

Time Series Clustering: Complex is Simpler!

Lei Li B. Aditya Prakash leili,badityap@cs.cmu.edu

7/2/2011

ICML 2011

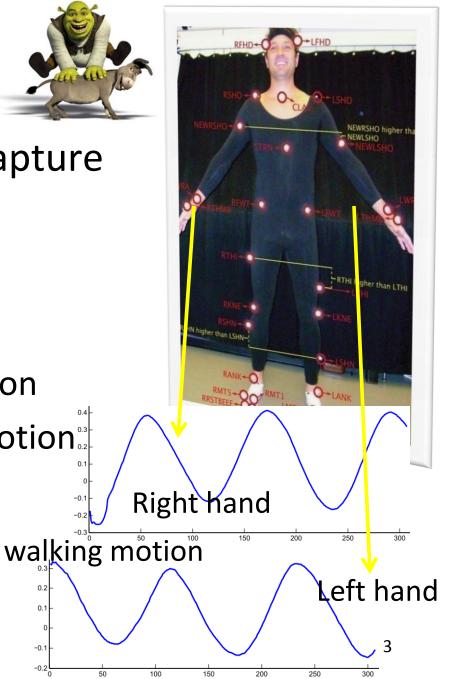
Why time series clustering?

Motion Capture

0.1

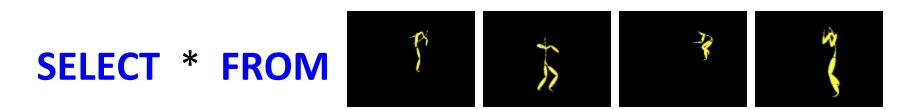
-0.1 -0.2

- Application of motion capture
 - Game (\$57B)
 - Movie industry
- Goal:
 - Understand human motion
 - Generate new natural motion [Li et al, 2008a]
- Sub-goal:
 - automatic labeling



Answering similarity queries

[Li et al, 2010]

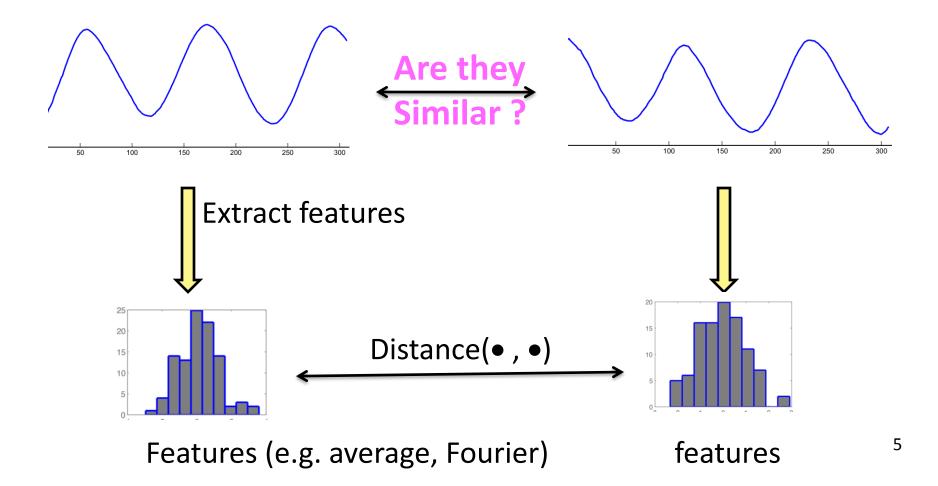


WHERE time_seq.

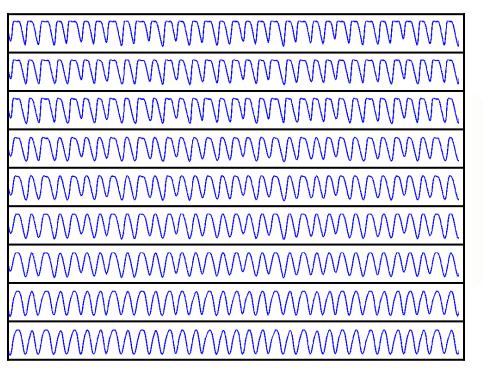
LIKE

Central Problem

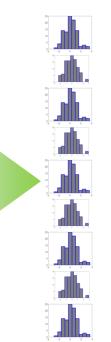
• Estimate "Similarity" among time sequences



What are good features?



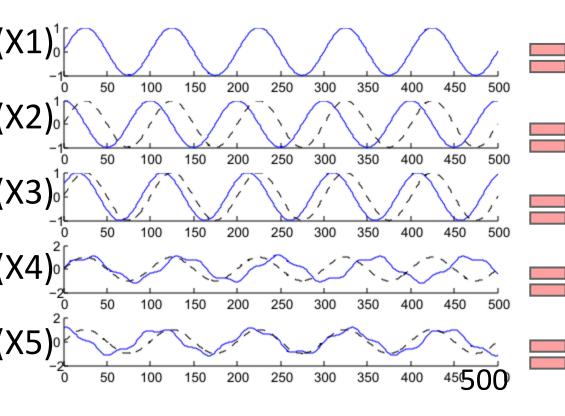
e.g. Mocap sequences Chlorine measurements in water temperatures in machine room

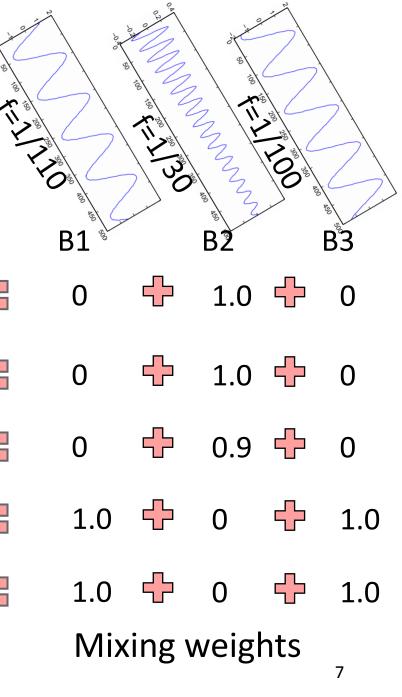


- Requirements of good features: 0. *Agree* with human intuition 1. Time lag
- 2. Frequency proximity
- 3. more (next)

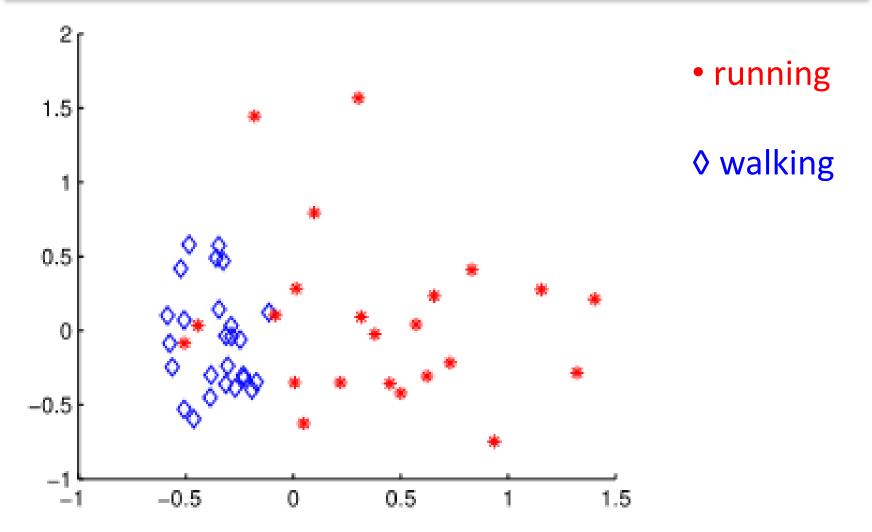
Basic idea

learning basis/harmonics





Preview of CLDS Result



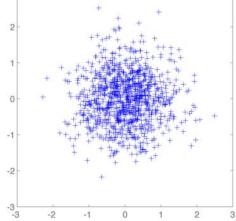
Outline

- Motivation
- Background: Complex Normal Distribution
- Complex Linear Dynamical Systems
- Clustering with CLDS
- Experiments
- Results

Complex Normal Distribution

• Example: x = a + ibstandard complex normal distribution $x \sim CN(0,1) \qquad \longleftrightarrow p(x) = \frac{1}{\pi}e^{-|x|^2}$

$$\begin{pmatrix} a \\ b \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \longleftrightarrow \qquad p(a, b)$$
$$= (2\pi)^{-1} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2} \left(\begin{pmatrix} a \\ b \end{pmatrix} - \mu \right)' \Sigma^{-1} \left(\begin{pmatrix} a \\ b \end{pmatrix} - \mu \right)}$$



Complex Normal Distribution

• x is said to follow the complex normal distribution, if its p.d.f

$$\boldsymbol{x} \sim \mathcal{CN}(\mu, H), \text{ if its } p.d.f \text{ is}$$

 $p(\boldsymbol{x}) = \pi^{-m} |H|^{-1} \exp(-(\boldsymbol{x} - \mu)^* H^{-1}(\boldsymbol{x} - \mu))$

H is hermitian matrix, $(\cdot)^*$ is conjugate transpose

[Goodman, 1963]

Compare to Normal Distribution

Complex Normal Distribution

 $\boldsymbol{x} \sim \mathcal{CN}(\boldsymbol{\mu}, \boldsymbol{H}), \; \textit{if its } p.d.f \; \textit{is}$

$$p(\mathbf{x}) = \pi^{-m} |H|^{-1} \exp(-(\mathbf{x} - \mu)^* H^{-1}(\mathbf{x} - \mu))$$

H is hermitian matrix, $(\cdot)^*$ is conjugate transpose

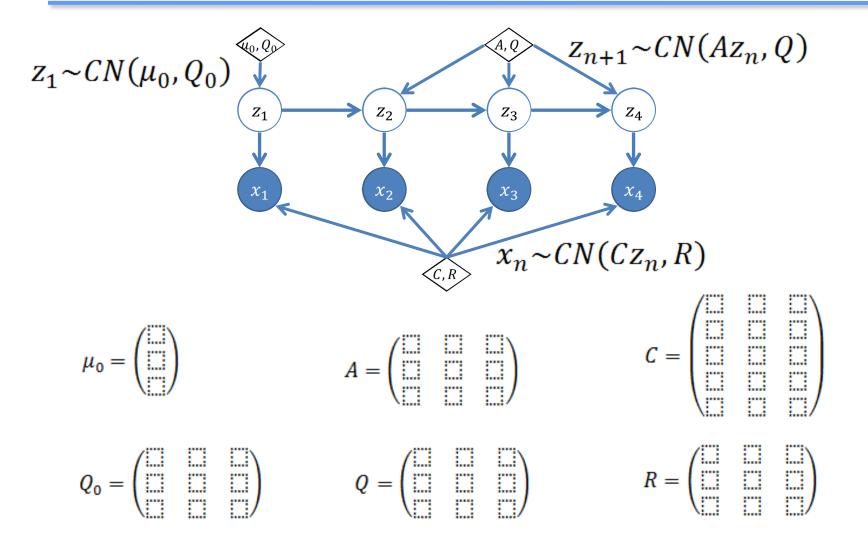
Normal Distribution

 $\boldsymbol{x} \sim \mathcal{N}(\mu, \Sigma), \text{ if its } p.d.f \text{ is}$ $p(\boldsymbol{x}) = (2\pi)^{-m/2} |\Sigma|^{1/2} \exp(-\frac{(\boldsymbol{x} - \mu)^T \Sigma^{-1} (\boldsymbol{x} - \mu)}{2})$ H is hermitian matrix, (·)* is conjugate transpose

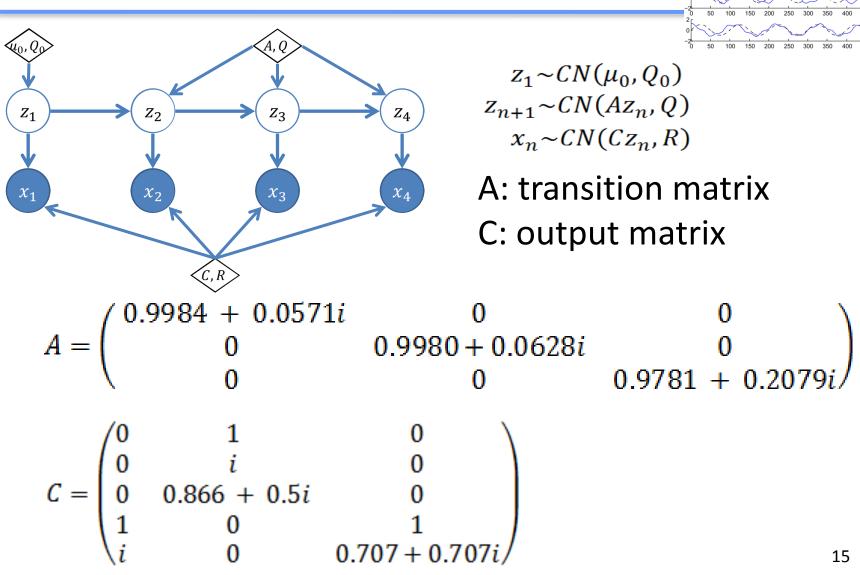
Outline

- Motivation
- Background: Complex Normal Distribution
- Complex Linear Dynamical Systems
- Clustering with CLDS
- Experiments
- Conclusion

(Complex) Linear Dynamical Systems



Example



200 250

Parameter Learning

$$\min \mathcal{L}(\theta) = \mathbb{E}_{\boldsymbol{Z}|\boldsymbol{X}}[-\log P(\boldsymbol{X}, \boldsymbol{Z}|\theta)]$$

$$= \log |\boldsymbol{Q}_0| + \mathbb{E}[(\boldsymbol{z}_1 - \boldsymbol{\mu}_0)^* \boldsymbol{Q}_0^{-1} (\boldsymbol{z}_1 - \boldsymbol{\mu}_0)]$$

$$+ \mathbb{E}[\sum_{n=1}^{N-1} (\boldsymbol{z}_{n+1} - \boldsymbol{A} \cdot \boldsymbol{z}_n)^* \cdot \boldsymbol{Q}^{-1} \cdot (\boldsymbol{z}_{n+1} - \boldsymbol{A} \cdot \boldsymbol{z}_n)] + (N-1) \log |\boldsymbol{Q}|$$

$$+ \mathbb{E}[\sum_{n=1}^{N} (\boldsymbol{x}_n - \boldsymbol{C} \cdot \boldsymbol{z}_n)^* \cdot \boldsymbol{R}^{-1} \cdot (\boldsymbol{x}_n - \boldsymbol{C} \cdot \boldsymbol{z}_n)] + N \log |\boldsymbol{R}|$$

EM algorithm (complex-Fit)

- •E-step: compute posterior $P(z_n|x_1, ..., x_N)$ and $P(z_n, z_{n+1}|x_1, ..., x_N)$
- •M-step: update the parameters to optimize $L(\theta)$

Optimizing real-valued functions of complex variables

- With real variables:
 - $-\frac{df}{dx} = 0$

- Gradient descent: $x \leftarrow x - \alpha f'$

- With complex variables: $-\frac{\partial f}{\partial x} = 0$ AND $\frac{\partial f}{\partial \bar{x}} = 0$
- EM algorithm (complex-Fit)

$$\frac{\partial}{\partial \boldsymbol{\mu}_0} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \overline{\boldsymbol{\mu}_0}} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \boldsymbol{Q}_0} \mathcal{L} = 0 \qquad \frac{\partial}{\partial \overline{\boldsymbol{Q}_0}} \mathcal{L} = 0$$

 $\frac{\partial}{\partial A}\mathcal{L}, \ \frac{\partial}{\partial \overline{A}}\mathcal{L}, \ \frac{\partial}{\partial Q}\mathcal{L}, \ \frac{\partial}{\partial \overline{Q}}\mathcal{L}, \ \frac{\partial}{\partial \overline{Q}}\mathcal{L}, \ \frac{\partial}{\partial \overline{C}}\mathcal{L}, \ \frac{\partial}{\partial \overline{C}}\mathcal{L}, \ \frac{\partial}{\partial \overline{R}}\mathcal{L}, \frac{\partial}{\partial \overline{R}}\mathcal{L} = 0$

CLDS versus LDS

$$\mathsf{LDS} \qquad \mathsf{min} \ \mathcal{L}(\theta) = \mathbb{E}_{\mathbf{Z}|\mathbf{X}}[-\log P(\mathbf{X}, \mathbf{Z}|\theta)] \\ = \log |\mathbf{Q}_0| + \mathbb{E}[(z_1 - \boldsymbol{\mu}_0)^* \mathbf{Q}_0^{-1}(z_1 - \boldsymbol{\mu}_0)] \\ + \mathbb{E}[\sum_{n=1}^{N-1} (z_{n+1} - \mathbf{A} \cdot z_n)^* \cdot \mathbf{Q}^{-1} \cdot (z_{n+1} - \mathbf{A} \cdot z_n)] + (N-1) \log |\mathbf{Q}| \\ + \mathbb{E}[\sum_{n=1}^{N} (\mathbf{x}_n - \mathbf{C} \cdot z_n)^* \cdot \mathbf{R}^{-1} \cdot (\mathbf{x}_n - \mathbf{C} \cdot z_n)] + N \log |\mathbf{R}| \\ \mathsf{LDS} \qquad \mathsf{min} \ \mathcal{L}(\theta) = \mathbb{E}_{\mathbf{Z}|\mathbf{X}}[-\log P(\mathbf{X}, \mathbf{Z}|\theta)] \\ = \log |\mathbf{Q}_0| + \mathbb{E}[(z_1 - \boldsymbol{\mu}_0)^T \mathbf{Q}_0^{-1}(z_1 - \boldsymbol{\mu}_0)] \\ + \mathbb{E}[\sum_{n=1}^{N-1} (z - \mathbf{A} \cdot z_n)^T \cdot \mathbf{Q}^{-1} \cdot (z_{n+1} - \mathbf{A} \cdot z_n)] + (N-1) \log |\mathbf{Q}| \\ + \mathbb{E}[\sum_{n=1}^{N} (\mathbf{x}_n - \mathbf{C} \cdot z_n)^T \cdot \mathbf{R}^{-1} \cdot (\mathbf{x}_n - \mathbf{C} \cdot z_n)] + N \log |\mathbf{R}| \end{aligned}$$

Outline

- Motivation
- Background: Complex Normal Distribution
- Complex Linear Dynamical Systems
- Clustering with CLDS
- Experiments
- Conclusion

CLDS for Clustering

Enforcing **A** to be diagonal, A = diag(a) for learning **a** and **Q**:

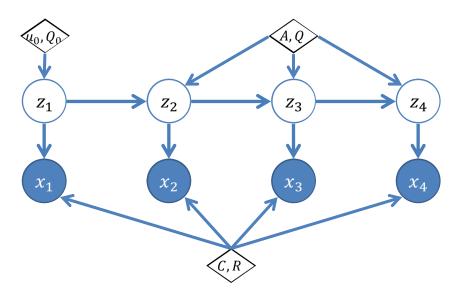
$$\begin{split} \boldsymbol{a} = & (\boldsymbol{Q}^{-1} \circ (\sum_{n=1}^{N-1} \mathbb{E}[\boldsymbol{z}_n \cdot \boldsymbol{z}_n^*])^T)^{-1} \cdot (\boldsymbol{Q}^{-1} \circ (\sum_{n=1}^{N-1} \mathbb{E}[\boldsymbol{z}_{n+1} \cdot \boldsymbol{z}_n^*])^T) \cdot \mathbf{1} \\ \boldsymbol{Q} = & \frac{1}{N-1} \sum_{n=1}^{N-1} \Big(\mathbb{E}[\boldsymbol{z}_{n+1} \cdot \boldsymbol{z}_{n+1}^*] - \mathbb{E}[\boldsymbol{z}_{n+1} \cdot (\boldsymbol{a} \circ \boldsymbol{z}_n)^*] \\ & - \mathbb{E}[(\boldsymbol{a} \circ \boldsymbol{z}_n) \cdot \boldsymbol{z}_{n+1}^*] + \mathbb{E}[(\boldsymbol{a} \circ \boldsymbol{z}_n) \cdot (\boldsymbol{a} \circ \boldsymbol{z}_n)^*] \Big) \end{split}$$

Rationale:

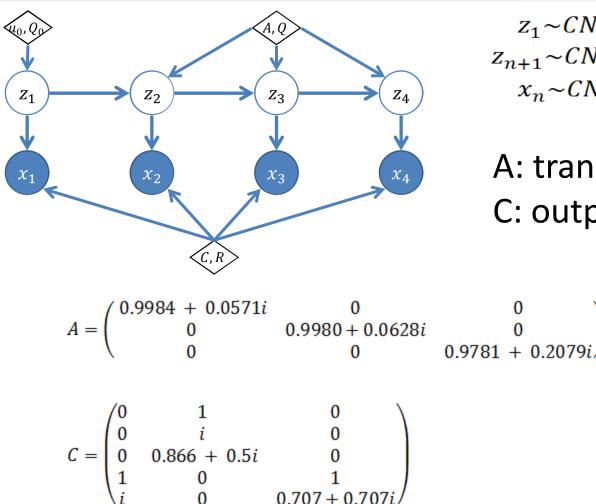
- Faster
- More robust
- Better clustering

Features

- z's will be basis
- C will contain features
- To eliminate time shift, take magnitude of C



Example

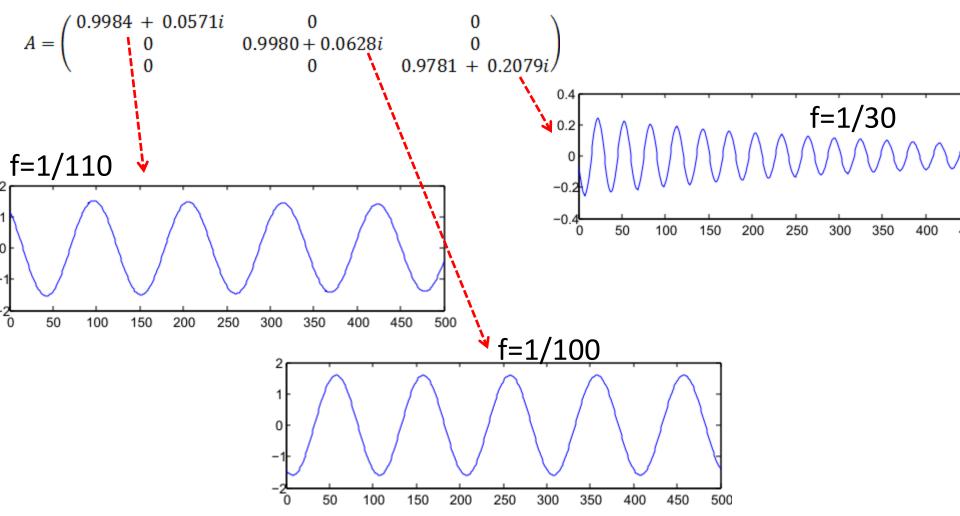


0.707 + 0.707i

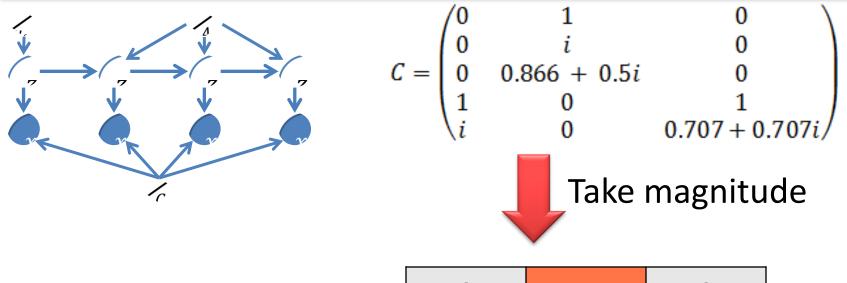
 $z_1 \sim CN(\mu_0, Q_0)$ $z_{n+1} \sim CN(Az_n, Q)$ $x_n \sim CN(Cz_n, R)$

A: transition matrix C: output matrix

Simple interpretation for "Complex" solution



Simple interpretation for "Complex" solution



Feature Matrix F

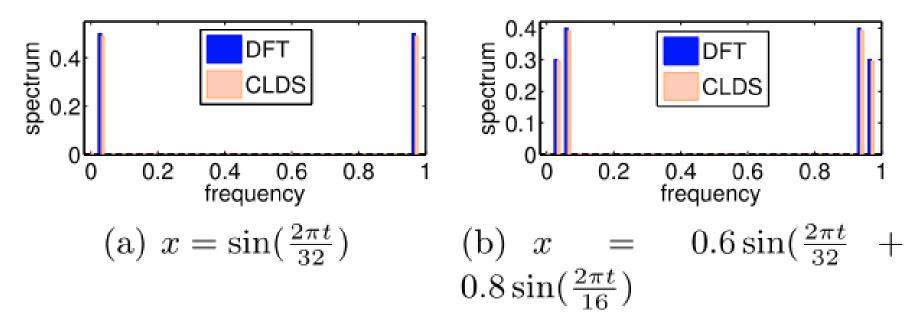
0	1	0
0	1	0
0	1	0
1	0	1
1	0	1

Outline

- Motivation
- Background: Complex Normal Distribution
- Complex Linear Dynamical Systems
- Clustering with CLDS
- Experiments
- Conclusion

DFT as a special case

For single signal, If $A = diag(exp(\frac{2\pi i}{N}k)), k = 1, ..., N$ C will be Fourier specturm



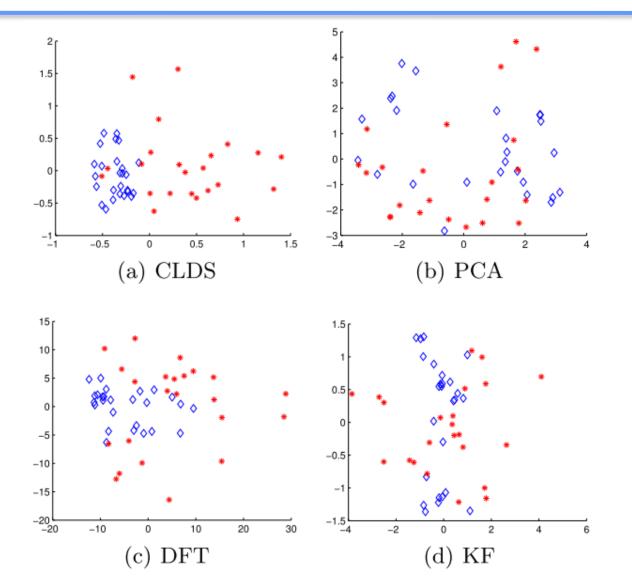
Results

- Datasets:
 - MOCAPPOS:
 - 49 motion sequences
 - marker positions
 - running v.s. walking
 - MOCAPANG:
 - 33 sequences
 - joint angles
- Metric: conditional entropy of the confusion matrix M $S(M) = \sum_{i,i} \frac{M_{i,j}}{\sum_{k,l} M_{k,l}} \log \frac{\sum_k M_{i,k}}{M_{i,j}}$

Conditional Entropy

methods	MOCAPPOS S	MOCAPANG S	
CLDS	0.3786	0.1015	
PCA	0.6818	0.3635	[Bishop 2006]
DFT	0.6143	0.2538	
DTW	0.5707	0.4229	[Gunopulos 2001]
KF	0.6749	0.5239	[Buzan 2004]

Visualization of CLDS Features



Conclusion

- Proposed Complex Linear Dynamical Systems
 - *Complex Normal* Distributions for lag and harmonics
 - *Diagonal* transition matrix for time series clustering
- Complex-Fit for learning parameters
- Advantages:
 - Faster
 - More robust
 - Better clustering

Thanks!

- www.cs.cmu.edu/~leili
- Lei Li, leili@cs.cmu.edu

B. Aditya Prakash, <u>badityap@cs.cmu.edu</u>

