

Fast Algorithms for Mining Co-evolving Time Series

Lei Li

Computer Science Department Carnegie Mellon University Committee: Christos Faloutsos (chair) Nancy Pollard Eric Xing Jiawei Han (UIUC)

9/12/2011

Thesis Oral

Why study <u>co-evolving</u> time series?

Correlated multidimensional time sequences with joint temporal dynamics

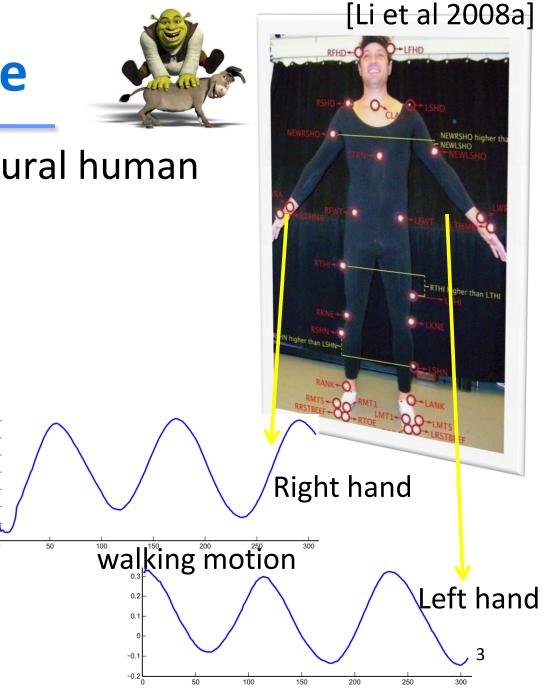
Motion Capture

 Goal: generate natural human motion

> 0.3 0.2

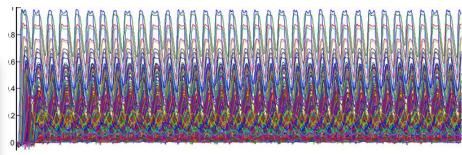
-0.1

- Game (\$57B)
- Movie industry
- Challenge:
 - Missing values
 - "naturalness"



Environmental Monitoring

- Problem: early detection of leakage & pollution
- Challenge: noise & large data

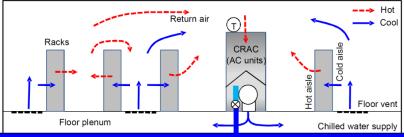


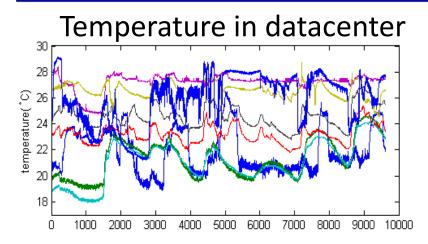
Chlorine level in drinking water systems [Li et al 2009]

Barstow residents advised not to drink tap water because of possible contamination November 19, 2010 | 5:54 pm

Datacenter Monitoring & Management

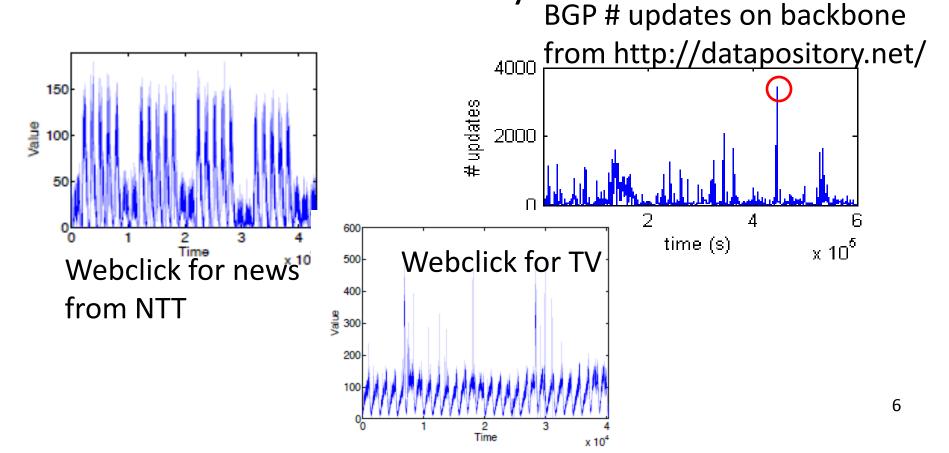
- Goal: save energy in data centers
 - US alone, \$7.4B power consumption (2011)
- Challenge:
 - Huge data (1TB per day)
 - Complex cyber physical systems





Network Security

Challenge: Anomaly detection in computer
 network & online activity



BIG Challenges

in mining co-evolving time series

Pattern discovery

- 1. Imputation
- 2. Compression
- 3. Segmentation
- 4. Anomaly

Feature extraction

- 5. Clustering
- 6. Visualization
- 7. Indexing
- 8. Similarity search

Parallel algorithm

 Parallel learning algorithms on SMP/multicore

BIG Challenges and Solutions

in mining co-evolving time series

Pattern discovery

- 1. Imputation
- 2. Compression
- 3. Segmentation
- 4. Anomaly

Feature extraction

- 5. Clustering
- 6. Visualization
- 7. Indexing
- 8. Similarity search

Parallel algorithm

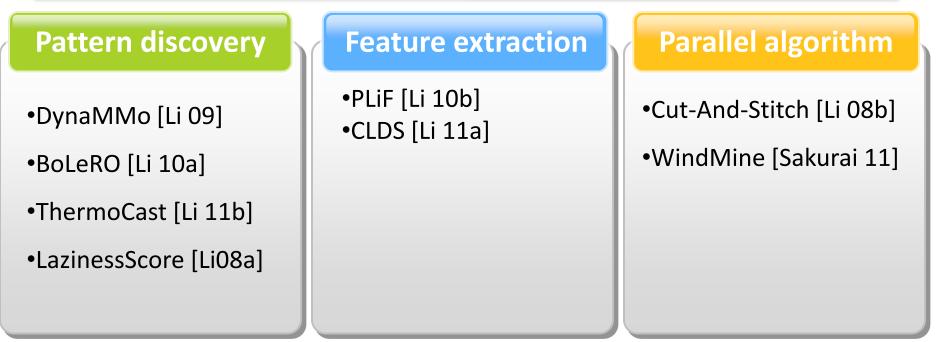
9. Parallellearningalgorithms onSMP/multicore

•DynaMMo [Li 09] •BoLeRO [Li 10a] •ThermoCast [Li 11b]

•LazinessScore [Li08a]

•PLiF [Li 10b] •CLDS [Li 11a] •Cut-And-Stitch [Li 08b] •WindMine [Sakurai 11]

Contributions & Results



Contributions:

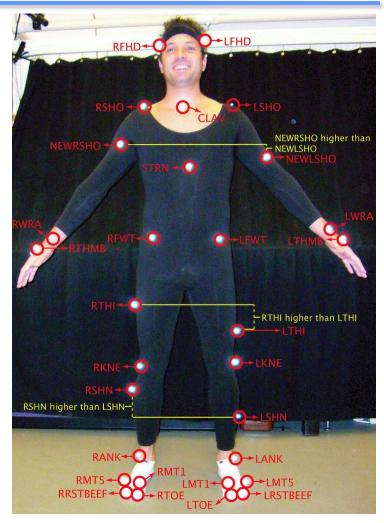
- 1. Most accurate missing value recovery/summarization
- 2. Most effective clustering on TS
- 3. Fast algorithms: linear to length
- 4. Parallel algorithms: linear speed up on multicore

Outline

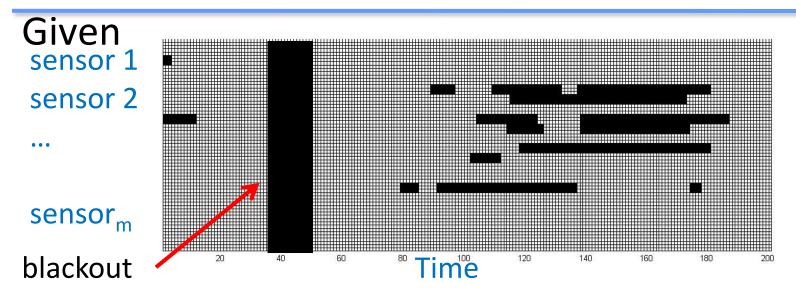
- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
 - Feature Learning for Time Series [Li+10b, Li+11a]
 - Summary of the remaining chapters
 - Conclusion and Future Directions

Missing Values in Time Series

- Motion Capture:
 - Markers
 - Cameras track 3D positions
 - 93 dimensional body-local coordinates(31-joints)
 - Occlusion
- Sensor data
 - missing values due to
 - Low battery
 - RF error

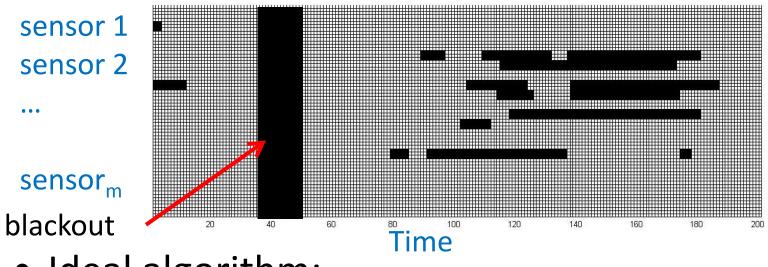


Problem Definition



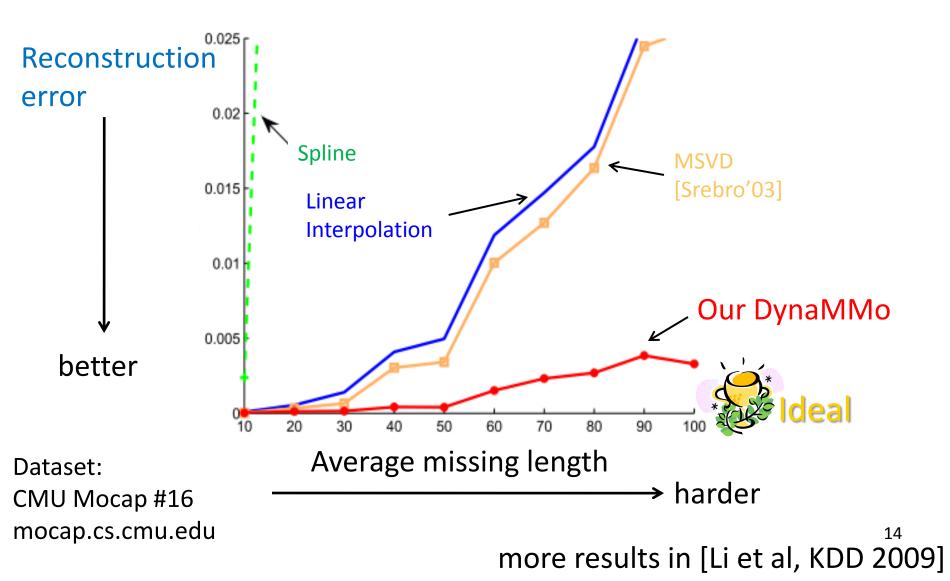
- Find algorithms for:
 - Task 1: Recovering missing values/imputation
 - Task 2: Compression/summarization
 - Task 3: Segmentation

Problem Definition (cont')

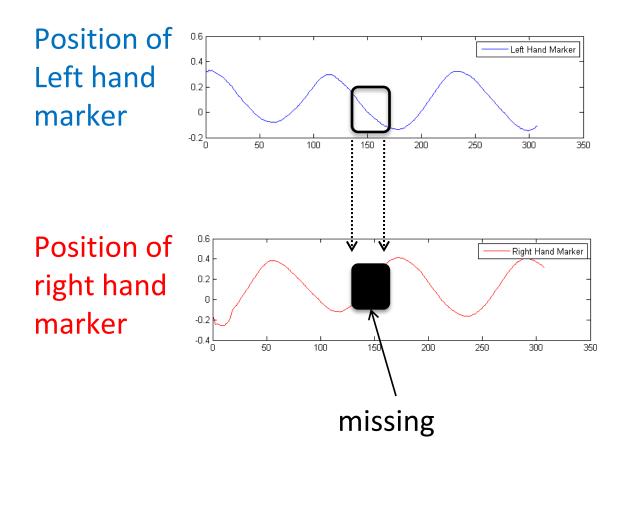


- Ideal algorithm:
 - Goal 1: Effective
 - Goal 2: Scalable: to duration of sequences

Preview – "DynaMMo"

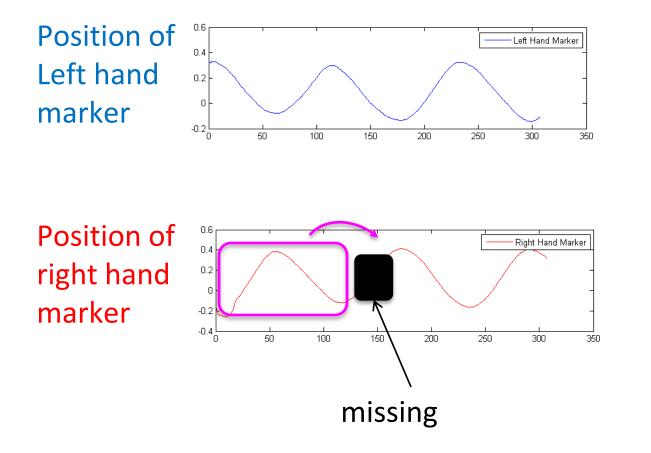


Proposed Method: DynaMMo Intuition



Recover using (a) Correlation among multiple sequences

Proposed Method: DynaMMo Intuition



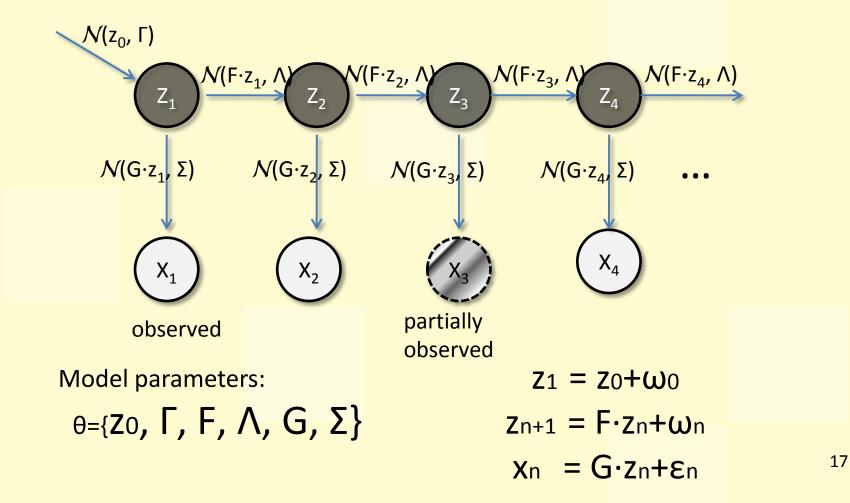
Recover using (a) Correlation among multiple sequences

and (b) Dynamics temporal moving pattern

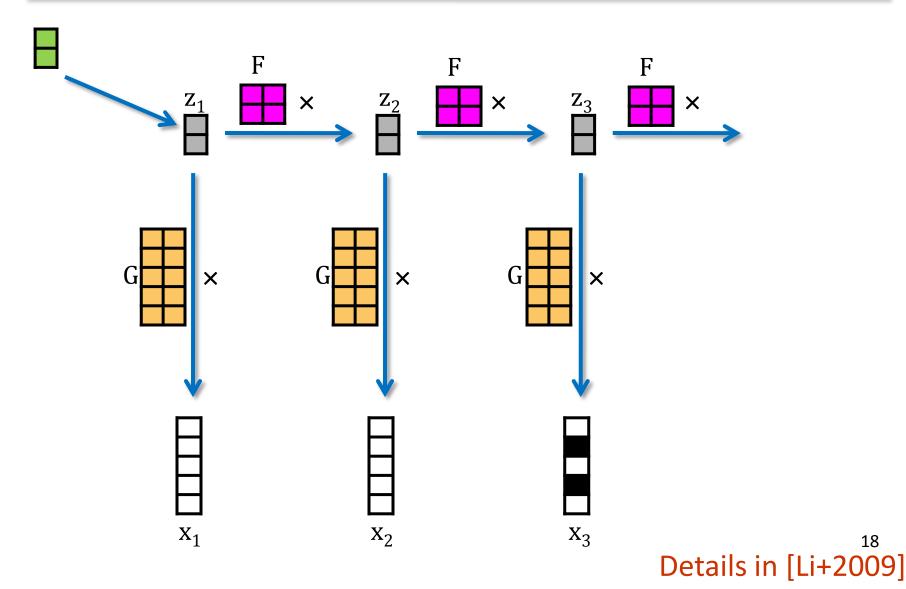
DynaMMo Underlying Model

(details)

Use Linear Dynamical Systems to model whole sequence.



Learning problem: estimate all colored elements

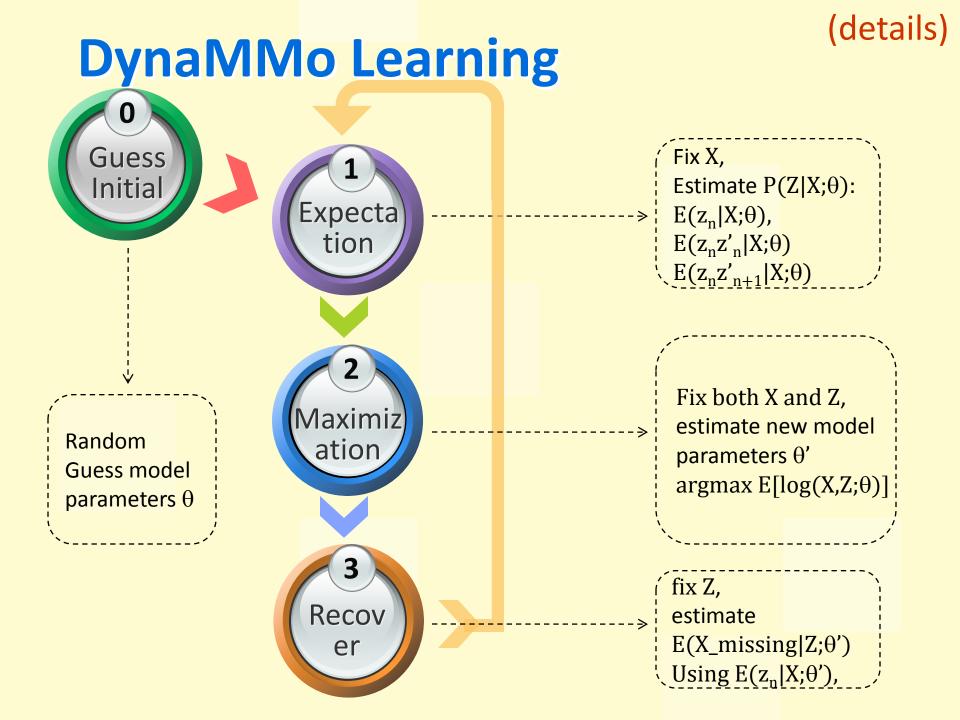


DynaMMo learning

 Finding the best model parameters (θ) and missing values for X to maximize the expected log-likelihood:

$$Q(\theta) = E_{X_m, Z|X_g; \theta} \left[- (z_1 - z_0)^T \Gamma^{-1} (z_1 - z_0) - \sum_{n=2}^N (z_n - F \cdot z_{n-1})^T \Lambda^{-1} (z_n - F \cdot z_{n-1}) - \sum_{n=1}^N (x_n - G \cdot z_n)^T \Sigma^{-1} (x_n - G \cdot z_n) \right]$$

- Proposed optimization method:
 - Expectation-Maximization-Recover



Outline

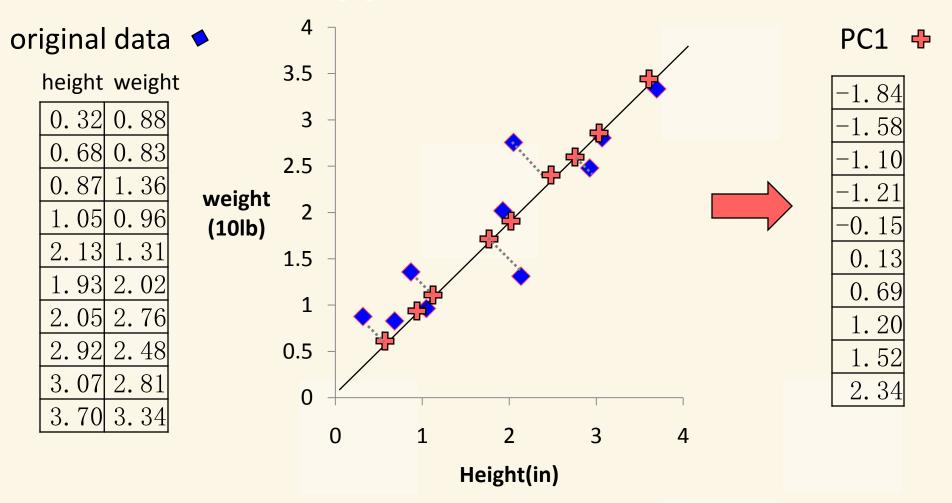
- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
 - Problem Definition
 - Proposed Method
 - Results

T1: recovering T2: compression T3: segmentation

- Feature Learning for Time Series [Li+10b, Li+11a]
- Summary of the remaining chapters
- Conclusion and Future Directions

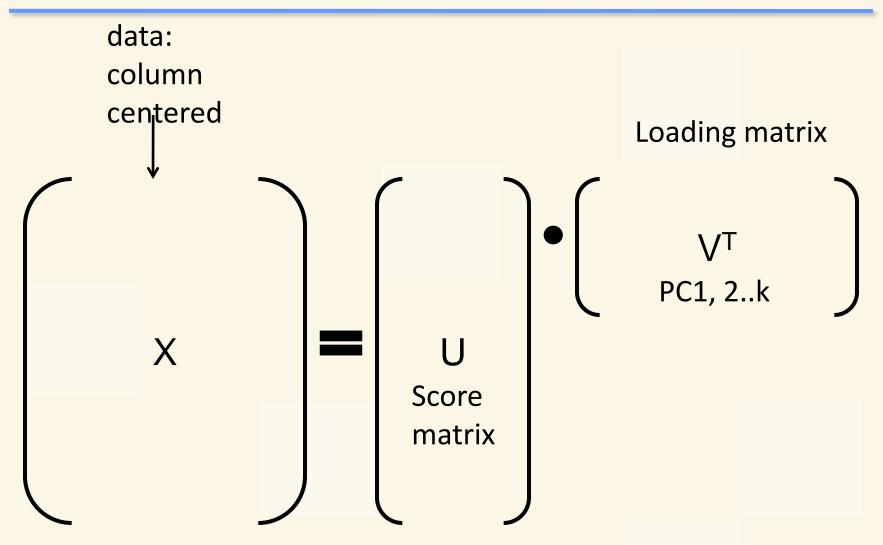
(Background)

How to Compress? <u>Traditional Approach: PCA/SVD</u>



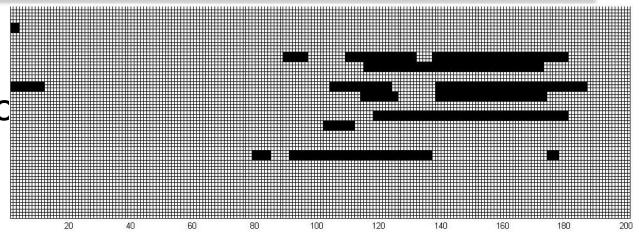
(Background)

PCA: general data matrix



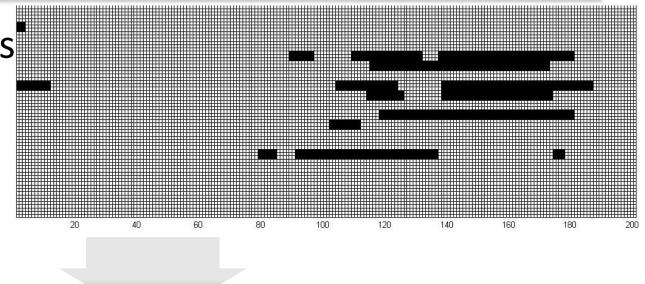
Why Not PCA/SVD?

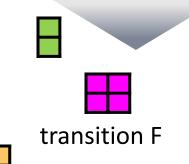
- No dynamics
- Need more tc compress w/ same accuracy



A higher compression ratio

Store parameters of DynaMMo But bad reconstruction

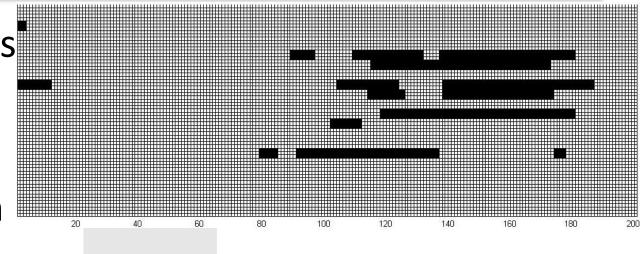


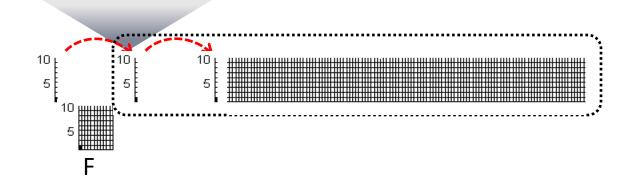


projection G

Is there a better tradeoff?

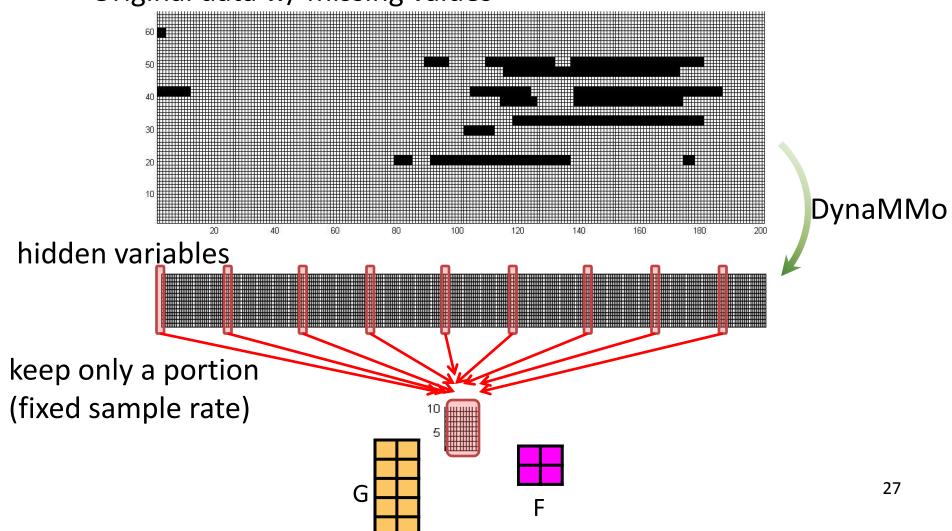
Store parameters of DynaMMo But bad reconstruction



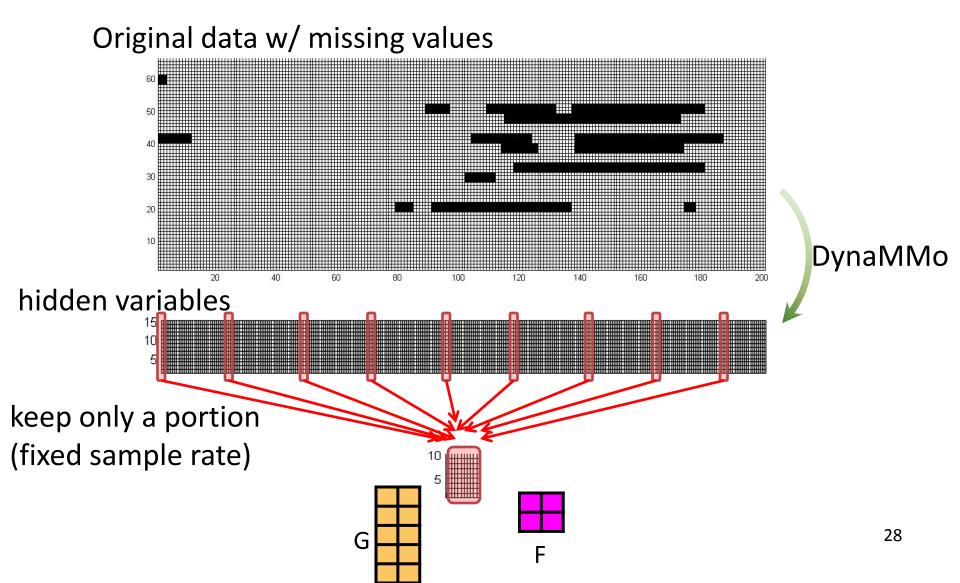


DynaMMo Compression: sample & sync

Original data w/ missing values

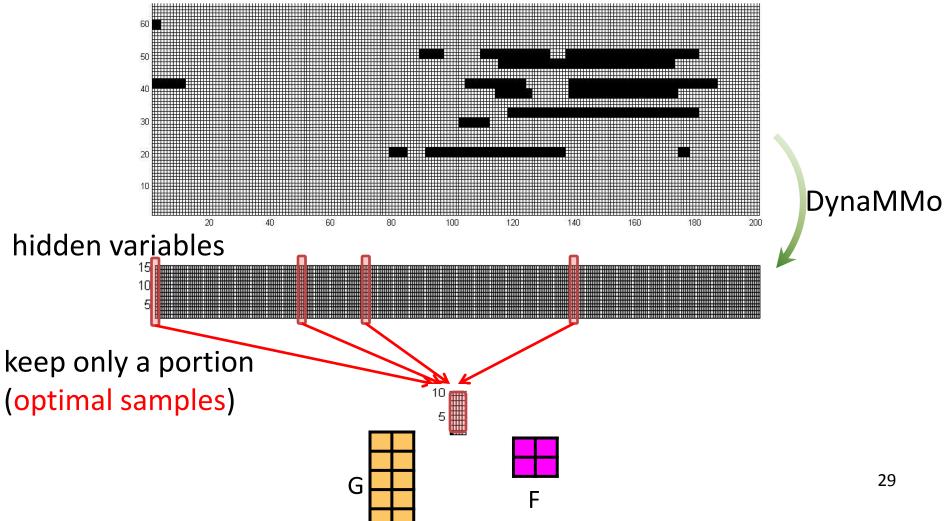


Q: Can we do even better?



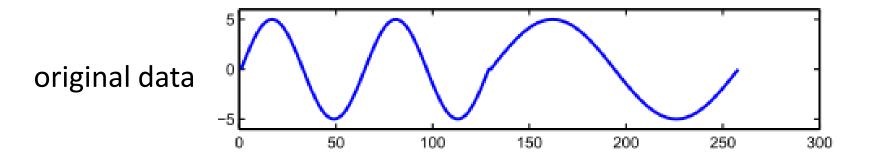
A: Yes, sample adaptively DynaMMo_d Compression

Original data w/ missing values



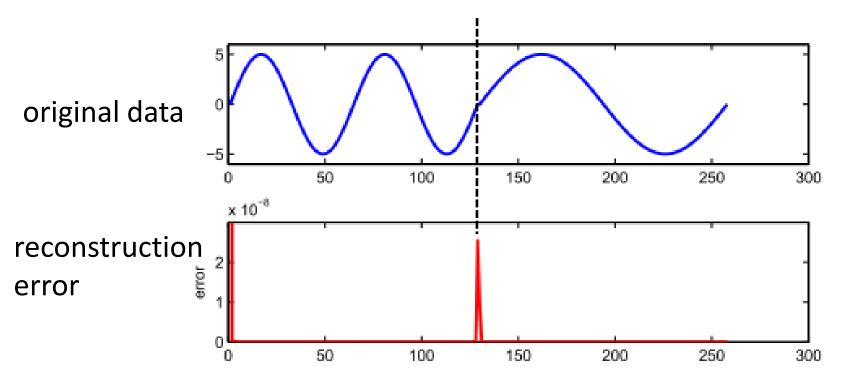
How to Segment

• Segment by threshold on reconstruction error



How to Segment

• Segment by threshold on reconstruction error

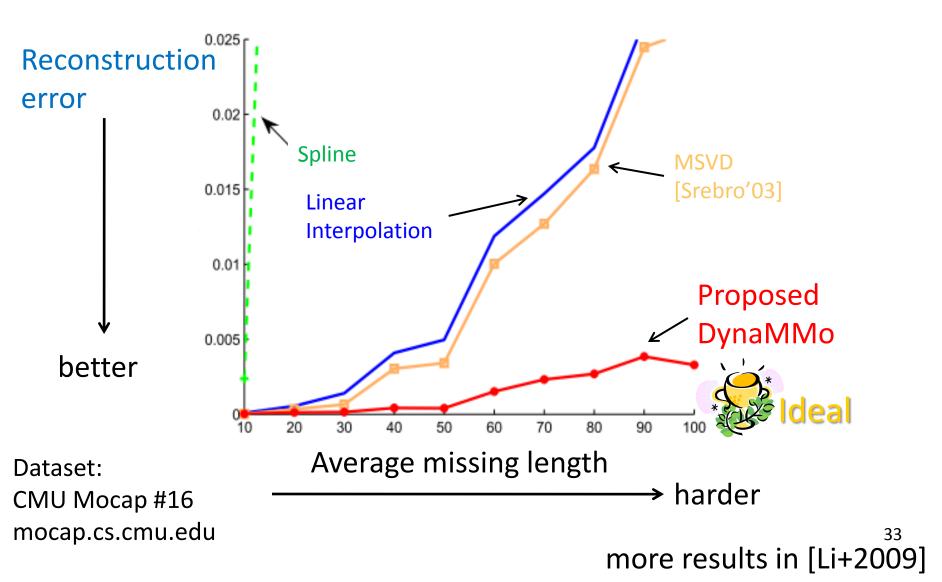


Outline

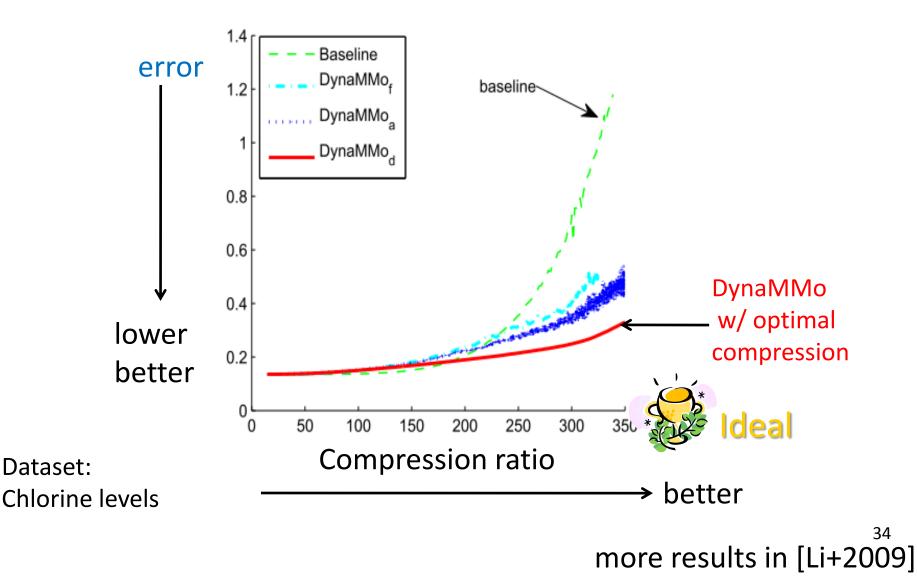
- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
 - Problem Definition
 Proposed Method
 T1: recovering
 T2: compression
 T3: segmentation

- Results
 - Feature Learning for Time Series [Li+10b, Li+11a]
 - Summary of the remaining chapters
 - Conclusion and Future Directions

Better Recovery of missing values

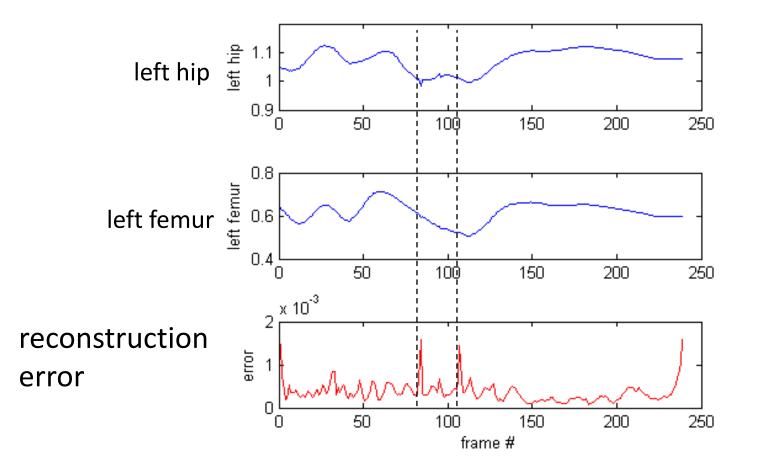


Results – Better Compression



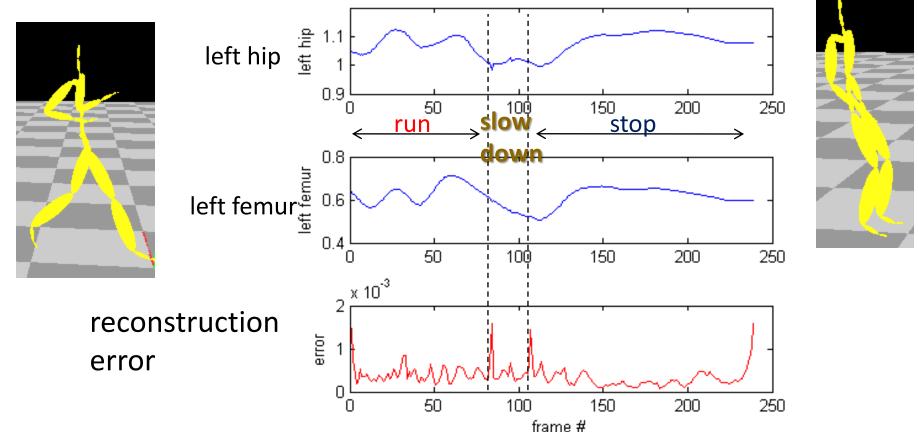
Results – Segmentation

• Find the *transition* during "running" to "stop".



Results – Segmentation

• Find the *transition* during "running" to "stop".



A summary of my work on time series

•DynaMMo [Li 09]

•BoLeRO [Li 10a]

•ThermoCast [Li 11a]

•LazinessScore [Li08a]

Feature extraction

•PLiF [Li 10b] •CLDS [Li 11a]

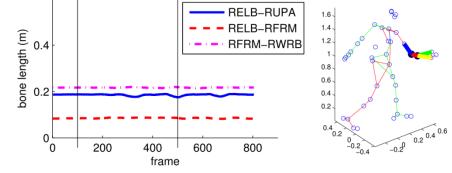
Parallel algorithm

•Cut-And-Stitch [Li 08b]

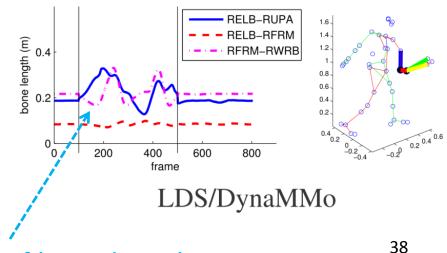
•WindMine [Sakurai 11]

BoLeRO: including domain knowledge

- How to handle VERY LONG occlusions?
- Bone Length **Constrained Occlusion** filling in motion capture
 - Exploiting the skeleton of human body
 - [Lei Li et al, 2010a]



Original



violation of bone length

(details)

BoleRO

BoLeRO-Hard Constraint	BoLeRO-Soft Constraint
min $Q(X_m, \Theta)$	min $f(X_m, \Theta)$
subject to $ x_t^{(i)} - x_t^{(j)} ^2 - d_{i,j}^2 = 0 \forall \langle i, j, d_{i,j} \rangle \in B$	$= \frac{1}{2} \mathbb{E} \Big[(\mathbf{z}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Gamma}^{-1} (\mathbf{z}_1 - \boldsymbol{\mu}_0) \Big]$
$Q(X_m, \Theta) = \frac{1}{2} \mathbb{E}[(\mathbf{z}_1 - \mu_0)^T \Gamma^{-1} (\mathbf{z}_1 - \mu_0)$	$+\sum_{t=1}^{T} (\mathbf{z}_{t} - \mathbf{F} \cdot \mathbf{z}_{t-1})^{T} \Lambda^{-1} (\mathbf{z}_{t} - \mathbf{F} \cdot \mathbf{z}_{t-1})$
+ $\sum_{t=1}^{T} (\mathbf{z}_t - \mathbf{F} \cdot \mathbf{z}_{t-1})^T \Lambda^{-1} (\mathbf{z}_t - \mathbf{F} \cdot \mathbf{z}_{t-1})$	$+ \sum_{t=2} (\mathbf{z}_t - \mathbf{r} \cdot \mathbf{z}_{t-1}) \mathbf{X} (\mathbf{z}_t - \mathbf{r} \cdot \mathbf{z}_{t-1})$
t=2	$+\sum_{t=1}^{T} (\mathbf{x}_{t} - \mathbf{G} \cdot \mathbf{z}_{t})^{T} \Sigma^{-1} (\mathbf{x}_{t} - \mathbf{G} \cdot \mathbf{z}_{t})$
$+\sum_{t=1}^{t} (\mathbf{x}_t - \mathbf{G} \cdot \mathbf{z}_t)^T \Sigma^{-1} (\mathbf{x}_t - \mathbf{G} \cdot \mathbf{z}_t)]$	t=1
$+ \frac{\log \Gamma }{2} + \frac{T-1}{2} \log \Lambda + \frac{T}{2} \log \Sigma $	$+ \frac{\log \Gamma }{2} + \frac{T-1}{2} \log \Lambda + \frac{T}{2} \log \Sigma $
	$+ \frac{\lambda}{2} \sum_{t=1}^{1} \sum_{\langle i,j,d_{i,j} \rangle \in B} (W_{t,i} W_{t,j}) (\ \mathbf{x}_{t}^{(i)} - \mathbf{x}_{t}^{(j)} \ ^{2} - d_{i,j}^{2})^{2}$
	where $W_{t,i} W_{t,j} = W_{t,i} + W_{t,j} - W_{t,i}W_{t,j}$.

BoLeRO Results



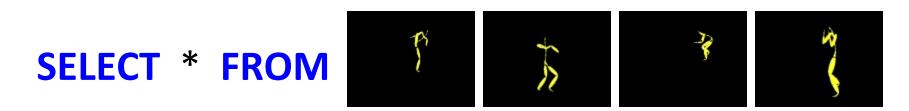
BoLeRO

Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b, Li+11a]
 - Motivation and intuition
 - Complex-valued Linear Dynamical System
 - CLDS Clustering and interpretation
 - Experiments
 - Summary of the remaining chapters
 - Conclusion and Future Directions

Answering similarity queries

[Li et al, VLDB 2010]

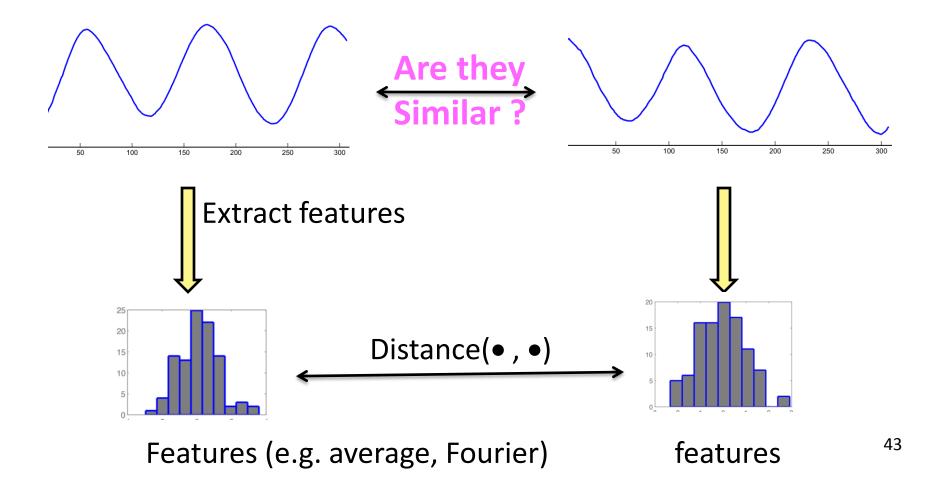


WHERE time_seq.

LIKE

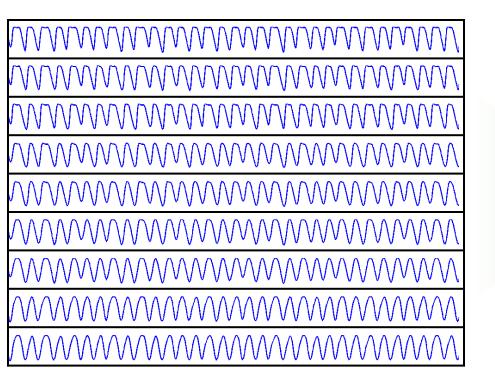
Central Problem

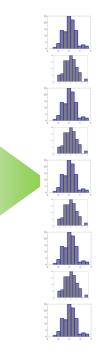
• Estimate "Similarity" among time sequences



What are good features?

Good features should agree with human intuition

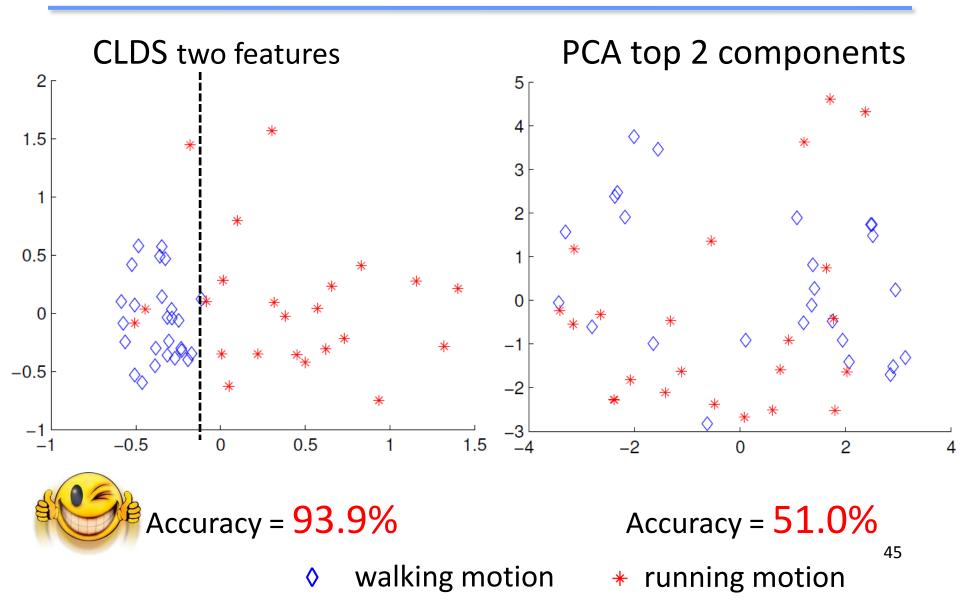




Requirements of good features:

- 1. Time Shift
- 2. Frequency Proximity
- 3. Grouping Harmonics

Preview



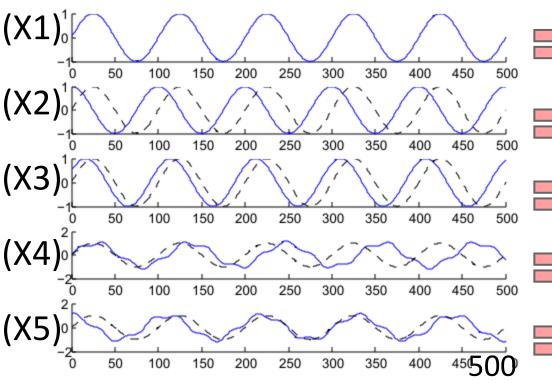
Example: synthetic signals

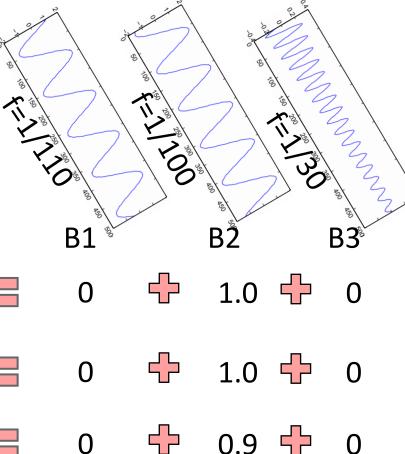
Equations

(X1)	sin(2πt/100)	
{ (X2)	cos(2πt/100)	
(X3)	sin(2πt/98 + π/6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
∫ ^(X4)	sin(2πt/110) + 0.2sin(2πt/30)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
۱ (X5)	cos(2πt/110) + 0.2sin(2πt/30 + π/4)	2 0 -2 0 50 100 150 200 250 300 350 400 450 500

Basic idea

learning basis/harmonics

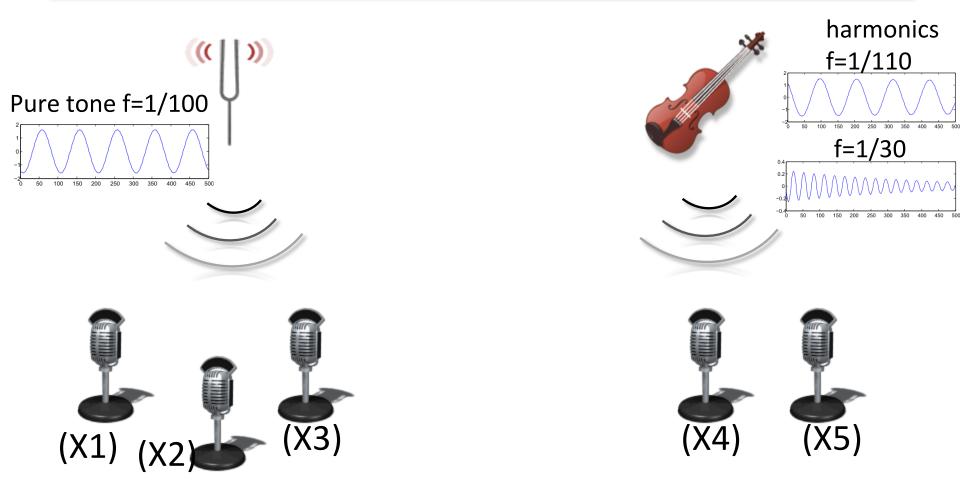




1.0 🕂 0 🕂 1.0

1.0 🕂 0 🕂 1.0 Mixing weights

Intuition of Basis

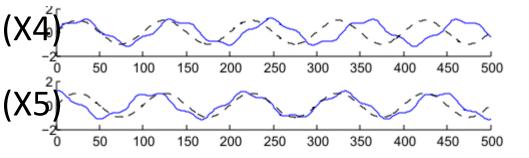


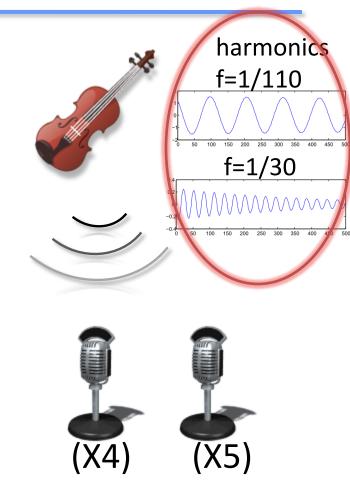
Mixing weights = participation strength of sound sources in observation (mic.)

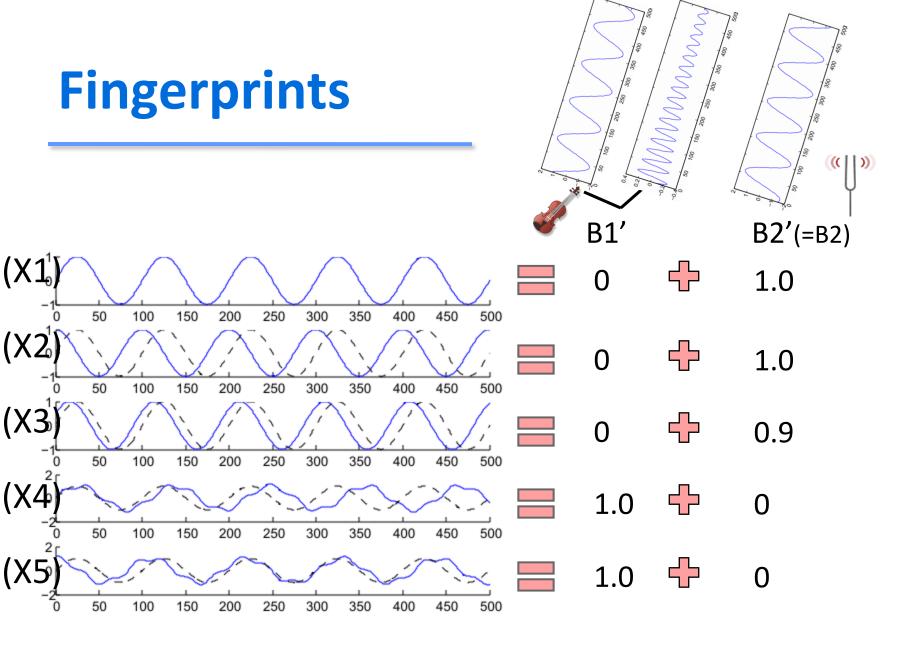
Grouping Correlated Harmonics

Through PCA/SVD

$$B1' = \{B1, B3\}$$



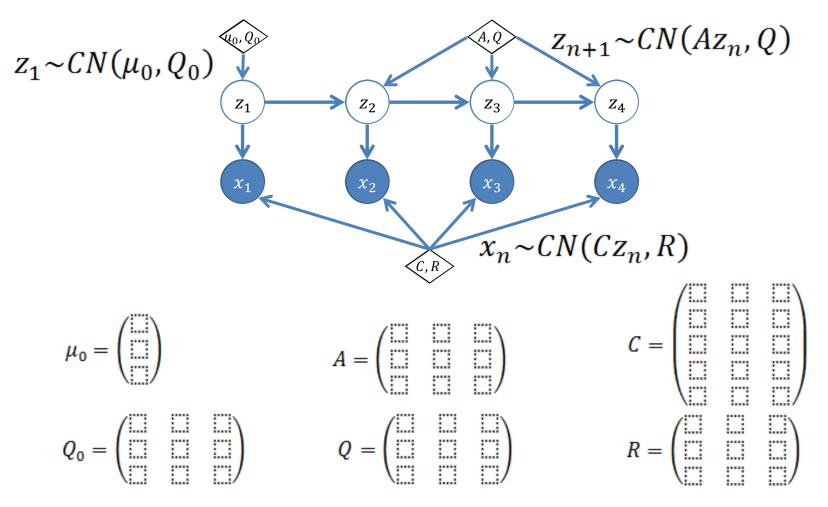




Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b, Li+11a]
 - Motivation and intuition
- Complex-valued Linear Dynamical System
 - CLDS Clustering and interpretation
 - Experiments
 - Summary of the remaining chapters
 - Conclusion and Future Directions

How to learn the basis? Complex Linear Dynamical Systems

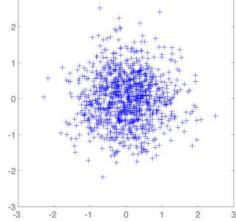


[Li et al, ICML 2011]

Complex Normal Distribution

• Example: x = a + ibstandard complex normal distribution $x \sim CN(0,1) \qquad \longleftrightarrow p(x) = \frac{1}{\pi}e^{-|x|^2}$

$$\begin{pmatrix} a \\ b \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \longleftrightarrow \qquad p(a, b)$$
$$= (2\pi)^{-1} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2} \left(\begin{pmatrix} a \\ b \end{pmatrix} - \mu \right)' \Sigma^{-1} \left(\begin{pmatrix} a \\ b \end{pmatrix} - \mu \right)}$$



(details)

Complex Normal Distribution

x is said to follow the complex normal distribution, if its p.d.f

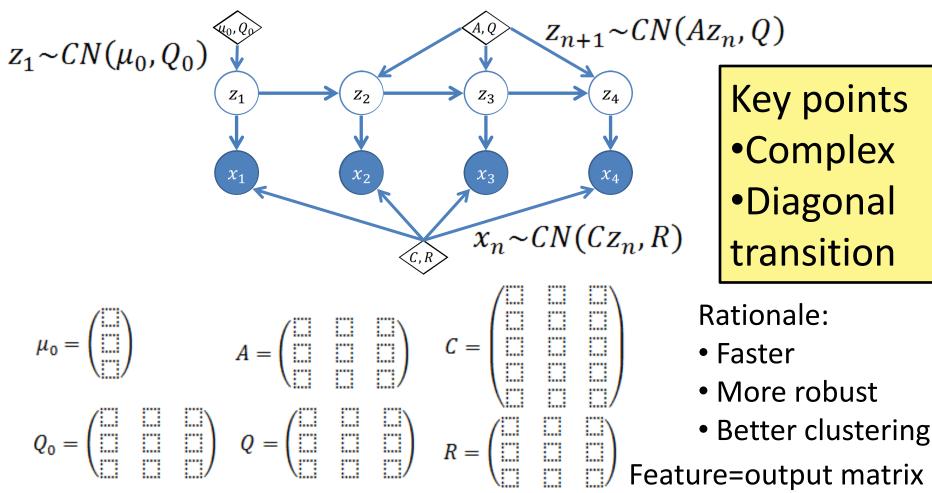
$$\boldsymbol{x} \sim \mathcal{CN}(\mu, H), \text{ if its } p.d.f \text{ is}$$

 $p(\boldsymbol{x}) = \pi^{-m} |H|^{-1} \exp(-(\boldsymbol{x} - \mu)^* H^{-1} (\boldsymbol{x} - \mu))$

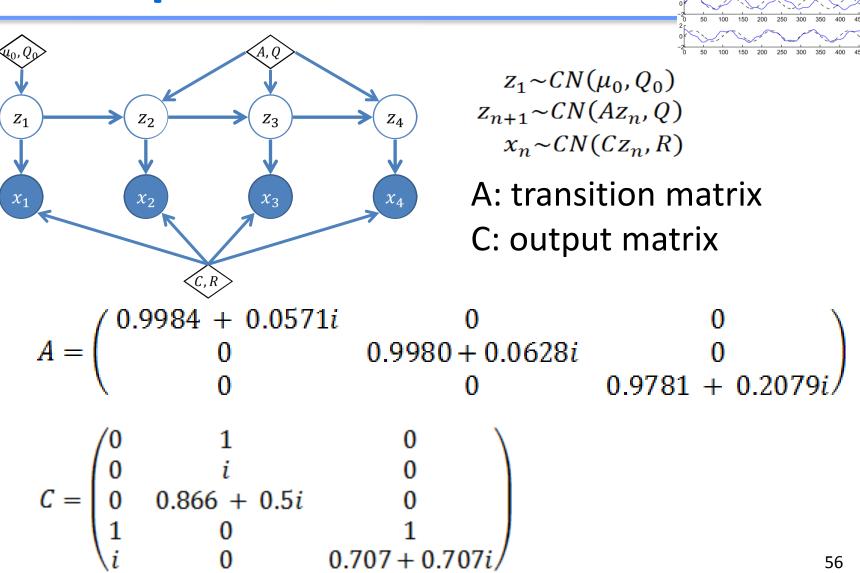
H is hermitian matrix, $(\cdot)^*$ is conjugate transpose

[Goodman, 1963]

Complex Linear Dynamical Systems

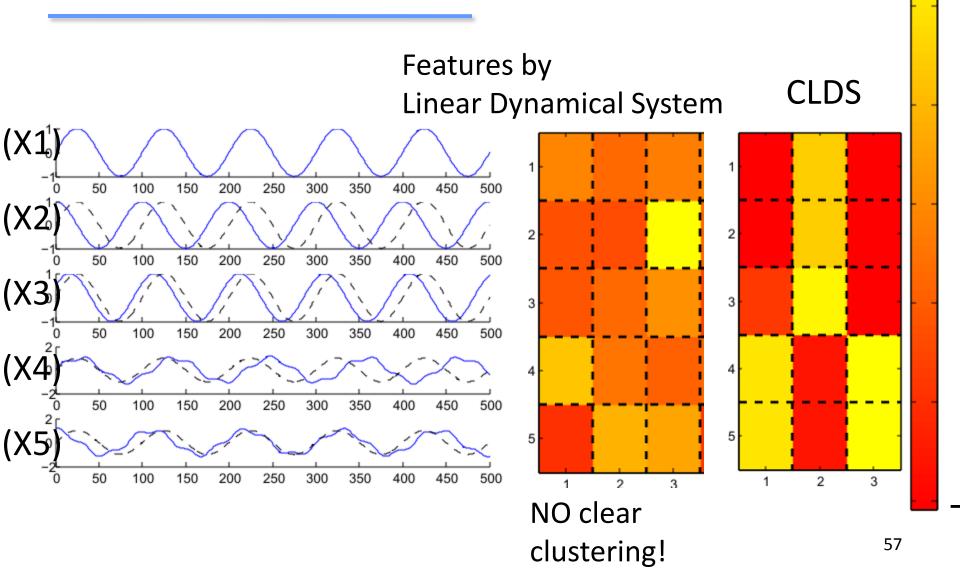


Example



200 250

Complex is Simpler?...!

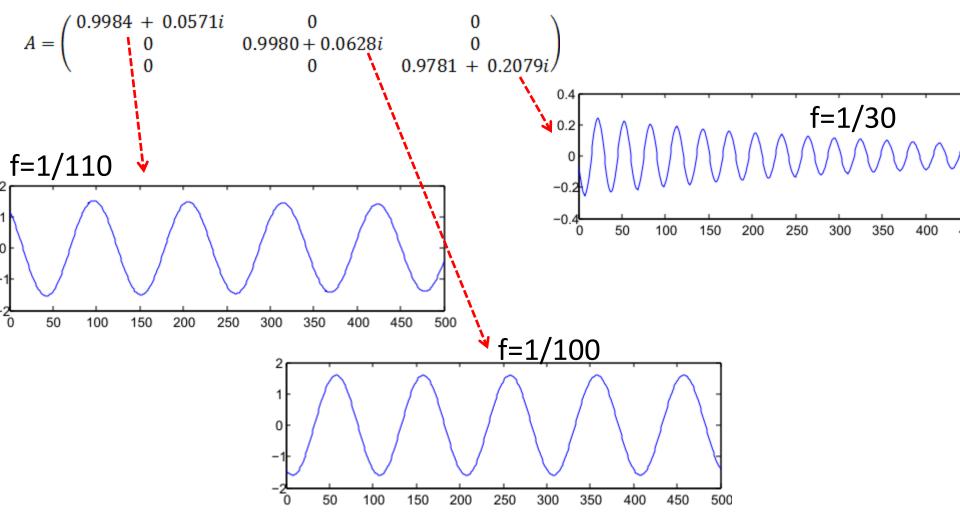


╉

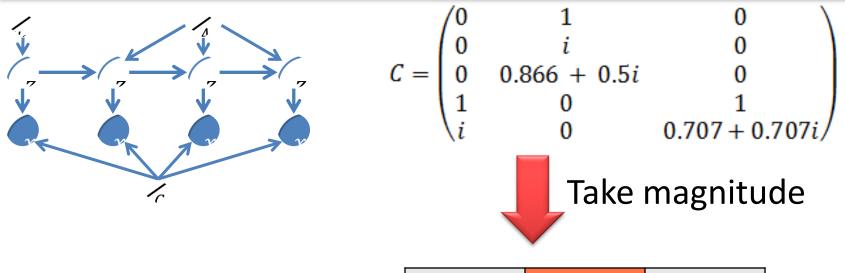
Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b, Li+11a]
 - Motivation and intuition
 - Complex-valued Linear Dynamical System
- CLDS Clustering and interpretation
 - Experiments
 - Summary of the remaining chapters
 - Conclusion and Future Directions

Simple interpretation for "Complex" solution



Simple interpretation for "Complex" solution

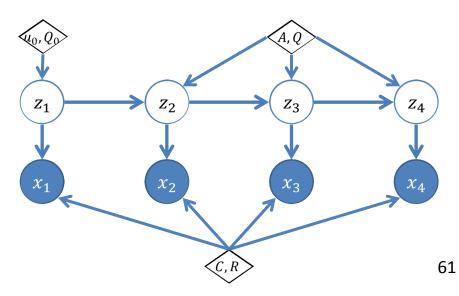


Feature Matrix *F=abs(C)*

0	1	0
0	1	0
0	1	0
1	0	1
1	0	1

CLDS Clustering Algorithm

data: X, k Step 1. $\theta \leftarrow$ learn diagonal CLDS (X) Step 2. $C_m \leftarrow$ abs(C) Step 3. F \leftarrow PCA(C_m) \leftarrow features Step 4. group \leftarrow k-means(F, k)



Parameter Learning

$$\min \mathcal{L}(\theta) = \mathbb{E}_{\boldsymbol{Z}|\boldsymbol{X}}[-\log P(\boldsymbol{X}, \boldsymbol{Z}|\theta)]$$

$$= \log |\boldsymbol{Q}_0| + \mathbb{E}[(\boldsymbol{z}_1 - \boldsymbol{\mu}_0)^* \boldsymbol{Q}_0^{-1} (\boldsymbol{z}_1 - \boldsymbol{\mu}_0)]$$

$$+ \mathbb{E}[\sum_{n=1}^{N-1} (\boldsymbol{z}_{n+1} - \boldsymbol{A} \cdot \boldsymbol{z}_n)^* \cdot \boldsymbol{Q}^{-1} \cdot (\boldsymbol{z}_{n+1} - \boldsymbol{A} \cdot \boldsymbol{z}_n)] + (N-1) \log |\boldsymbol{Q}|$$

$$+ \mathbb{E}[\sum_{n=1}^{N} (\boldsymbol{x}_n - \boldsymbol{C} \cdot \boldsymbol{z}_n)^* \cdot \boldsymbol{R}^{-1} \cdot (\boldsymbol{x}_n - \boldsymbol{C} \cdot \boldsymbol{z}_n)] + N \log |\boldsymbol{R}|$$

EM algorithm (complex-Fit)

- •E-step: compute posterior $P(z_n|x_1, ..., x_N)$ and $P(z_n, z_{n+1}|x_1, ..., x_N)$
- •M-step: update the parameters to optimize $L(\theta)$

(details)

63

Optimizing real-valued functions of complex variables

- With complex variables:
 - $\frac{\partial f}{\partial x} = 0 \text{ AND } \frac{\partial f}{\partial \bar{x}} = 0$
- EM algorithm (complex-Fit)

$$\frac{\partial}{\partial \boldsymbol{\mu}_0} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \overline{\boldsymbol{\mu}_0}} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \boldsymbol{Q}_0} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \overline{\boldsymbol{Q}_0}} \mathcal{L} = 0$$

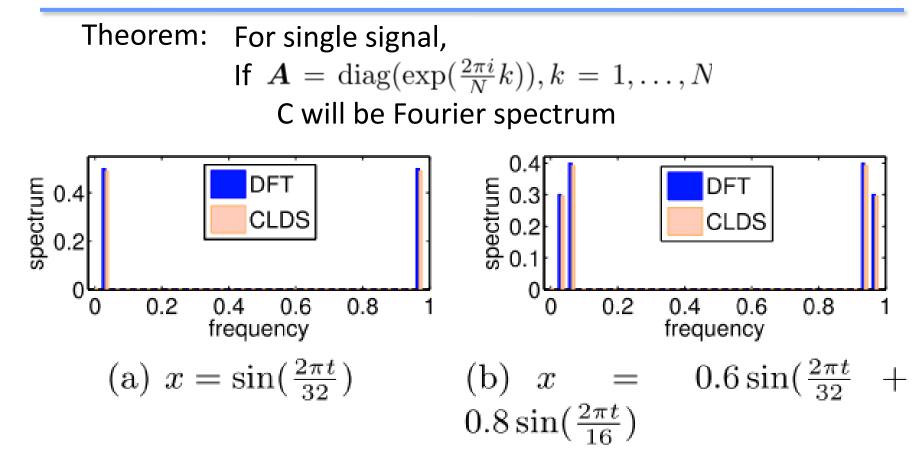
$$\frac{\partial}{\partial A}\mathcal{L}, \ \frac{\partial}{\partial \overline{A}}\mathcal{L}, \ \frac{\partial}{\partial Q}\mathcal{L}, \ \frac{\partial}{\partial \overline{Q}}\mathcal{L}, \ \frac{\partial}{\partial \overline{Q}}\mathcal{L}, \ \frac{\partial}{\partial \overline{C}}\mathcal{L}, \ \frac{\partial}{\partial \overline{C}}\mathcal{L}, \ \frac{\partial}{\partial \overline{R}}\mathcal{L}, \frac{\partial}{\partial \overline{R}}\mathcal{L} = 0$$

$$\begin{aligned} \boldsymbol{a} = & (\boldsymbol{Q}^{-1} \circ (\sum_{n=1}^{N-1} \mathbb{E}[\boldsymbol{z}_n \cdot \boldsymbol{z}_n^*])^T)^{-1} \cdot (\boldsymbol{Q}^{-1} \circ (\sum_{n=1}^{N-1} \mathbb{E}[\boldsymbol{z}_{n+1} \cdot \boldsymbol{z}_n^*])^T) \cdot \mathbf{1} \\ & \boldsymbol{Q} = \frac{1}{N-1} \sum_{n=1}^{N-1} \left(\mathbb{E}[\boldsymbol{z}_{n+1} \cdot \boldsymbol{z}_{n+1}^*] - \mathbb{E}[\boldsymbol{z}_{n+1} \cdot (\boldsymbol{a} \circ \boldsymbol{z}_n)^*] \right) \\ & - \mathbb{E}[(\boldsymbol{a} \circ \boldsymbol{z}_n) \cdot \boldsymbol{z}_{n+1}^*] + \mathbb{E}[(\boldsymbol{a} \circ \boldsymbol{z}_n) \cdot (\boldsymbol{a} \circ \boldsymbol{z}_n)^*] \right) \end{aligned}$$

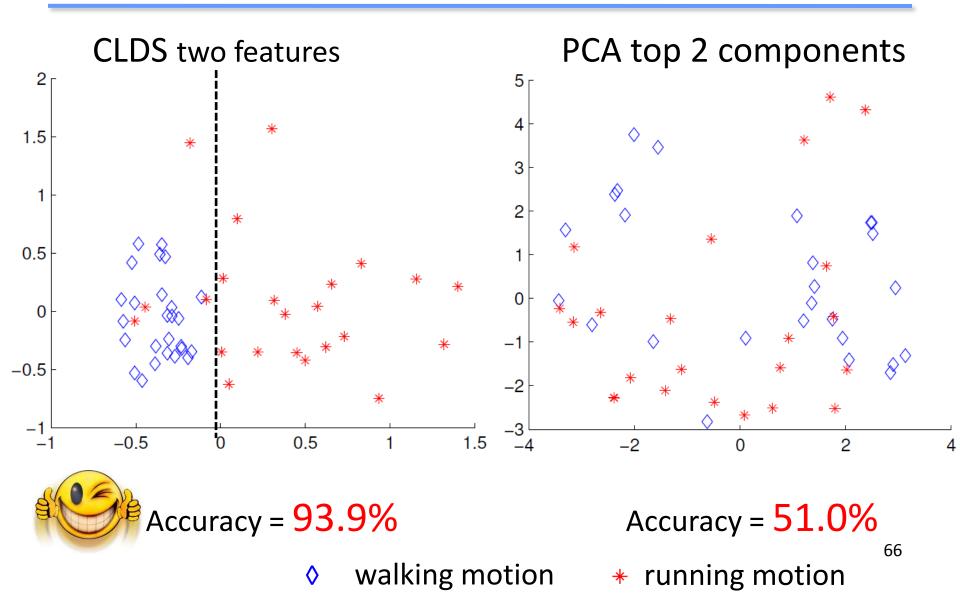
Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b, Li+11a]
 - Motivation and intuition
 - Complex-valued Linear Dynamical System
 - CLDS Clustering and interpretation
- Experiments
 - Summary of the remaining chapters
 - Conclusion and Future Directions

DFT as a special case of CLDS



CLDS Clustering Mocap Data



Results

67

Conditional Entropy (lower is better)

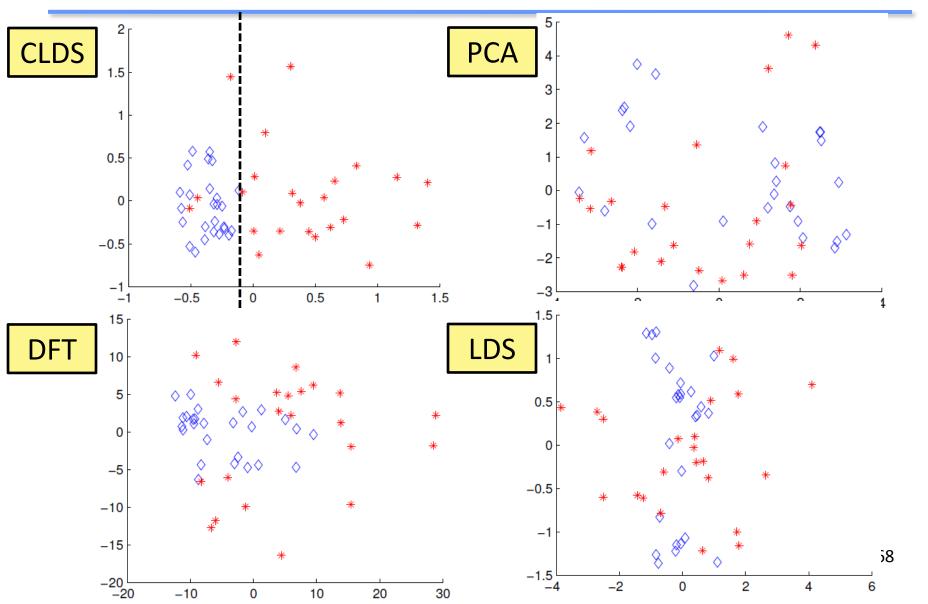
methods	MOCAPPOS S	MOCAPANG S]
CLDS	0.3786	0.1015	
PCA	0.6818	0.3635	[Bishop 2006]
DFT	0.6143	0.2538	
DTW	0.5707	0.4229	[Gunopulos 2001]
KF	0.6749	0.5239	[Buzan 2004]

- MOCAPPOS (49 motion sequences of marker positions)
- MOCAPANG (33 sequences of joint angles)
- Metric: conditional entropy of the confusion matrix M $S(M) = \sum_{i,j} \frac{M_{i,j}}{\sum_{k,l} M_{k,l}} \log \frac{\sum_k M_{i,k}}{M_{i,j}}$

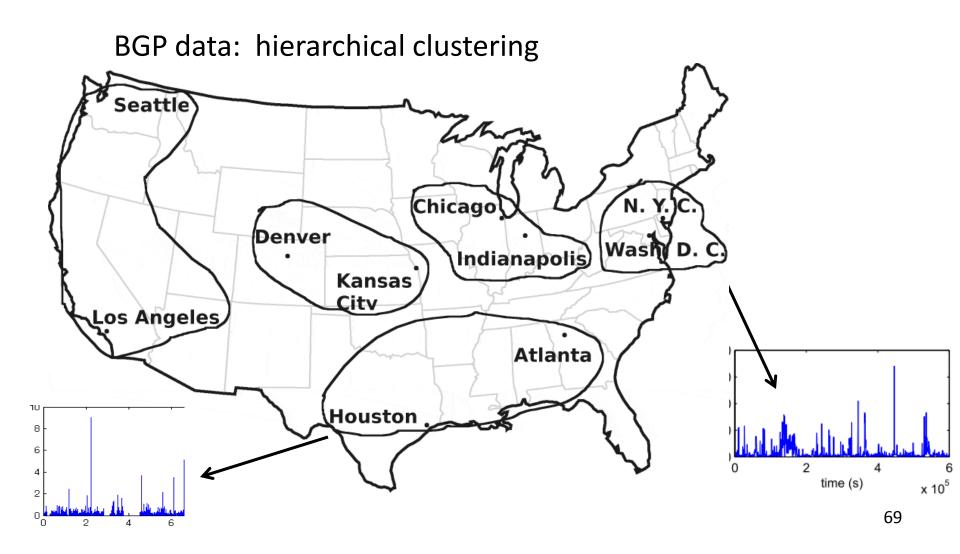
walking motion

Comparison

* running motion



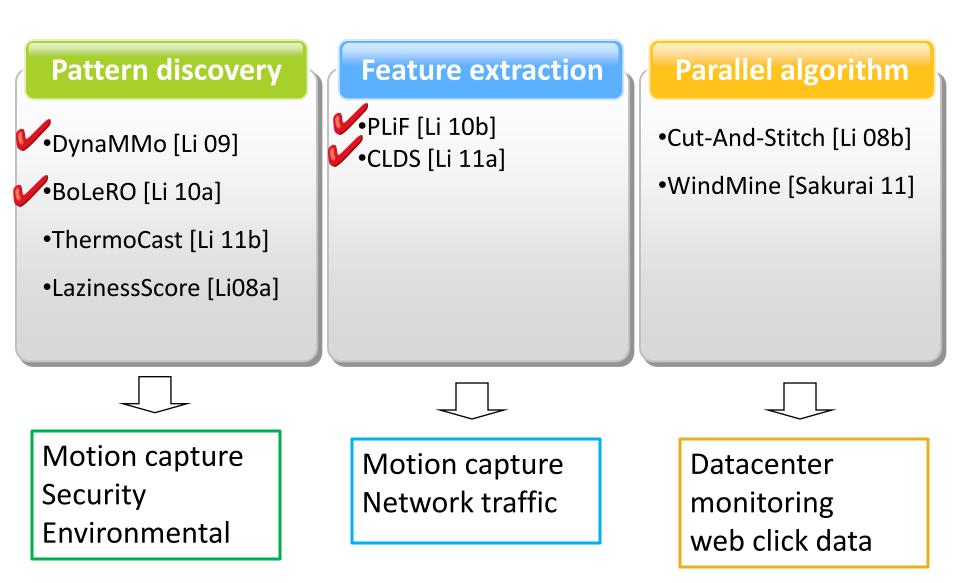
Clustering Network Traffic Streams



Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b, Li+11a]
- Summary of the remaining chapters
 - Conclusion and Future Directions

Summary of My Work on Time Series

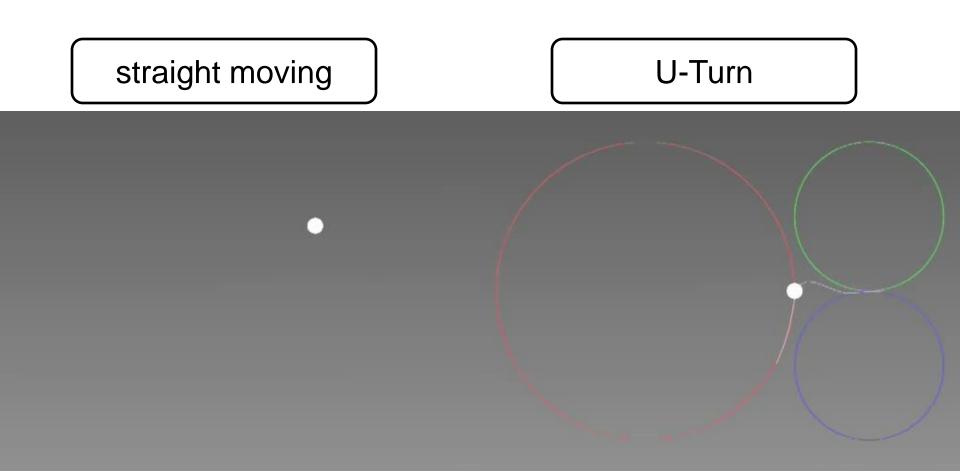


Natural Motion Stitching

- Given two motion-capture sequences that are to be stitched together, how can we assess the goodness of the stitching? [Li et al, Eurographics 08]
- Euclidean will fail



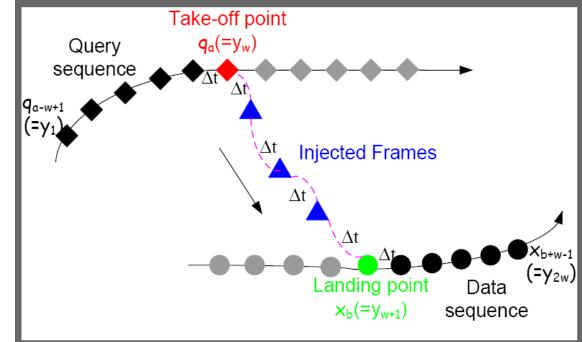
Intuition and Example



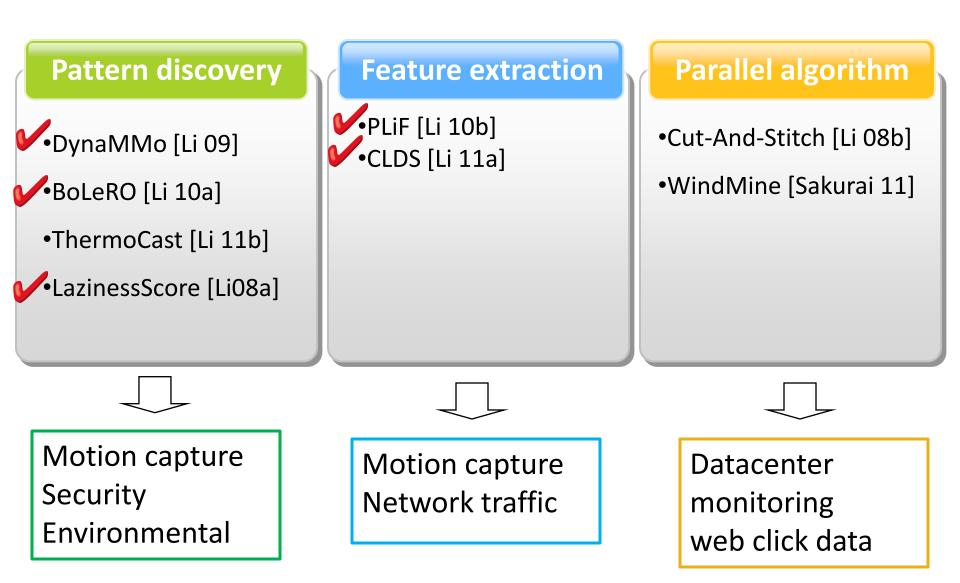
Laziness-score prefer straightforward moving ⁷³ more results in [Li 2008a]

Laziness Score [Li et al, EG 2008]

- Conjecture: *less human effort* → *more natural*
- Proposed: use Kalman filters to estimate position, velocity, acceleration → Compute effort/ energy

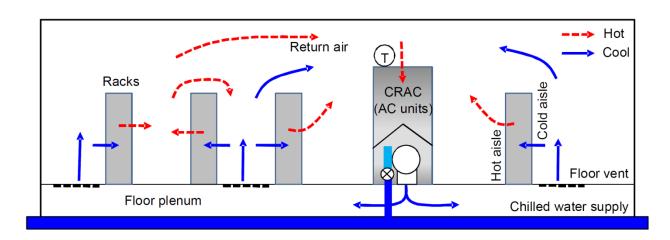


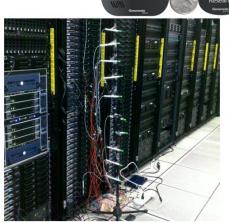
Summary of My Work on Time Series



Towards Thermal Aware DC Management

- Data centers are often over provisioned, with ≈40% of energy spent for cooling (total=\$7.4B)
- How can we improve energy efficiency in modern multi-MegaWatt data centers?

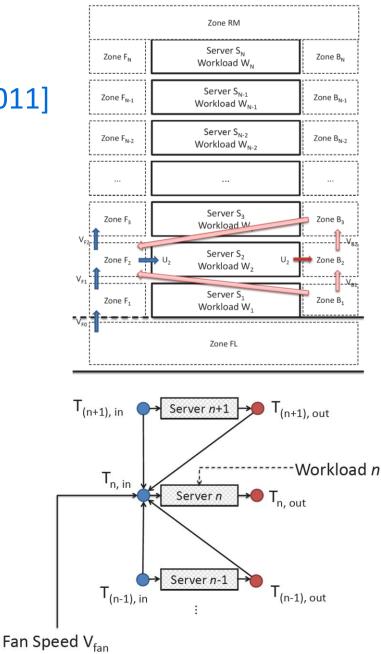




JHU data center with Genomote

ThermoCast [Li et al, KDD 2011]

- Given: intake temperatures, outtake temperatures, workload for each server, and floor air speed
- Goal: forecasting temperature distribution and thermal aware placement of workload

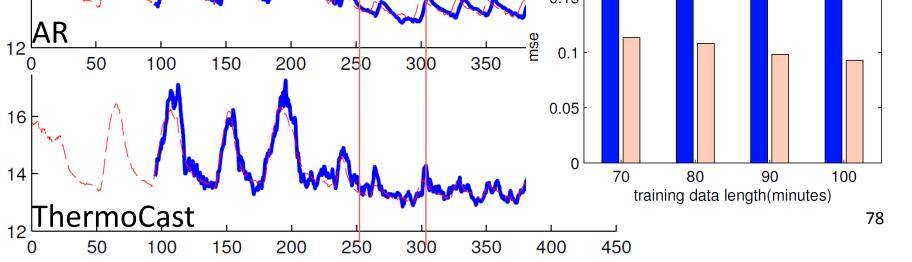


ThermoCast Results

16

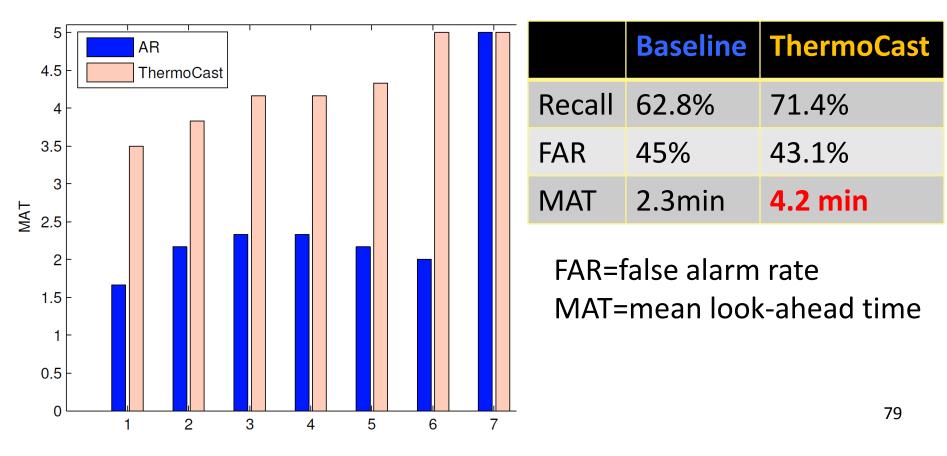
14

Q1: How accurately can a server learn its local thermal dynamics for prediction? 2x better
 Tested in JHU data center with 171 1U servers, instrumented with a network of 80
 Sensors 75% 100% + shutdowr 0.2 0.15



ThermoCast Results

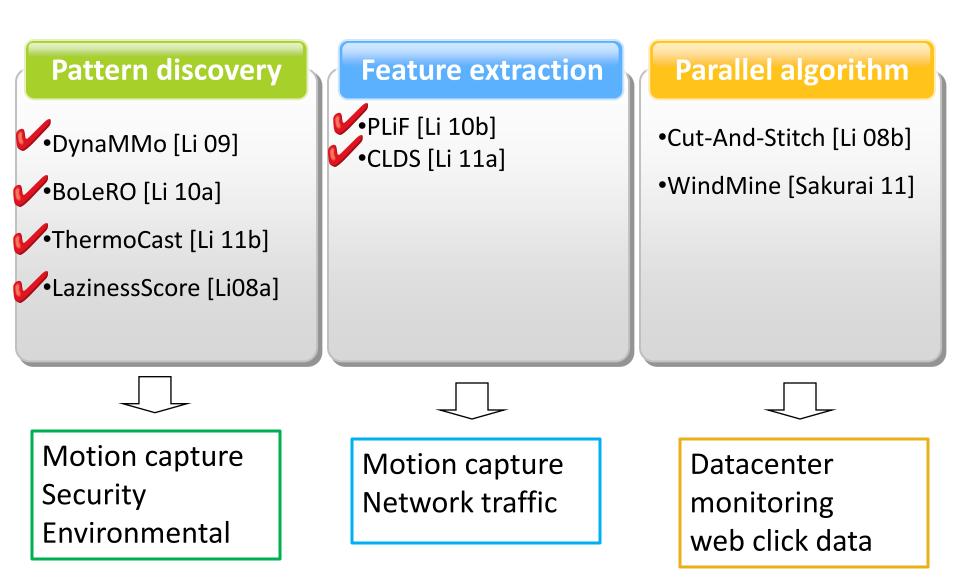
• Q2: How long ahead can ThermoCast forecast thermal alarms? 2x faster



Contributions and Impact

- Predictability: a hybrid approach to integrate the thermodynamics and sensor data
- Scalable learning/training thanks to the zonal thermal model
- Real data and instrument in a data center with practical workload
- Projected impact: can handle extra 26% workload (e.g. PUE 1.5 → PUE 1.4)

Summary of My Work on Time Series

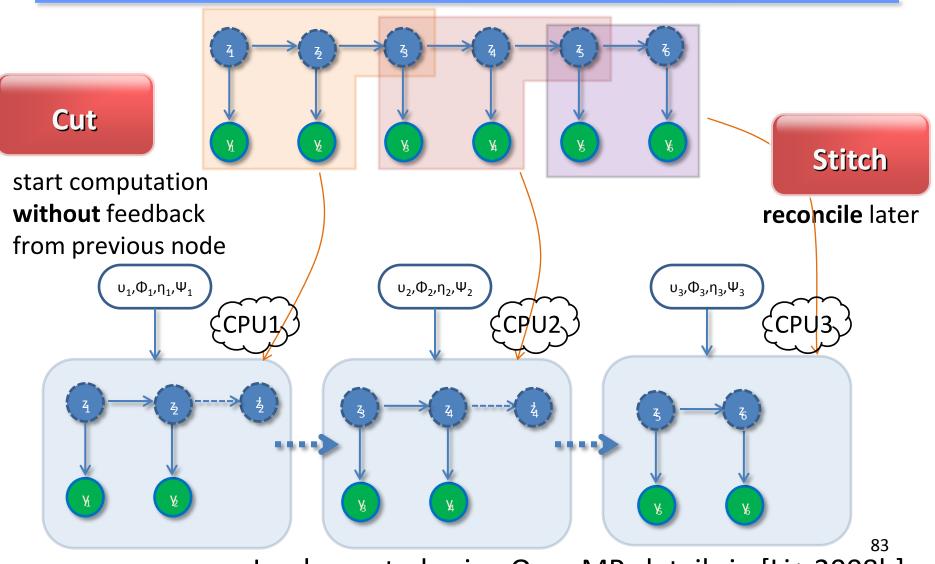


Parallel learning for LDS

- Problem:
 - Learning LDS on multicore (SMP)
- Goal: ~ linear speed up
- Assumption:

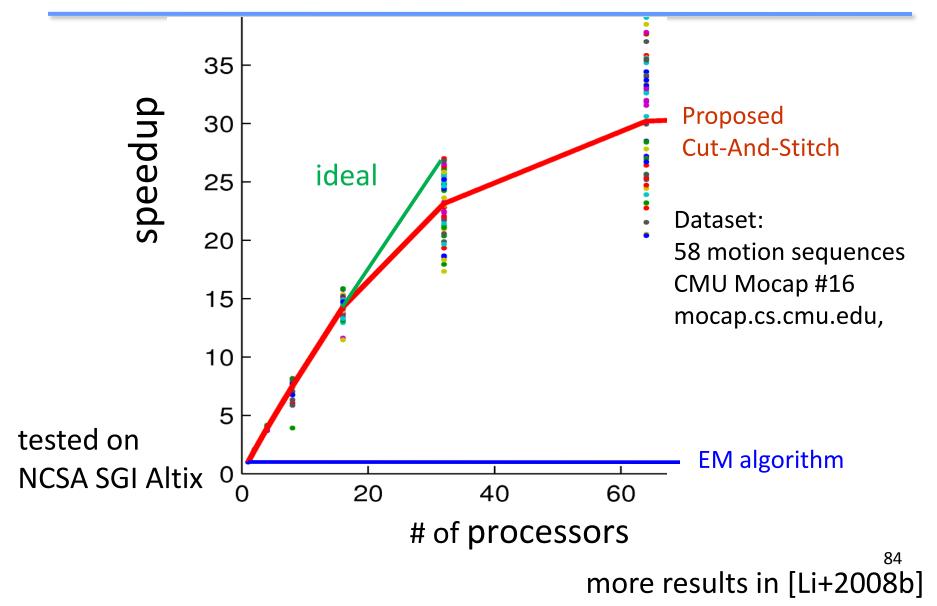
- Shared memory architecture (e.g. multi-core)
- Test environment
 - NCSA SGI Altix, 512 1.6GHz Itanium2
 processors, 3TB of total memory (ccNUMA)
 - PSC SGI Altix, with 768 cores, 1.5 TB total memory

Cut-And-Stitch: Intuition

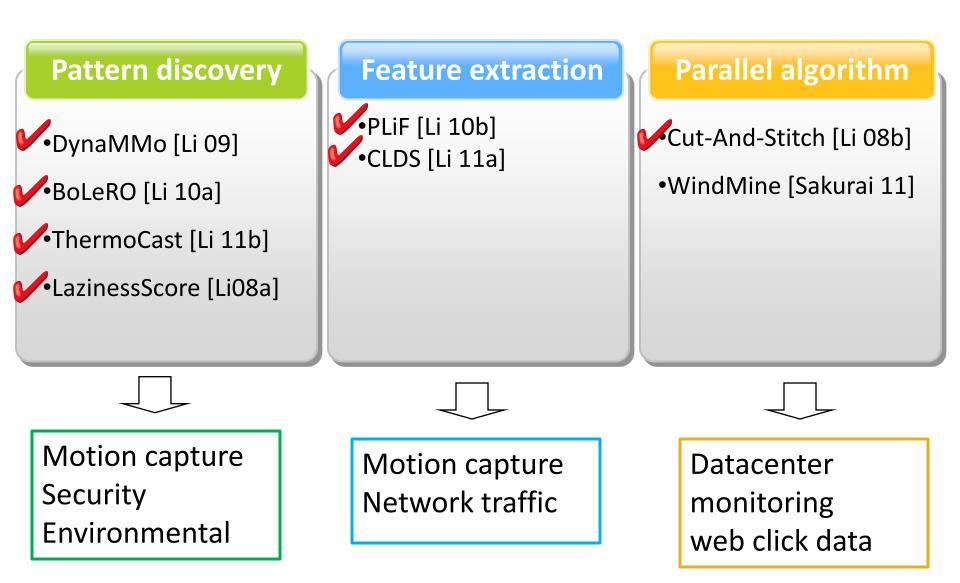


Implemented using OpenMP, details in [Li+ 2008b]

Cut-And-Stitch: Near Linear Speedup

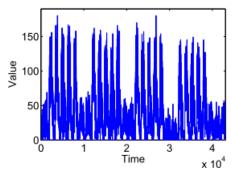


Summary of My Work on Time Series

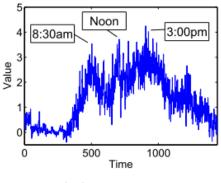


WindMine

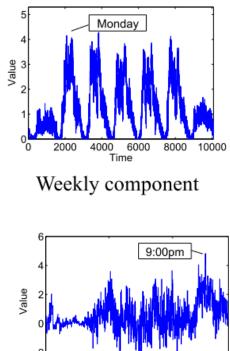
 Goal: find patterns and anomalies from userclick streams



Web-click sequence



Weekday component



Time

1000

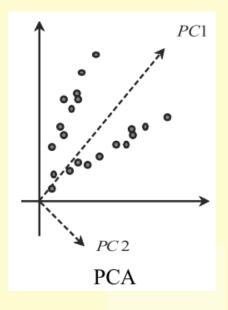
500

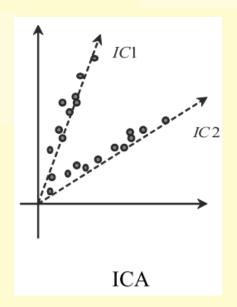
0

(details)

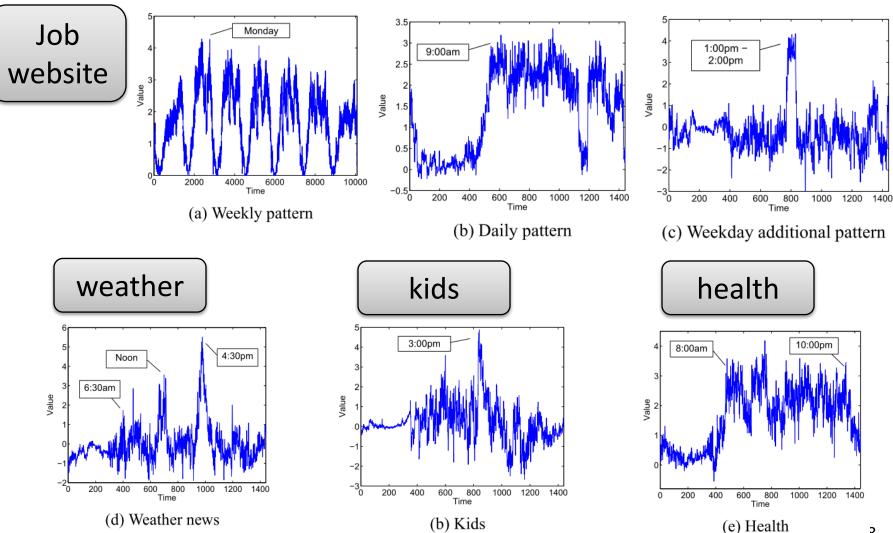
WindMine

- Key technique:
 - Automatic windowing + ICA + parallel/distributed

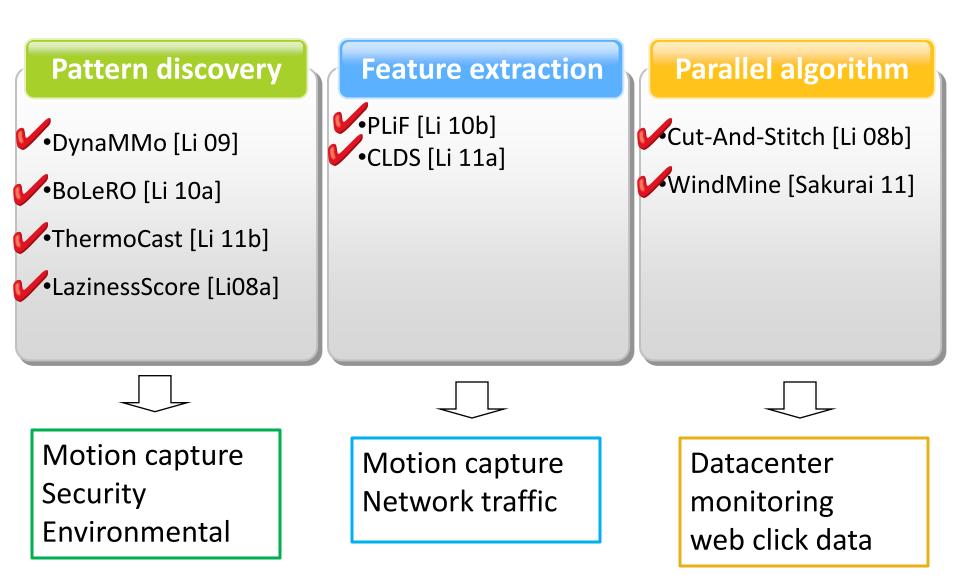




Discoveries by WindMine



Summary of My Work on Time Series



Outline

- Motivation
- Mining w/ Missing Values [Li+ 09, Li+10a]
- Feature Learning for Time Series [Li+10b]
- Other relevant work
- Conclusion and Future Directions

Why Mining Time Series?

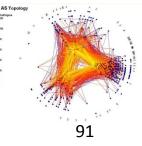
Motion Capture (game \$57 billion,'09 & in movie)

Data center monitoring and control (\$7.4B power

Health informatics (e.g. physiological signals)

Environmental monitoring (e.g. drinking water)

Computer network security & anomaly detection

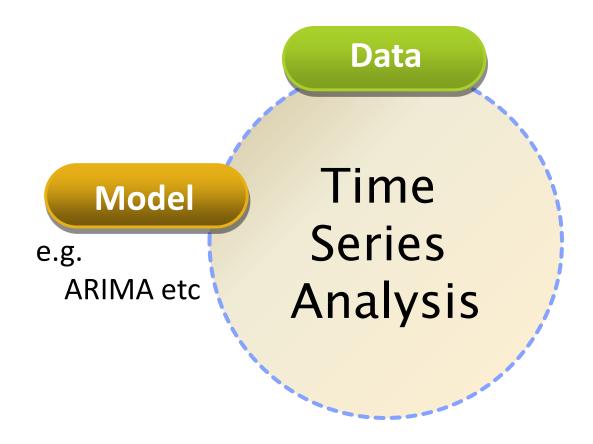


.

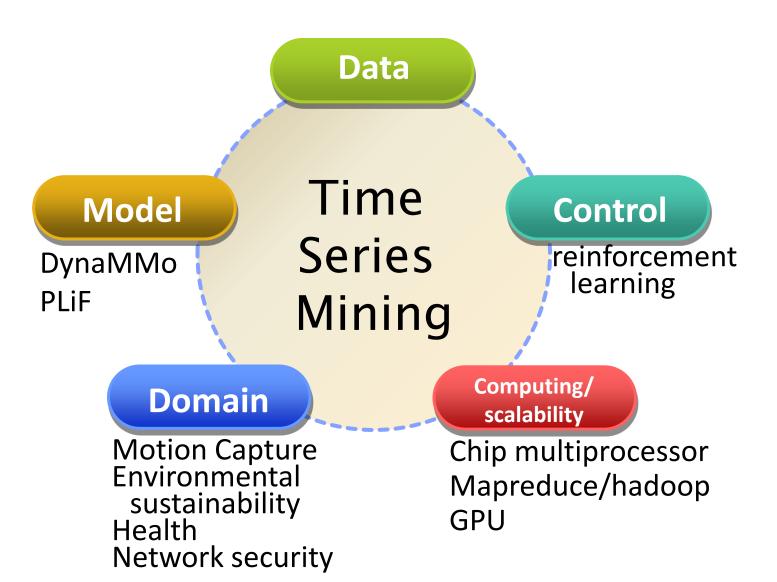
Mining problems in the thesis

- 1. Forecasting and imputation (chap 3)
- 2. Summarization and anomaly (chap 3, 4)
- 3. Feature, clustering and similarity (chap 4, 5)
- 4. Parallel and scalability (chap 6, 7, 8)
- 5. Applications (chap 8, 9, 10, 11)

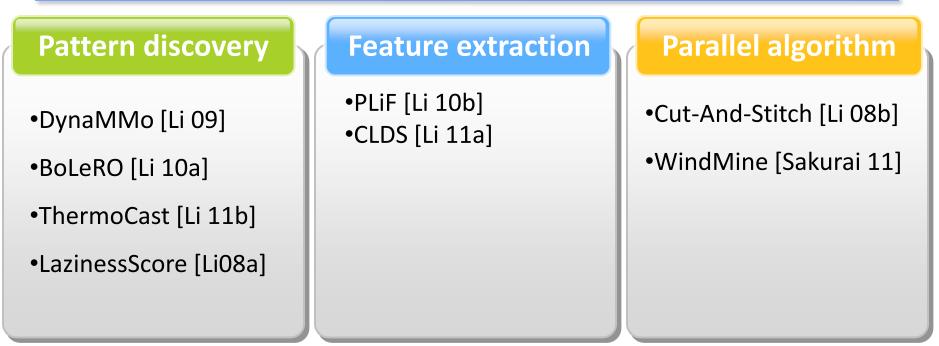
Traditional View



What's next?



Thesis overview



Contributions:

- 1. Most accurate missing value recovery/summarization
- 2. Most effective clustering on TS
- 3. Fast algorithms: linear to length
- 4. Parallel algorithms: linear speed up on multicore