We perform two categories of retrieval to evaluate the
performance of existing state-of-the-art NDVR meth-
ods on SVD dataset, i.e., real-value based retrieval and
hashing based retrieval. Experiments demonstrate that
these NDVR methods cannot achieve satisfactory re-
trieval performance on SVD dataset. Hence, the re-
lease of SVD dataset will foster the research of the
NDVR area.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the related work. In Section 3,
we describe the dataset collection strategies in detail. In
Section 4, we introduce some temporal and spatial trans-
formations applied to SVD dataset. In Section 5, we carry
out experiments on SVD dataset. At last, we conclude our
paper in Section 6.

2. Related Work
We briefly review the datasets for NDVR task in this sec-

tion. Specifically, related datasets include CCWEB [32],
UQ VIDEO [29], VCDB [9], MUSCLE VCD [14], and
TRECVID [22] datasets.

CCWEB [32] dataset contains 24 query videos and
12,790 labeled videos. The authors utilize 24 text queries,
e.g., “The lion sleeps tonight” and “Evolution of dance”, to
retrieve the videos from Youtube, Google Video, and Ya-
hoo! Video. The returned videos contain 27% redundant

videos. Then the authors collect 12,790 videos as labeled
set. The average duration for this dataset is 151.02 seconds.
In this dataset, over half of the queries are about dancing
and singing, which is lack of diversity.

UQ VIDEO [29] is an extended dataset of CCWEB. The
authors utilize 24 query videos and 12,790 labeled videos
of CCWEB as the query set and labeled set for UQ VIDEO
dataset, respectively. Then the authors construct a back-
ground distraction set with 119,833 videos. The videos in
background distraction set are usually treated as negative,
but the labels are not verified by humans. In the end, the au-
thors collect 132,647 videos in total. Although UQ VIDEO
is larger than CCWEB, it is also lack of diversity due to the
limited number of queries. Furthermore, for all background
distraction videos, this dataset only provides HSV [26] fea-
tures and LBP [7] features of all key frames, and the original
videos are not publically available.

VCDB [9] dataset utilizes the same 528 videos to con-
struct both query set and labeled set. Furthermore, the au-
thors provide 100,000 background distraction videos. Thus
this dataset contains 100,528 videos in total. Furthermore,
VCDB dataset is originally proposed for copyright detec-
tion task, and only provides 9,236 copied segment label-
s. However, for NDVR task, we need video-level pair-
wise labels to denote whether a candidate video is the
near-duplicate video of the query video or not. Hence,
we filter redundant copied segment pairwise labels and get
6,139 video-level pairwise labels for NDVR task. Please
note that all 6,139 video-level pairwise labels are positive.
The average duration of the VCDB dataset is 72.77 seconds.

MUSCLE VCD [14] collects 18 videos to construc-
t query set. Then the authors utilize query videos to gen-
erate 101 videos as labeled set based on some predefined
transformations. Thus MUSCLE VCD dataset collects 119
videos in total.

TRECVID [22] dataset utilizes 11,256 query videos to
construct query set. Then the authors use query videos to
generate 11,503 videos as labeled set based on some pre-
defined transformations. Thus TRECVID dataset collects
22,759 videos in total.

The above datasets have been widely used for ND-
VR task. All of these datasets are long video datasets
and have different shortcomings. Specifically, the videos
of TRECVID and UQ VIDEO datasets are not publicly
available. MUSCLE VCD and TRECVID datasets are
small-scale and the labeled videos of these two datasets are
generated by the authors of the datasets rather than the users
of real video platforms. CCWEB and UQ VIDEO datasets
are lack of diversity. VCDB dataset only contains positive
pairwise labels. The second to the sixth columns of Table 1
list the statistics of the aforementioned datasets. From Ta-
ble 1, we can find that all existing NDVR datasets are long
videos with average duration longer than 60 seconds.



Table 1. Comparison between SVD and existing datasets. As the original videos in background distraction set of UQ VIDEO are not
publiclly available and we cannot access MUSCLE VCD and TRECVID datasets, some statistics of these three datasets are N/A.

Item CCWEB UQ VIDEO VCDB MUSCLE VCD TRECVID SVD
#query videos 24 24 528 18 11,256 1,206
#labeled videos 12,790 12,790 528 101 11,503 34,020
#positive pairs 3,481 3,481 6,139 N/A N/A 10,211
#negative pairs 9,311 9,311 0 N/A N/A 26,927
#background distraction videos 0 119,833 100,000 0 0 0
#probable negative unlabeled videos 0 0 0 0 0 526,787
#total videos 12,814 132,647 100,528 119 22,759 562,013
Average duration (in second) 151.02 N/A 72.77 3,564.36 131.44 17.33
Total duration (in hour) 539.95 N/A 2027.60 100 420 2704.96
Video publically available
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Figure 1. Video duration comparison on CCWEB, VCDB and SVD datasets. Note the average duration of our constructed SVD is signifi-
cantly shorter than that of CCWEB and VCDB.

3. SVD: A Large-Scale Short Video Dataset
In this section, we describe the dataset collection strate-

gies for constructing our large-scale short video dataset
called SVD.

All videos in SVD dataset are crawled from a large video
website Douyin5 and the video format is “.mp4”. The dura-
tion of most videos is less than 60 seconds. We crawled
an ambient set containing over 100 million short videos,
from which we select videos and construct SVD. The SVD
dataset is divided into three subsets, i.e., the query set, the
labeled set and the probable negative unlabeled set. First,
we collect 1,206 videos as the query set. Then we uti-
lize multiple strategies to mine hard positive/negative can-
didate videos for annotation. Unlike the candidate videos
which are randomly crawled in existing datasets, the candi-
date videos in SVD are hard by using multiple strategies for
selection. Hence, we call these candidate videos as hard
positive/negative candidate videos. After human annota-
tion, we collect 34,020 labeled videos to get the labeled
set, which includes 10,211/26,927 labeled positive/negative
video pairs. Besides this, by utilizing a pairwise similari-
ty filtering strategy, we collect 526,787 videos as probable
negative unlabeled set rather than background distraction
set. Here, the videos in probable negative unlabeled set are
the negative videos which aren’t verified by humans. Unlike
background distraction videos which are crawled randomly

5http://www.douyin.com

in UQ VIDEO and VCDB datasets, we utilize a filtering s-
trategy to ensure that the videos in the probable negative un-
labeled set are not near-duplicate videos of the query videos
with high probability. Hence, the videos in probable nega-
tive unlabeled set are more suitable to be treated as negative
than those in background distraction set. In the last colum-
n of Table 1, we present the statistics about SVD dataset.
From Table 1, we can find that the average duration of the
SVD dataset is only 17.33 seconds, which is shorter than
other datasets. Furthermore, SVD is the largest dataset a-
mong all datasets in Table 1. In Figure 1, we further illus-
trate the distribution of durations for CCWEB, VCDB and
SVD datasets. From Figure 1, we can see that most of the
videos are short in SVD dataset compared with CCWEB
and VCDB. In the rest of this section, we will describe the
detailed construction strategies.

3.1. Query Set

We crawl 1,206 videos, each with more than 30,000
“likes”, as the query set. All of these queries were upload-
ed in November 2018. To ensure diversity, the contents and
types of these query videos are made as diverse as possible.
Specifically, the video contents of the query videos contain
portrait, landscape, game video, animation and so on. The
query videos also contain a variety of video types includ-
ing vertical screen video, horizontal screen video and so on.
Figure 2 illustrates some randomly sampled query videos.



Portrait, multiple screens Landscape, horizontal screen Game video, vertical screen Building, vertical screen

Animation, vertical screen Pet, vertical screen Portrait, vertical screen Animation, horizontal screen

Figure 2. Example of query videos in SVD. Each block represents a video with multiple frames.

3.2. Labeled Set

To construct the labeled set, we first choose some videos
as candidate videos for annotation. All candidate videos
are divided into positive (near-duplicate) candidate videos
and negative candidate videos, which respectively denote
the videos we expect to be annotated (labeled) as positive
and negative videos of the corresponding query videos.

To mine hard positive/negative candidate videos for an-
notation, we utilize multiple strategies to select candidate
videos from the ambient set. The strategies include iterative
retrieval, transformed retrieval, and feature based mining.
Among these strategies, the first two strategies are mainly
used for mining hard positive candidate videos and the last
strategy is used for mining hard negative candidate videos.

We collect nearly 50,000 video pairs for annotation.
These video pairs are labeled by human annotators. Annota-
tion costs over 800 hours in total. After removing the videos
inappropriate for public release, we collect 1,206 queries
and 34,020 labeled videos. In the rest of this subsection, we
will describe the details of the three strategies for selecting
candidate videos.
Iterative Retrieval To mine hard positive candidate videos,
we utilize an interactive retrieval method to annotate the
positive candidate videos. This method can be divided in-
to the following three steps. Firstly, for a given query
video, it retrieves through the ambient set to get the can-
didates by using a variety of methods, including LBP [21]
and BSIFT [35] feature based retrieval methods. Secondly,
human annotators label these candidates for each query and
select the positive ones. Lastly, the selected positive videos
are further fed into the first step to retrieve more positive
candidates. The whole process is repeated for several times
until no more positive videos can be found for a given query.

Because the interactive retrieval procedure requires low
latency, we only employ LBP [21] and BSIFT [35] features
during this procedure. More advanced features and similar-
ity calculation methods are utilized for the following trans-
formed retrieval procedure.
Transformed Retrieval We also apply various transforma-
tions, such as rotation and cropping, on query videos to
get transformed videos. And then we use the transformed

Query video Positive candidate

Query video Positive candidate

Query video Positive candidate

Figure 3. Example of hard positive candidate videos. Top row:
side mirrored, color-filtered, and watermasked. Middle row: hori-
zontal screen changed to vertical screen with large black margins.
Bottom row: rotated.

videos as queries to search over the ambient set. Specifical-
ly, we utilize LBP, BSIFT, and deep features based retrieval
methods to select the candidate videos. Then we select the
top-5 to top-10 results as candidate videos for further hu-
man annotation.

In Figure 3, we show some query videos and their hard
positive candidate videos mined by interactive retrieval and
transformed retrieval. In Figure 3, the candidate videos are
near-duplicate videos by various transformations including
mirror transformation, color-filtered transformation, black
border insertion, and rotation transformation.
Feature based Mining To mine hard negative candidate
videos, we select 30,000 videos as candidate videos from
the ambient set which were uploaded from June 2018 to
August 2018. As the uploading dates of these candidate
videos are earlier than those of the videos in our query
set, we can expect that most candidate videos are not near-
duplicate videos of the query videos. We extract different
types of features to calculate the similarity between candi-
dates and query videos. The features include hand-crafted
features (LBP and BSIFT) and deep features. For each



Query video Negative candidate
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Figure 4. Example of hard negative videos. All the candidates are
visually similar to the query but not near-duplicates.

query video, we select the top-5 to top-10 similar videos
as candidate videos for human annotation.

Figure 4 illustrates some examples of query videos and
the corresponding negative candidate videos, where the can-
didate videos are mined based on deep features. In the ex-
ample at the top row, a man is casting a net into the water. In
the example at the middle row, a girl is doing her hairstyle
in a barbershop. In the example at the bottom row, a girl is
playing in a room decorated with illuminations. However,
as the persons in each video pair are different, all of these
video pairs are not near-duplicate videos although they are
very similar.

3.3. Probable Negative Unlabeled Set

We first select a subset of 700,000 videos from the ambi-
ent set as candidates for probable negative unlabeled videos,
which are defined as negative videos without human annota-
tion. After extracting a variety of frame and video features,
we calculate the pairwise similarity between query videos
and the candidate videos. The candidate videos which
might be the near-duplicate videos of query videos with
high probability will be filtered. Then the remaining can-
didate videos are selected as probable negative unlabeled
videos. Specifically, we utilize BSIFT features and aggre-
gated deep features to calculate similarity between query
videos and candidate videos. The BSIFT features are used
to calculate the Jaccard similarity, and only those videos
whose similarities to all queries are 0 can be selected as
candidate videos. Then the aggregated deep features are
used to calculate video-level similarity based on Euclidean
distance, and we further filter about 5% videos which have
the smallest similarities to all queries. In the end, we obtain
526,787 videos for the probable negative unlabeled set.

To verify that the videos obtained by the above proce-

dure are truly probable negative, we randomly sample 100
videos from the probable negative unlabeled set and invite
human annotators to label them against each of the query
videos. None of these videos is labeled as near-duplicate of
the queries. Therefore, the videos in the probable negative
unlabeled set are not near-duplicates of the query videos
with high probability.

4. Transformations
In real applications, users might prefer to copy hot

videos to gain attention. At the same time, these users usu-
ally choose to modify their copied videos slightly to bypass
the detection. These modifications contain video cropping,
border insertion and so on.

To mimic such user behavior, we define one temporal
transformation, i.e., video speeding, and three spatial trans-
formations, i.e., video cropping, black border insertion, and
video rotation. Specifically, the video speeding transforma-
tion contains video speeding up and speeding down. This
type of transformation is designed to simulate video accel-
eration or deceleration. In real applications, users might
crop the videos to zoom in or out the original videos, which
can be performed by frame cropping. Furthermore, users
might insert borders, like black borders, to fit different video
size. In addition, there exist many mobile-phone videos
which are taken horizontally or vertically. When users u-
pload these videos, they might rotate their videos.

These transformations are widely applied in the video
re-creation procedure. By performing these transformation-
s, harder candidates can be generated and we can construct
more challenging datasets. Please note that the above trans-
formations are used as illustrating examples, and users can
define their own transformations based on their needs.

5. Experiments
We perform experiments to study the retrieval perfor-

mance on SVD dataset and other NDVR datasets. We adop-
t two categories of NDVR methods, i.e., real-value based
NDVR methods and hashing based NDVR methods. In real
applications, real-value based NDVR methods usually suf-
fer from high storage cost and low query speed. To avoid
high storage cost and enable fast query speed, hashing based
methods [3, 31, 34, 29, 11, 27, 6] have also been adopted for
NDVR.

5.1. Datasets

As TRECVID and MUSCLE VCD are too smal-
l and the original videos in background distraction set
are not available for UQ VIDEO, we select CCWE-
B [32] and VCDB [9] for comparison with SVD.
We adopt four transformations defined in Section 4 to
construct more challenging variants of SVD. Specifi-



cally, we utilize SVDtransformation to denote a vari-
ant of the SVD dataset, where the labeled positive
videos are replaced by the corresponding transformed
videos. Here the transformation denotes the transfor-
mations defined in Section 4, i.e., transformation ∈
{Cropping,BlackBorder,Rotation, Speeding}. Please
note that we adopt acceleration transformation for
SVDSpeeding. For all datasets, the groundtruth videos of a
given query video are defined as the labeled positive videos.

5.2. Benchmark and Evaluation Protocol

5.2.1 Benchmark

For real-value based methods, we adopt four widely used
real-valued NDVR methods, including three video-level
methods, i.e., layer-wise convolutional neural network (C-
NNL) [12], vector-wise convolutional neural network (C-
NNV) [12] and deep metric learning (DML) [13], and
one frame-level method, i.e., circulant temporal encod-
ing (CTE) [24].

In real applications, real-value based methods might be
impractical for massive videos. Hence, we also adopt some
hashing methods for evaluation. Specifically, we adopt four
hashing methods, including one data-independent method,
i.e., locality sensitive hashing (LSH) [3], two unsuper-
vised hashing methods, i.e., iterative quantization (ITQ) [5]
and isotropic hashing (IsoH) [11], and one supervised
hashing method, i.e., Hamming distance metric learn-
ing (HDML) [20], for evaluation. In this paper, we just use
four hashing methods for demonstration, although more so-
phisticated hashing methods can be adopted to further im-
prove the performance [15].

For real-value based NDVR methods, following the set-
ting of DML [13], we utilize VGG16-Net [28] pre-trained
on ImageNet [25] to extract 4096D deep features for every
frame. For all datasets, we set fps = 1 for fair compari-
son6. After extracting deep features for each frame, we uti-
lize the same normalization strategy as that in DML, i.e.,
zero-mean and L2-normalization, to generate video-level
deep features. DML is a triplet-based deep metric learning
method. For all datasets, we utilize hard triplets sampling
strategy proposed by [13]. For CNNL and CNNV methods,
we also utilize 4096D deep features extracted by VGG16-
Net pre-trained on ImageNet. For all datasets, we randomly
sample 50,000 frames to learn 300 centers by k-means al-
gorithm for CNNL and CNNV methods. For hashing based
methods, we also use the 4096D deep features extracted
by VGG16-Net to perform hashing learning for fair com-
parison. For all baselines except CNNL, CNNV and CTE,
source code is kindly provided by their authors. For CNNL,
CNNV and CTE, we carefully implement these methods.

6CTE achieves higher accuracy with fps = 15 on CCWEB dataset. In
this paper, we set fps = 1 for fair comparison.

For real-value based NDVR methods, Euclidean distance
is used to rank the retrieved data points. For hashing based
NDVR methods, we learn a binary code for each video.
Then the Hamming distance is used as the metric to rank
the retrieved data points.

To further improve the retrieval accuracy for hashing
methods, we can utilize reranking strategy. Specifically, we
first use Hamming distance to generate a ranked list for all
returned videos. Then we select top-N returned videos to
run reranking algorithm. During the reranking procedure,
we calculate Euclidean distance between query video and
the selected top-N videos based on deep features and get
the final ranked list for the selected N videos based on the
Euclidean distance.

5.2.2 Evaluation Protocol

For CCWEB and VCDB datasets, following the setting of
DML [13], we utilize the query set and labeled set as train-
ing set. During testing procedure, we utilize the query set as
test set and the labeled set as database for CCWEB dataset.
Then the retrieval procedure is performed by adopting test
set to retrieve database. For VCDB dataset, we select query
set as test set. Furthermore, we utilize the labeled set and
background distraction set as database. For SVD dataset,
we randomly select 1,000 query videos from query set and
their labeled videos as training set. During testing proce-
dure, we utilize the remaining 206 query videos from query
set as test set. Furthermore, the corresponding labeled set
and the whole probable negative unlabeled set are utilized
as database.

We utilize mean average precision (MAP) and top-K
MAP as evaluation metrics. Specifically, for each query
video vq , the average precision (AP) is calculated according
to the following equation:

AP (vq) =
1

Rq

M∑
k=1

Pq(k)1k, (1)

where Rq is the number of labeled positive videos, M de-
notes the number of videos in the database, Pq(k) is the
precision at cut-off k in the ranked list for video vq and 1k

is an indicator function which equals 1 if the k-th returned
video is the groundtruth of query video, otherwise 1k = 0.
Then given n query videos, we can calculate MAP as fol-
lows:

MAP =
1

n

n∑
q=1

AP (vq).

The top-K MAP can be calculated similarly by setting
M = K in Equation (1). Furthermore, we also compare
the storage cost and retrieval time for real-value based ND-
VR methods and hashing based NDVR methods.



Table 2. MAP (%) for real-value based NDVR methods.
Method CCWEB VCDB SVD SVDCropping SVDBlackBorder SVDRotation SVDSpeeding

DML 97.01 78.98 78.47 54.07 68.17 15.59 76.70
CNNL 95.47 49.87 55.55 15.61 18.63 0.15 51.80
CNNV 95.60 45.19 19.09 6.31 6.94 0.22 15.45
CTE 90.08 41.42 50.97 16.48 32.66 2.84 16.23

Figure 5. Bad cases of DML method.

5.3. Real-Value based NDVR

Accuracy We report MAP for DML, CNNL, CNNV, and
CTE on CCWEB, VCDB and SVD datasets in Table 2.
From Table 2, we can find that on CCWEB dataset, DML,
CNNL, and CNNV methods can achieve similar promising
retrieval accuracy. Furthermore, we can also find that the
retrieval accuracy on SVD is far from satisfactory, which is
similar to the phenomenon on VCDB dataset.

The MAP results on SVDtransformation datasets are al-
so presented in Table 2. From Table 2, we can see that for
all transformations, the accuracy will be deteriorated, espe-
cially for spatial transformations.
Bad Case Analysis We present some bad cases of the best
baseline (DML) on SVD dataset in Figure 5. In Figure 5,
each element is a video which is shown as three represen-
tative frames. Each row contains a query video q(i) and its
first returned video c

(i)
1 and second returned video c

(i)
2 ac-

cording to the ranked list of DML. In all cases, the first re-
turned video c

(i)
1 isn’t the groundtruth of q(i) but the second

returned video c
(i)
2 is the groundtruth of q(i).

For the first example shown in the first row, the query
video q(1) and its groundtruth video c

(1)
2 show that a girl is

walking in a room which is decorated with illuminations.
Compared with c

(1)
2 , the query video q(1) might be a video

recorded by a smart-phone and its groundtruth video c
(1)
2 is

edited by cropping. The video c
(1)
1 shows that another girl

in a black T-shirt is walking in a room which is very similar
to the room of query video q(1). This case might not occur
for some long videos, e.g., a movie.

For the second example shown in the second row, the
query video q(2) shows that a girl is doing her hairstyle in a
barbershop. The query video q(2) and its groundtruth video
c
(2)
2 are very similar. The video c

(2)
2 is a video clip of the o-

riginal video. The video c
(2)
1 shows that another girl is doing

her hairstyle in a similar barbershop. As the clipping trans-
formation is applied on the videos, the query video and its
near-duplicate video are confused with other videos which
are not near-duplicate.

For the third example shown in the third row, the query
video q(3) shows that two men are shouting. These videos
might be a clip of a movie. The query video and it-
s groundtruth video are edited by inserting two differen-
t video templates. The content of these two videos is the
same. But detecting these near-duplicate videos might be
very challenging due to the different video templates.

From these examples, we can see that new challenges
and difficulties might be introduced by the new types of
near-duplicate videos and hard positive/negative videos in
SVD dataset.



Table 3. MAP (%) for hashing based NDVR methods.

Dataset LSH ITQ IsoH HDML
16 bits 32 bits 16 bits 32 bits 16 bits 32 bits 16 bits 32 bits

CCWEB 68.12 83.15 70.16 87.14 72.24 86.75 82.72 90.23
VCDB 10.33 30.88 10.68 33.31 10.60 33.30 35.96 68.92
SVD 4.34 28.36 5.16 30.14 4.85 30.88 6.47 31.59
SVDCropping 0.32 2.65 0.70 4.41 0.96 4.01 1.23 5.39
SVDBlackBorder 0.76 4.61 1.18 7.08 1.15 5.58 1.61 10.54
SVDRotation 0.06 0.09 0.04 0.43 0.07 0.24 0.54 1.95
SVDSpeeding 3.34 23.56 4.42 25.82 4.14 26.63 4.56 28.60

Table 4. Top-100 MAP (%), storage cost and retrieval time on all datasets.

Methods Dim/#bits Top-100 MAP Storage Cost Retrieval Time (ms)
CCWEB VCDB SVD CCWEB VCDB SVD CCWEB VCDB SVD

DML 500D 97.93 84.60 81.27 48.83M 0.40G 2.25G 41.2 278.3 2203.5
CNNL 4096D 97.88 84.48 61.04 99.96M 3.29G 18.42G 266.6 2290.3 15887.3CNNV 4096D 97.86 79.44 25.10
LSH+

16 bits

98.29 66.55 76.02

0.06M 0.60M 3.37M 1.4 17.8 88.2ITQ+ 98.11 66.65 77.96
IsoH+ 97.92 66.58 78.19
HDML+ 97.74 77.96 76.29
LSH+

32 bits

97.81 67.19 78.80

0.09M 0.80M 4.49M 2.5 24.8 174.8ITQ+ 97.75 66.65 78.92
IsoH+ 97.79 67.01 79.00
HDML+ 97.69 78.36 78.63

5.4. Hashing based NDVR

Accuracy In this section, we present the retrieval results of
hashing based methods on all datasets. The MAP results
are reported in Table 3. From Table 3, we can find that the
retrieval accuracy of hashing based methods are not as good
as that of real-value based NDVR methods on all datasets.
Compared with CCWEB and VCDB dataset, the retrieval
accuracy on SVD dataset is the worst. Furthermore, the
MAP results on SVDtransformation are much worse than
those on SVD in all cases.
Reranking We also carry out experiments by utilizing r-
eranking to improve the retrieval accuracy of hashing based
methods. For reranking, we set N = 0.1×M , where M is
the number of videos in database7 for each query. Here the
videos in database contain labeled videos and background
distraction videos or probable negative unlabeled videos

In Table 4, we report the top-100 MAP, storage cost for
database and average retrieval time per query. The “LSH+”
denotes the LSH algorithm with reranking and the other no-
tations are defined similarly. From Table 4, we can find
that after reranking, the retrieval accuracy of hashing based
methods is comparable with real-value based methods in
most cases. Furthermore, the storage cost for hashing based
methods is much smaller than that of real-value based meth-

7As the number of labeled videos for different query videos is different,
the M for different query videos is also different.

ods. In addition, we can see that hashing based methods
are much faster than real-value based methods. Hence, for
large-scale applications, hashing based methods are usually
more practical than real-value based methods.

6. Conclusion
In this paper, we introduce a novel large-scale short

video dataset, called SVD, for NDVR. This dataset contain-
s over 500,000 short videos collected from a large video
platform and over 30,000 labeled videos of near-duplicate
videos. We utilize multiple mining strategies to mine hard
positive/negative samples from massive short videos. Fur-
thermore, we design some temporal and spatial transforma-
tions to mimic users’ copy-and-edit behavior in real appli-
cations and construct more challenging variants of SVD.
SVD is the first short video dataset, and it is also the largest
dataset for NDVR. The release of SVD will foster the re-
search of NDVR, especially NDVR for short videos.
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guyen, Hervé Jégou, and Shin’ichi Satoh. Temporal match-
ing kernel with explicit feature maps. In MM, pages 381–
390, 2015.
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