

LONG BEACH 2010

26th International Conference on Data Engineering

The second

Fast Algorithms for Coevolving Time Series Mining

Lei Li

Computer Science Department

Carnegie Mellon University

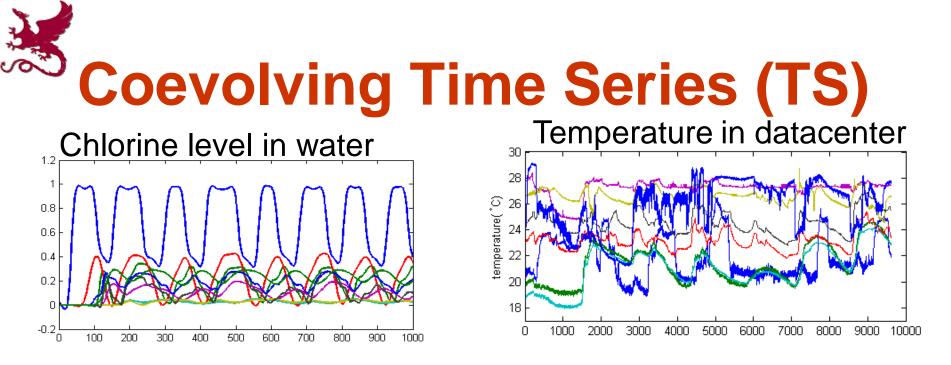
Advisor:

Christos Faloutsos

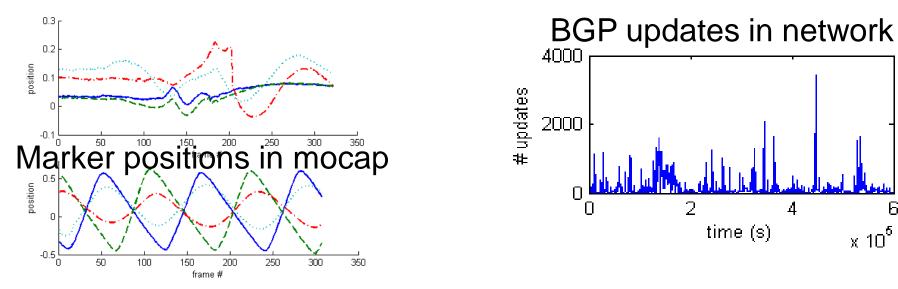
ICDE 2010 PHD workshop

3/21/2010

- Organizers:
 - Nikos Mamoulis
 - Yannis Papakonstantinou
 - Timos Sellis
- Travel fellowship from NSF
 NSF grant IIS-0956600



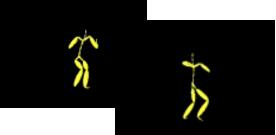
Need fast algorithms for time series mining



- Motivation
 - Mining tasks, goals, and problems
 - Completed Work
 - P1: Mining w/ Missing Value [Li+ 2009]
 - P2:Parallel Learning [Li+ 2008b]
 - P3:Natural Motion Stitching [Li+ 2008a]
 - Conclusion

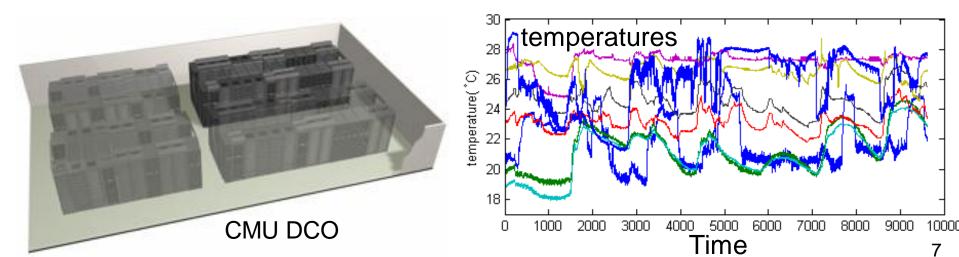
M1: Natural Motion Generation

- How to generate new *realistic* motions from mocap database?
- e.g. "karate kick" → "boxing"
- Applications:
 - Game (\$57billion 2009)
 - Movie animation
 - Quality of Life (assistive devices)



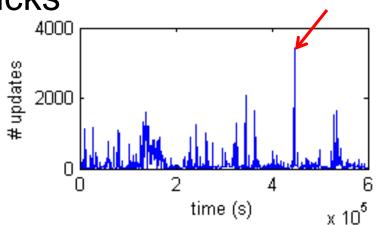
- How to compress & manage large time series?
 - A datacenter with 5000 servers: 1TB data per day, 55 million streams ([Reeves+ 2009])
- Goal: save energy in data center

- \$4.5billion power for US dc's 2006



M3: Anomaly Detection

- How to detect anomalies?
- Applications:
 - Intrusion computer network traffic (e.g. # of packets)
 - Detect leakage or attack in drinking water system by monitoring chlorine levels
 - Spam/robot in web clicks



Time Series Mining Tasks

- Pattern Discovery (e.g. cross-correlation, lagcorrelation)
 - T1:Forecasting
 - T2:Summarization
 - T3:Segmentation (detecting change points)
 - T4: Anomaly detection
- Feature Extraction (e.g. wavelets coefficients)
 - T5:Clustering
 - T6:Indexing TS database
 - T7: Visualization

Goals for Mining Algorithms

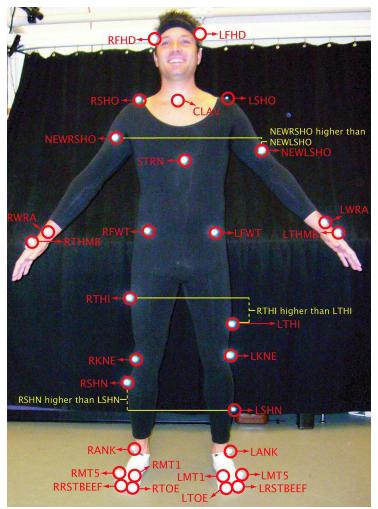
- G1:Effective:
 - achieve low reconstruction error (mean square error) (DynaMMo, [Li+2009])
 - high precision/recall, classification accuracy
- G2:Scalable:
 - to the size (e.g. length) of sequences
 - on modern hardware (Cut-And-Stitch [Li+2008b])

- Motivation
- Completed Work
 - P1: DynaMMo: Mining w/ Missing Value[Li+09]
 - Problem Definition
 - Intuition of Proposed Method recovering compression segmentation
 - Results

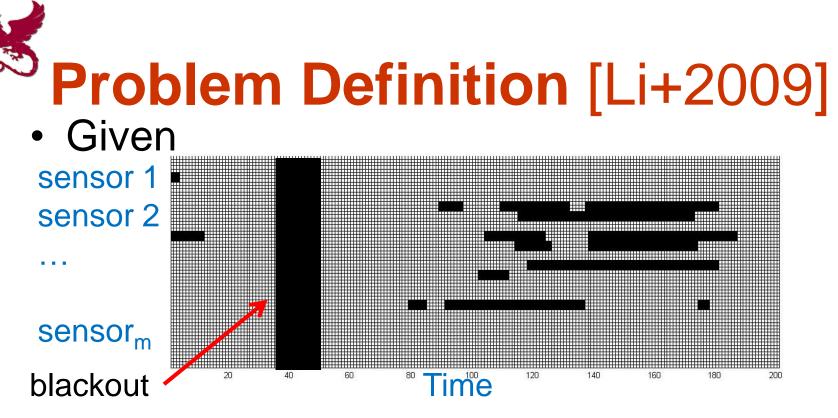
- P2: Cut-And-Stitch: Parallel Learning [Li+08b]
- P3: Natural Motion Stitching [Li+08a]
- Conclusion

Missing Values in Time Series

- Motion Capture:
 - Markers on human actors
 - Cameras used to track the 3D positions
 - Duration: 100-500
 - 93 dimensional body-local coordinates after preprocessing (31-bones)
- Sensor data missing due to:
 - Low battery
 - RF error

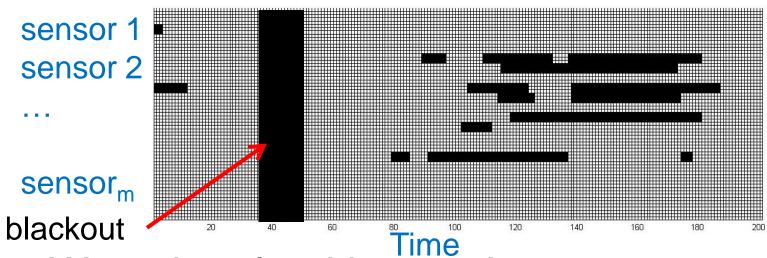


From mocap.cs.cmu.edu

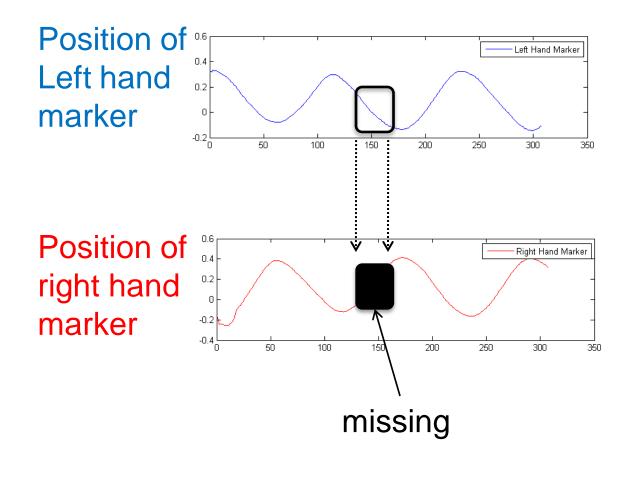


- Find algorithms for:
 - Recovering missing values
 - Compression/summarization (T2)
 - Segmentation (T3)

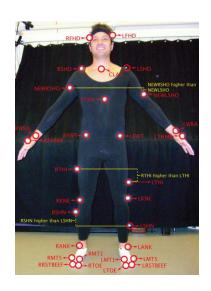
Problem Definition (cont')



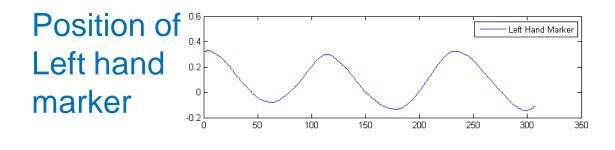
- Want the algorithms to be:
 - G1: Effective
 - G2: Scalable: to duration of sequences



Recover using Correlation among multiple sequences

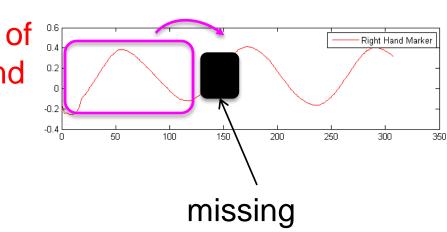


Proposed Method: DynaMMo Intuition



Recover using Dynamics temporal moving pattern

Position of right hand marker

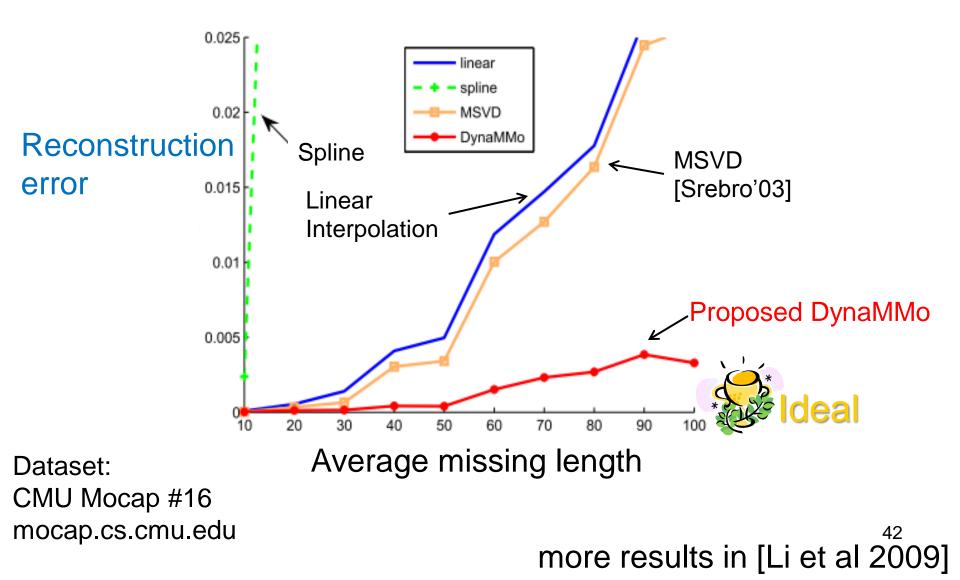


more results in [Li et al 2009]

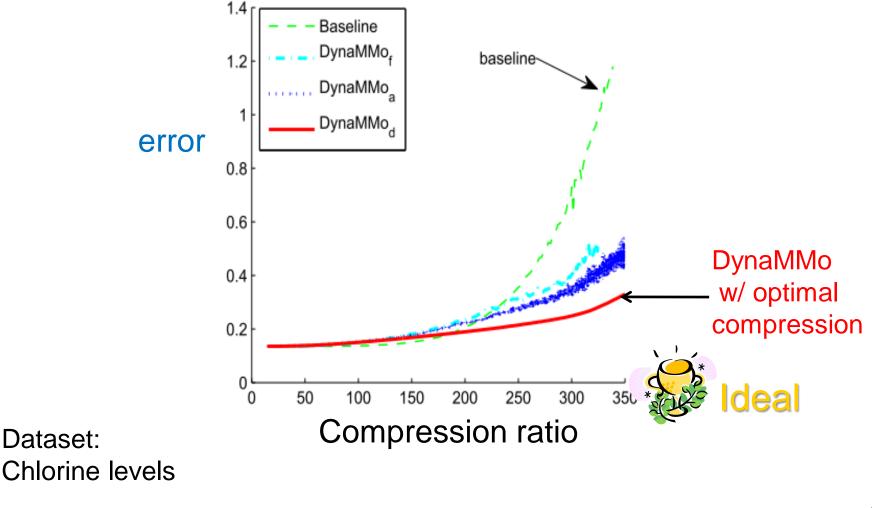
Use Linear Dynamical Systems to model whole sequence.

(details)



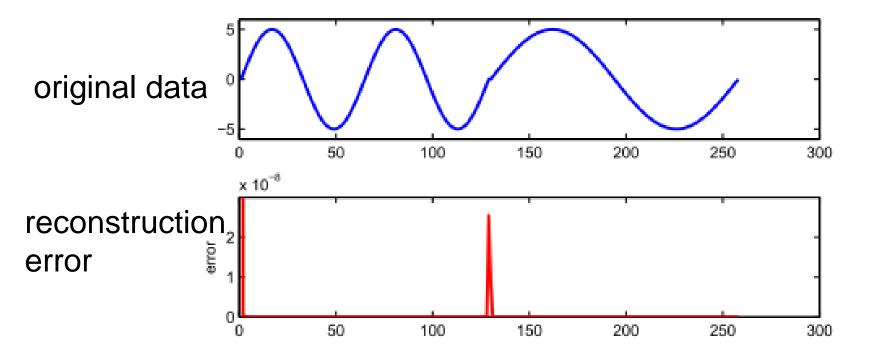


Dataset:

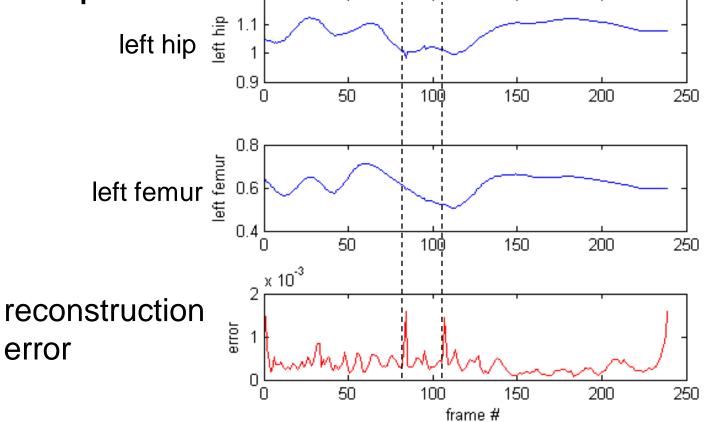


43 more results in [Li et al 2009]

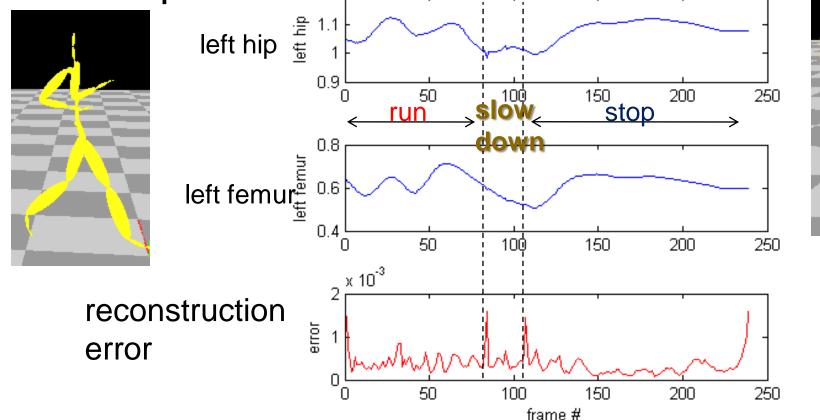
Segment by threshold on reconstruction error



• Find the *transition* during "running" to "stop".

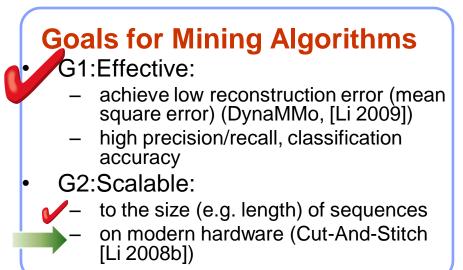


• Find the *transition* during "running" to "stop".



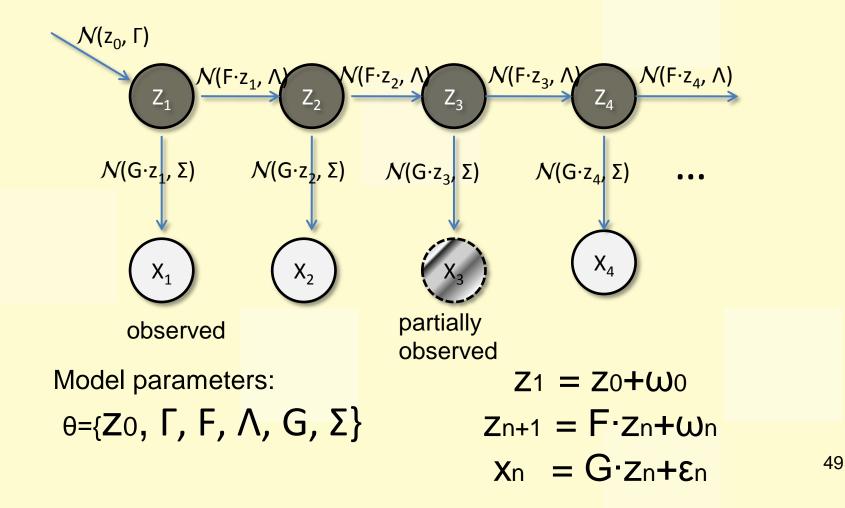
- Motivation
- Completed Work
 - P1: DynaMMo: Mining w/ Missing Value [Li+09]
 - Contribution: the most accurate mining algorithms for TS with missing value so far.
 - P2: Cut-And-Stitch: Parallel Learning [Li+08b]
 - P3:Natural Motion Stitching [Li+08a]
- Conclusion

- Motivation
- Completed Work
 - P1: DynaMMo: Mining w/ Missing Value[Li 09]
 - P2: Cut-And-Stitch: Parallel Learning [Li 08b]
 - Problem Definition
 - Basic Intuition
 - Results



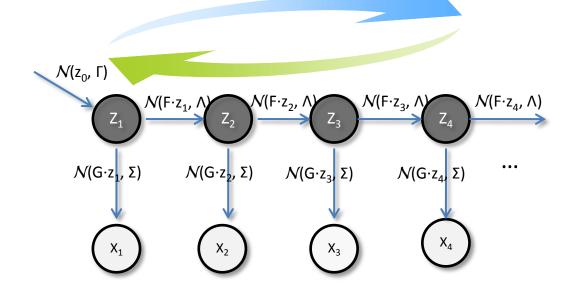
(details) **Recap Model for DynaMMo**

Use Linear Dynamical Systems to model whole sequence.



Challenge of Learning LDS: Expectation-Maximization Alg.

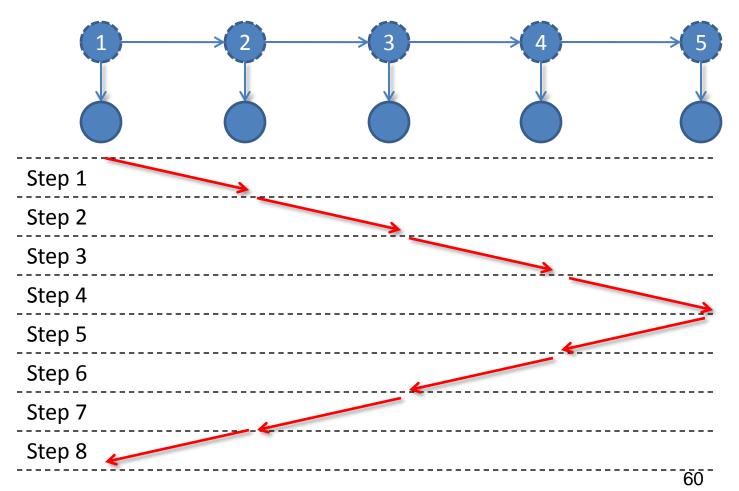
- Not easy to parallelize on multi-processors due to non-trivial data dependency (details in writeup)
- Q: How to parallelize the learning to achieve scalability?



Challenge illustration Expectation-Maximization Alg.

Timeline for E-step (forward-backward) in learning LDS

EM can only uses Single CPU Due to data dependency



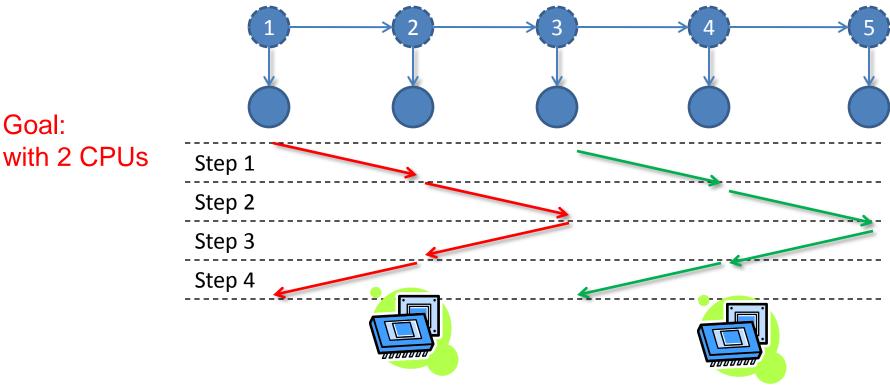
Problem Definition

- Problem:
 - Given a sequence of numbers, design a parallel learning algorithm to find the best model parameters for Linear Dynamical Systems
- Goal:
 - Achieve ~ linear speed up on multi-core
- Assumption:

- Shared memory architecture (e.g. multi-core)

Proposed Method: Cut-And-Stitch

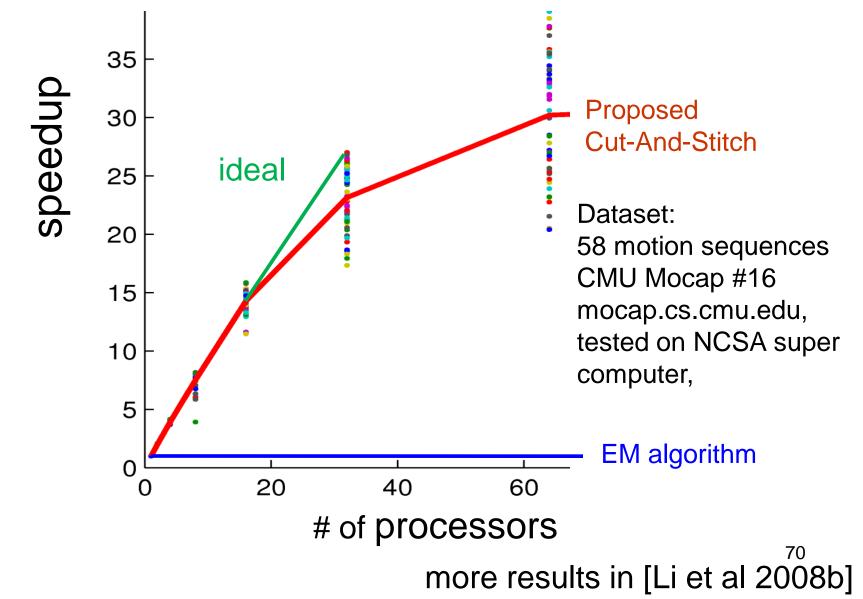
Intuition:

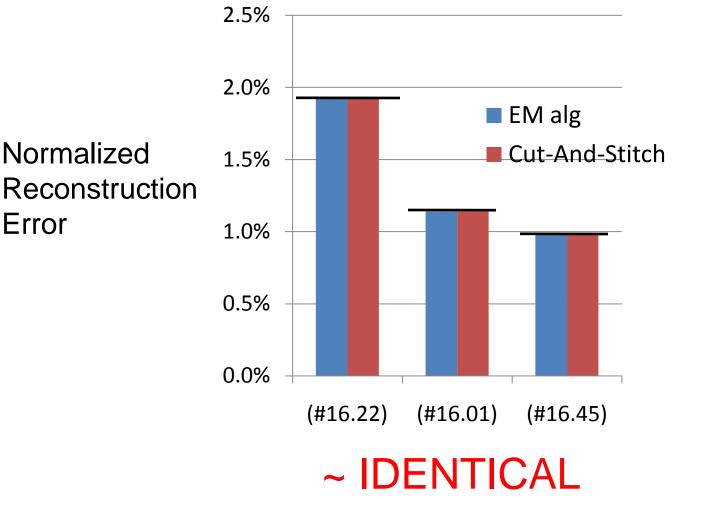


Details in [Li et al 2008b]:

Joint work w/ Wenjie Fu, Fan Guo, Todd C. Mowry, Christos Faloutsos.

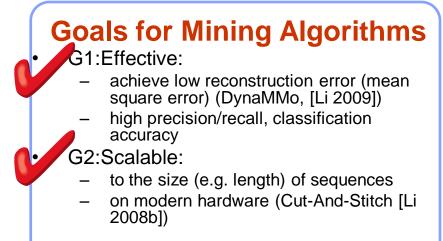
Near Linear Speedup





more results in [Li et al 2008b]

- Motivation
- Completed Work
 - P1:DynaMMo: Mining w/ Missing Value [Li+09]
 - P2:Cut-And-Stitch:Parallel Learning [Li+08b]
 - Contribution: the 1st parallel algorithm for learning LDS

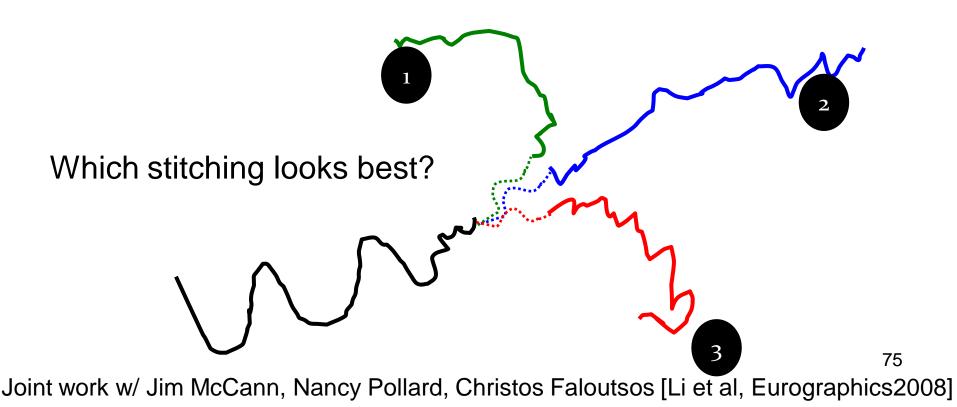


- Motivation
- Completed Work
 - P1:DynaMMo: Mining w/ Missing Value [Li+09]
 - P2:Cut-And-Stitch:Parallel Learning [Li+08b]
 - P3:Natural Motion Stitching [Li+08a]
 - Problem Definition
 - Proposed Method
 - Results
- Conclusion

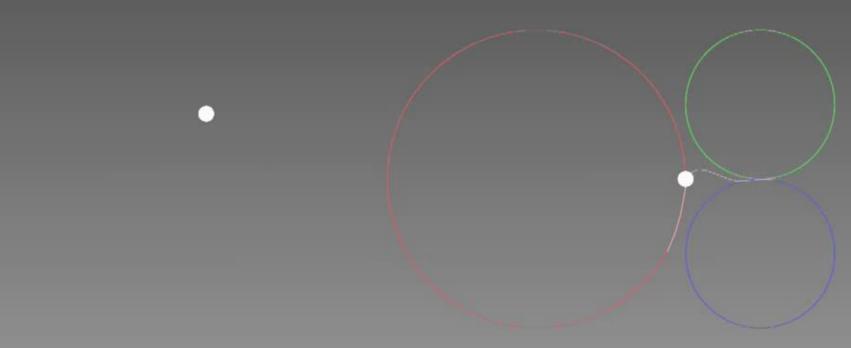
Motion Stitching A Database Approach

• Select best stitchable segments from a set of basic motion pieces and generate new natural motions

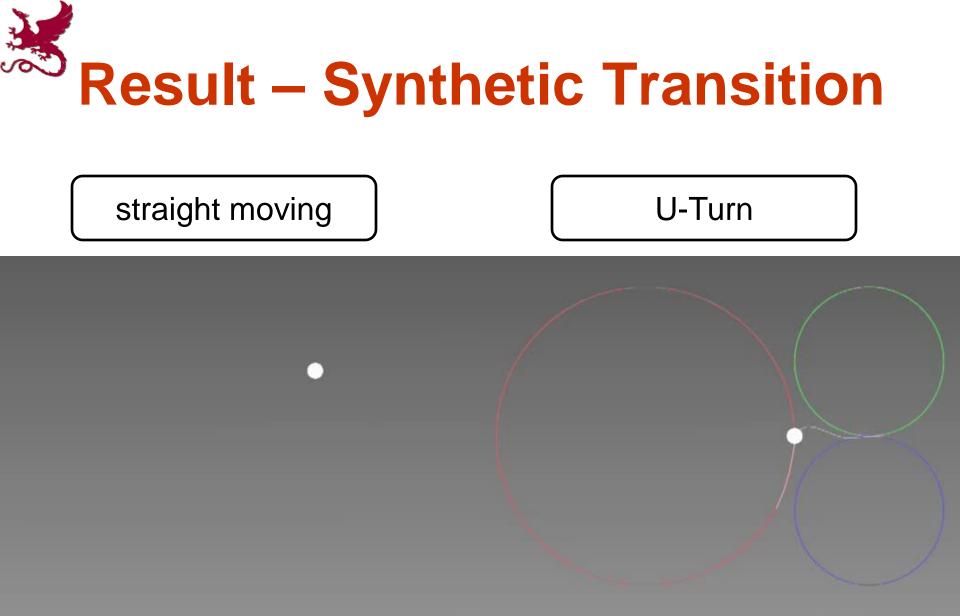
 Given two motion-capture sequences that are to be stitched together, how can we assess the goodness of the stitching?



straight moving



Equally "good" under Euclidean distance



Laziness-score prefer straightforward moving more results in [Li 2008a]

- Pattern discovery w/ missing values (DynaMMo)
 - Recovering missing values
 - Compression
 - Segmentation
- Scale up learning on multicore
 - Parallel learning algorithm for LDS (Cut-And-Stitch)
- Natural human motion stitching
 - An intuitive distance function(Laziness score)79

- Lei Li, Jim McCann, Nancy Pollard, Christos Faloutsos. DynaMMo: Mining and Summarization of Coevolving Sequences with Missing Values. KDD '09.
- Lei Li, Wenjie Fu, Fan Guo, Todd C. Mowry, Christos Faloutsos. Cut-and-stitch: efficient parallel learning of linear dynamical systems on SMPs. KDD '08.
- Lei Li, Jim McCann, Christos Faloutsos, Nancy Pollard. Laziness is a virtue: Motion stitching using effort minimization. Eurographics 2008.

• Thanks!

- contact: Lei Li (leili@cs.cmu.edu)
- paper, software, dataset on <u>http://www.cs.cmu.edu/~leili</u>