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The recent explosion in the adoption of search engines and new media such as blogs and Twitter have
facilitated the faster propagation of news and rumors. How quickly does a piece of news spread over these
media? How does its popularity diminish over time? Does the rising and falling pattern follow a simple
universal law? In this paper, we propose SPIKEM, a concise yet flexible analytical model of the rise and
fall patterns of information diffusion. Our model has the following advantages: (a) unification power: it
explains earlier empirical observations and generalizes theoretical models including the SI and SIR models.
We provide the threshold of the take-off vs. die-out conditions for SPIKEM, and discuss the generality of
our model, by applying it to an arbitrary graph topology; (b) practicality: it matches the observed behavior
of diverse sets of real data; (c) parsimony: it requires only a handful of parameters; and (d) usefulness: it
makes it possible to perform analytic tasks such as forecasting, spotting anomalies, and interpretation by
reverse engineering the system parameters of interest (e.g. quality of news, number of interested bloggers,
etc.). We also introduce an efficient and effective algorithm for the real-time monitoring of information
diffusion, namely, SPIKESTREAM, which identifies multiple diffusion patterns in a large collection of online
event streams. Extensive experiments on real datasets demonstrate that SPIKEM accurately and succinctly
describes all the patterns of the rise-and-fall spikes in social networks.
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1. INTRODUCTION

Online social media are spreading news and rumors in new ways, and search engines
have greatly facilitated this operation, creating bursts and spikes. Some rumors (or
memes, hashtags) start slowly and linger; others spike early and then decay; others
show more complicated behavior, as we show in Figure 1.

Are there qualitative differences between real rise-and-fall patterns? Do they form
different classes? If yes, how many and what kind? Earlier work on YouTube data
claims there are four classes [Crane and Sornette 2008]. Empirical work found six

Author’s addresses: Yasuko Matsubara, Faculty of Advanced Science and Technology, Kumamoto University,
2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan, yasuko@cs.kumamoto-u.ac.jp.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1559-1131/2017/02-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.



39:2 Y. Matsubara et al.

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

 

 

Original

SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a
lu

e

 

 

Original

SpikeM

(a) Pattern C1 (b) Pattern C2

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

 

 

Original

SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

 

 

Original

SpikeM

(c) Pattern C3 (d) Pattern C4

20 40 60 80 100 120
0

50

100

Time

V
a
lu

e

 

 

Original

SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a
lu

e

 

 

Original

SpikeM

(e) Pattern C5 (f) Pattern C6

Fig. 1. Modeling power of SPIKEM: six types of spikes (K-SC) shown as dots, and our model fit shown by
the solid red line. Data sequences span over 120 time ticks, while SPIKEM requires only seven parameters.
The fit is so good, that the red line is often invisible, due to occlusion.

classes [Yang and Leskovec 2011]. How many classes are there after all? —Our an-
swer is: one. We provide a non-linear analytical model, SPIKEM, 1 that requires only a
handful of parameters, and we show that it can generate all the patterns found in real
data simply by changing the parameter values.

Preview of our results. Figure 1 shows six representative spikes of online media
(memes) from K-SC [Yang and Leskovec 2011], as gray circles, as well as our fitted
model, as a solid red line. Notice that the fitting is very good, despite the fact that our
SPIKEM model requires only seven parameters, and that the time-sequences span 120
intervals.

The problem we want to solve is how to model/predict an online activity (e.g., num-
ber of blog postings), as a function of time, given some breaking-news at a given time
tick. We will use a blogger example for brevity and clarity, but many other processes
could be also modeled (such as search volume for popular keywords, rumors spread-
ing over Twitter, and computer viruses infecting machines [Papalexakis et al. 2013].
Consequently, we have:

PROBLEM 1 (WHAT-IF). Given a network of bloggers (/hosts/users), a shock (e.g.,
event) at time nb, the interest/quality of the event, the count Sb of bloggers that imme-

1Available at http://www.cs.kumamoto-u.ac.jp/∼yasuko/software.html
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Table I. Capabilities of approaches. Only our approach meets all specifications.

K-SC C-S SI/SIR DWT/DFT AUTOPLAIT SARIMA SPIKEM
Domain knowledge -

√ √
- - -

√

Information diffusion
√ √

- - - -
√

Power law decay -
√

- - - -
√

Non-linear -
√ √

- - -
√

Periodicity - - -
√

-
√ √

Missing values - -
√

- - -
√

Outlier detection - -
√ √ √

-
√

Segmentation - - - -
√

-
√

Online processing - - - - - -
√

Forecasting - - - - -
√ √

diately (= time nb) blog about the event, find how the blogging activity will evolve over
time.

A closely related problem is to develop a parsimonious model, that can be made to
fit several spikes observed in the past (as we do in Figure 1). That is,

PROBLEM 2 (MODEL DESIGN). Given the behavior of several spikes in the past,
find an equation/model that can explain them, with as few parameters as possible.

More importantly, it would be good if the parameters had an intuitive explanation
(such as, ‘number of bloggers’, ‘quality of news’, etc, as opposed to, say, a1, a2 of an
autoregressive model (AR/ARIMA)).

1.1. Contrast with competitors

Table I illustrates the relative advantages of our method. Only SPIKEM matches all
requirements.

The six clusters of rise-and-fall patterns in K-SC [Yang and Leskovec 2011] (shown
in Figure 1) are non-parametric, and are incapable of forecasting. The C-S method
[Crane and Sornette 2008] can capture power law decay patterns, but cannot generate
exponential growing patterns or periodic user activities.

The Susceptible-Infected (SI) model and its variations (e.g., SIR, SIRS, SEIR mod-
els) are non-linear models, and lead to exponential decay, as opposed to the power law
decay that we observe in real data (we will discuss this later in Figure 2). The logis-
tic function [Brauer and Castillo-Chavez 2001], WTA [Prakash et al. 2012], and others
equations [Jackson 1992; Nowak 2006; Matsubara et al. 2014b] are non-linear dynam-
ical systems, and the Bass model [Bass 1969] (i.e., the market penetration of new prod-
ucts), the product life cycle model [Klepper 1996; Chang et al. 2014], the input-output
model [Leontief 1986] and other related economic models incorporate domain knowl-
edge. However, these methods are not intended to capture long heavy-tail patterns, or
periodic user activities.

Wavelets (DWT) and Fourier transforms (DFT) and other basic tools of time-series
analysis can detect bursts and typical patterns, but they cannot detect non-linear evo-
lutions of information diffusion in social networks. AutoPlait [Matsubara et al. 2014],
SWAB [Keogh et al. 2001] and pHMM [Wang et al. 2011] have the ability to capture
the dynamics of sequences and perform segmentation, however, they are not intended
to capture long-range non-linear evolutions of information diffusion.

All the traditional, linear time-series methods are fundamentally un-
suitable: AR, ARIMA, SARIMA and derivatives including AWSOM
[Papadimitriou et al. 2003], TBATS [Livera et al. 2011], PLiF [Li et al. 2010] and
TriMine [Matsubara et al. 2012a] are all based on linear equations, and are thus
incapable of modeling data governed by non-linear equations. They lead to exponen-
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tial decays, as opposed to the power law that reality seems to obey, and they cannot
incorporate domain knowledge. We should also note that all these linear models can
go to infinity over time.

Our proposed model, SPIKEM is able to successfully replicate the earlier patterns,
and also easily fit several, diverse, real datasets. It is very intuitive, and based on
diffusion and influence propagation. Moreover, being a concise model, it provides all
the related benefits: it can achieve compression, anomaly detection, and is also capable
of forecasting.

1.2. Contributions

In this paper, we propose a unifying model, namely, SPIKEM, to solve both the afore-
mentioned problems. Our model has the following advantages:

(1) Unification power: it includes earlier patterns and models as special cases (e.g.,
the SI and SIR models, as well as the patterns in K-SC [Yang and Leskovec 2011;
Leskovec et al. 2009]). Our model can also be generalized to an arbitrary graph
topology, as well as a clique network.

(2) Practicality: it matches the behavior of numerous, diverse, real datasets, includ-
ing power law decay.

(3) Parsimony: it requires only a handful of parameters.
(4) Usefulness: our proposed model makes it possible to answer ‘what-if ’ ques-

tions (see subsection 6.1), spot outliers, reverse-engineer the system parameters
(quality of news, count of interested bloggers, time-of-day behavior of bloggers).
We also provide a scalable algorithm, namely, SPIKESTREAM, which is designed
for the real-time monitoring of information diffusion (see subsection 4.4).

Our model is made possible by a careful design that incorporates (a) the power law
decay in infectivity, (b) a finite population, and (c) proper periodicities. Earlier models
cannot handle one or more of the above issues. Thanks to the practicality of SPIKEM,
we can achieve forecasting, the analysis of ‘what-if ’ scenarios, and the detection of the
diffusion spikes and anomalies, as we show in section 5 and section 6.

1.3. Outline

The rest of the paper is organized as follows: Section 2 presents an overview of related
work and Section 3 describes the proposed model. In Section 4, we analyze our model,
and discuss the generality and extensions of SPIKEM. Sections 5 and 6 show our ex-
perimental results for a variety of datasets. We describe related work in Section 7 and
conclude this paper in section 8.

2. BACKGROUND

This section describes the fundamental concepts.

2.1. Epidemiology fundamentals

The most basic epidemic model is the ‘Susceptible-Infected’ (SI) model. Each ob-
ject/node is in one of two states - Susceptible (S) or Infected (I). Each infected node
attempts to infect each of its neighbors independently with probability β, which re-
flects the strength of the virus. Once infected, each node stays infected forever. If we
assume that the underlying network is a clique of N nodes, and use our notation (‘B’
for blogged = infected) the most basic form of the model is:

dB(t)

dt
= β ∗ (N −B(t))B(t) (1)

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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where the time t is considered continuous, dB/dt is the derivative, and the initial con-
dition reflects an external shock (say, B(0) = b externally infected people).

The justification is as follows: β is the strength of the virus, that is, the probability
that an encounter between an infected person (‘B’) and an uninfected one will result
in an infection - and we have B ∗ (N − B) such encounters. The solution for B() is
the sigmoid, and its derivative is symmetric around the peak, with an exponential rise
and an exponential fall (we discuss this later in Figure 2). There we also show the
weakness of the SI model: real data have a power-law ‘fall’ pattern.

2.2. Self-exciting Hawkes process

Crane et al. [Crane and Sornette 2008] used a self-exciting Hawkes conditional Pois-
son process [Hawkes and Oakes 1974] to model YouTube views per day, showing that
spikes in the activity have a power law rise pattern, and a power law fall pattern, de-
pending on the model parameters. Roughly, the Hawkes process is a Poisson process
where the instantaneous rate is not constant but depends on the count of previous
events, whose effect drops with the age τ of the event. That is, if there are a lot of
events (viewings/bloggings) recently, we will have many such events today.

The base model states that the rate of spread of infection depends on (a) the external
source S(t) and (b) self-excitation, that is, on earlier-infected nodes (i = 1, . . .); these
nodes spread the infection with decaying virus strength φ(τ), their age τ grows, times
some constant µi. The constant µi is equivalent to the degree of the infected node i.

dB(t)

dt
= S(t) +

∑

i,ti≤t

µiφ(t− ti) (2)

The model typically assumes that the µi values are equal, namely that all nodes have
the same degree (‘homogeneous’ graph). Under certain conditions, the model provides
power-law rise and power-law fall patterns.

Next we present our proposed model, SPIKEM, which avoids the shortcomings of the
SI and Hawkes models, and has several other desirable properties.

3. PROPOSED METHOD

In this section, we provide the reader with several interesting and important observa-
tions, and present our proposed model, namely, SPIKEM. For simplicity, we first focus
on the most basic case: a clique network, where all nodes (i.e., bloggers) are potentially
connected to each other with undirected and unweighted edges.

3.1. Design philosophy of SPIKEM

Basically, our model tries to capture the following behaviors, which we observed for
several of our real data:

— P1: power-law fall pattern
— P2: periodicities

and at the same time we want to

— P3: avoid the divergence to infinity

that other models may have. To handle P3 (divergence), we force our model to have
a finite population, and adjust the equations accordingly. To handle P1 (power-law
fall pattern), we assume that the infectivity of a node (= popularity of a blog post)
decays with the influence exponent p. The handling of periodicities is discussed in
subsection 3.3. We describe our model in steps of increasing complexity, and we start
with the base model.

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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Table II. Symbols and definitions

Symbol Definition
N Total population of available bloggers
nd Duration of sequence
n Time tick (n = 0, . . . , nd)
U(n) Count of uninformed bloggers
B(n) Count of informed bloggers
∆B(n) Delta: count of newly informed bloggers at time n

f(τ) Infectiveness of a blog-post, at age τ
β Strength of infection
S(n) Volume of external shock at time n
nb Starting time of breaking news
Sb Strength of external shock at birth (time nb)
ǫ Background noise
Pa Strength of periodicity
Pp Period (e.g., Pp = 24 hours)
Ps Phase shift of periodicity

We assume there are N bloggers, and none of them is yet blogging about the topic
of interest. At time nb, an event occurs (such as the 2004 Indonesian tsunami, or a
controversial political speech such as ‘lipstick on a pig’), and Sb bloggers immediately
blog about it. We refer to this external event as a shock, and nb and Sb are the birth
time and the initial magnitude of the shock.

Our model needs a few more parameters: the first is the quality/interestingness of
the news, which we denote as β, since this is the standard symbol for the infectivity of
a virus in epidemiology literature. If β is zero, nobody cares about this specific piece of
news; the higher the value, the more bloggers will blog about it.

Finally, we have the decay function f(τ), which models how infective/influential a
blog posting is, at age τ . Standard epidemiology models assume that f() is constant
(once sick, you have the same probability of infecting others); recent analysis has
shown that the influence drops with age, following a power law.

The above are the parameters of the base model. Before we list the equations, we
want to briefly mention a derived quantity, β ∗ N ; this quantity roughly corresponds
to the R0 (‘R-naught’) found in the epidemiology literature. This tells us the size of the
“first burst”: if only one person was infected, how many will be infected in the next
time tick?2

In summary, the scenario we model is as follows:

— nothing happens, until a news-event appears, at birth time nb.
— Sb bloggers immediately blog about it.
— other bloggers visit the initial Sb (or follow-up) bloggers, and occasionally get ‘in-

fected’ and blog about the event, too.

We also assume that

— each blogger blogs at most once about the event
— no other related event occurs - that is, the shock function S() has only one spike.

Without loss of generality, we also assume that once an uninformed blogger sees an
infected/informed blog, he/she always blogs about the event (if he/she blogs with prob-
ability ρ < 1, we could absorb ρ in the infectivity factor β).

Our goal is to find an equation to describe the number ∆B(n) of people blogging
at time tick n, as a function of n and of course the system parameters (total number

2yes, it should be N − 1, but we sacrifice accuracy, for intuition.

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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of bloggers N , strength of infection β, etc). Table II lists the major symbols and their
definitions.

3.2. Base model - SPIKEM-BASE

The model we propose has nodes (=bloggers) of two states:

— U: Uninformed of the rumor
— B: informed, and Blogged about it

For those who were just informed at time tick n, we will use the symbol ∆B(n), and
we assume that, once informed, a person will blog about the rumor immediately.

Let U(n) be the number of uninformed people at time n, and let ∆B(n) the number of
people who just found out about the rumor at time n, and blogged about it immediately.

MODEL 1 (SPIKEM-BASE). Our base model is governed by the equations

∆B(n+ 1) = U(n) ·
n
∑

t=nb

(

∆B(t) + S(t)
)

· f(n+ 1− t) + ǫ (3)

U(n+ 1) = U(n)−∆B(n+ 1) (4)

where

f(τ) = β · τ−p (5)

and initial conditions:

∆B(0) = 0, U(0) = N

In addition, we add an external shock S(n), a spike generated at birth time nb. Mathe-
matically, it is defined as follows:

S(n) =

{

0 (n 6= nb)
Sb (n = nb)

(6)

Justification of the model. We undertake this in steps:

— The term ∆B(t) + S(t) captures the number of bloggers plus external sources, that
were activated at time tick t; their infectivity is modulated by the f() infectivity
function, since we assume that the infectivity of a source/blogger decays with time.
The summation is over all past time ticks since the birth time nb of the shock.

— The infectivity function f() exactly follows a power law with exponent p. We set p =
1.5 as discovered by earlier work on read data: real bloggers [Leskovec et al. 2007b],
and responses to mails by Einstein and Darwin [Barabasi 2005].

— The meaning of the summation is the available stimuli at time tick n; the available
targets are the uninformed bloggers U(n), and the product gives the number of new
infections.

— We add a noise term ǫ to handle cases such as the meme ‘yes we can’; some bloggers
mention this phrase anyway, but a large shock occurred during the 2008 political
campaign, (i.e., it was a slogan for Barack Obama). Very often, ǫ ≃ 0.

This completes the justification of our base model.
We also mention some rules that our model obeys. By definition,

B(n) =
n
∑

t=0

∆B(t)

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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and of course we have the invariant

B(n) + U(n) = N

where N is the total number of people/bloggers.

3.3. With periodicity - SPIKEM

Bloggers may modulate their activity following a daily cycle (or weekly, or yearly). For
example, a fraction of the U(n) uninformed bloggers at time n are not paying attention
(say, because they are tired or asleep). So, how can we reflect this in our equations? We
propose an answer below, and then we provide the justification.

MODEL 2 (SPIKEM). We can capture the periodic behavior of bloggers with the fol-
lowing equations:

∆B(n+ 1) = p(n+ 1) ·
(

U(n) ·
n
∑

t=nb

(

∆B(t) + S(t)
)

· f(n+ 1− t) + ǫ
)

(7)

p(n) = 1− 1

2
Pa

(

sin
(

2π
Pp

(n+ Ps)
)

+ 1
)

(8)

where U(n), S(t) and f(n) are defined in Model 1.

Justification. The model is identical to SPIKEM-BASE, with the addition of a pe-
riodicity factor p(·). This captures the fact that bloggers tone down their activity, e.g.,
during the night, or even stop it altogether. The idea is that U(·) is the count of victims
available for infection, and the summation is the number of attacks. Under normal
circumstances, each victim-attack pair would lead to a new victim; however, since the
victims are not paying full attention (tired/asleep), the attacks are not so successful,
and thus we prorate them by the p() periodic function.

— Pp stands for the period of the cycle (say, 24 hours).
— Ps stands for the phase shift: if the peak activity is at noon, and the period is Pp=24

hours, then Ps=18.
— Pa depends on the amplitude of the fluctuation, and specifically it gives the relative

value of the off-time (say, midnight), versus peak time (say, noon). Thus, if Pa=0, we
have no fluctuation.

3.4. Analysis - exponential rise and power law fall

Figure 2 shows the behavior analysis result of SPIKEM for Pattern C1 in Figure 1.
Specifically, it shows the original time-series data (shown as gray circles), and the
fitting results of SPIKEM (red line) and SI (blue dashed line). We can observe that its
rise pattern is exponential, while the fall pattern obeys a power law. This is desirable,
because this behavior seem to prevail in real data. Let nmode denote the time tick at
which the wave ∆B() reached its maximum volume (that is, nmode = arg max

n

∆B(n)).

By rise plot we mean the plot of values from the birth time nb until nmode (and reversing
time abs(n− nmode)) The fall-plot is defined similarly: activity ∆B() versus delay from
the peak n − nmode. As shown in Figure 2, there is a power law for the fall part, and
an exponential shape for the rise part. On the other hand, the traditional SI model,
which, as expected, exhibits exponential behavior for both the rise and fall parts.

3.5. Learning the parameters

Our model consists of a set of seven parameters: θ = {N, β, nb, Sb, ǫ, Pa, Ps}. Given
a real time sequence X(n) of bloggers at time tick n (n = 1, . . . , nd), we use the

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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Fig. 2. Fitting results of SPIKEM vs. SI for Pattern C1 in Figure 1. The original sequence (in gray circles),
and our model (red line) have an exponential rise part and a power law drop; The SI model (blue dashed
line) is exponential for both parts and thus unrealistic. Top row: full interval; left column: only the rise part;
right column: only the fall part.

Levenberg-Marquardt (LM) method [Levenberg 1944] to minimize the sum of the er-
rors. The LM algorithm can solve the problem of minimizing a non-linear function in
the least square sense. To learn the model parameter set θ, we minimize the prediction
error measured by the Euclidean distance between the original and predicted volumes
of activity, i.e.,

θ̂ ← arg min
θ

D(X,θ), D(X,θ) =

nd
∑

n=1

(X(n)−∆B(n))2 (9)

where, X is the original sequence of duration nd, and ∆B(n) is the estimated count of
infections at time n given a set of parameters, θ.

4. MODEL ANALYSIS AND EXTENSIONS

In this section, we theoretically analyze our proposed model and provide several im-
portant observations and extensions.

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.
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4.1. Generality of SPIKEM

As we mentioned in the introduction section, one of the most important properties of
SPIKEM is the unification power. Specifically, SPIKEM (i.e.,SPIKEM-BASE) includes
several basic non-linear epidemiological models (e.g., SI and SIR) as special cases.

The idea is that we change the infection probability f(τ) = β ∗ τ−p with the time-
since-infection τ . For example, a typical susceptible-infected (SI) model has a constant
transmission (i.e., infection) rate β for every time tick, and then, all nodes will eventu-
ally become infected. Consequently, we have:

LEMMA 4.1. SPIKEM is identical to the SI model, if the influence exponent p = 0,
where we have a constant transmission probability over time, i.e., f(τ) = β · constant.

The susceptible-infected-recovered (SIR) model has an infection rate β and a healing
rate δ, each of which describes the transition probability of each state (i.e., from sus-
ceptible to infected, and from infected to recovered). More specifically, the healing rate
δ defines the constant probability of healings per time tick, which every infected node
is exposed to. For example, if δ = 0, no one will recover, and the model has a constant
transmission rate β for every time tick, i.e., it is identical to the SI model. If δ = 1, each
infected node will recover immediately, that is, the model has a single pulse transmis-
sion β · pulse(1) for each node, and it is identical to our infectivity function with the
exponent p =∞, i.e., f(τ) = β · τ−∞ = β · pulse(1).

LEMMA 4.2. SPIKEM exhibits the same behavior as the SIR model, if the influence
exponent p = ∞ and the healing rate δ = 1, where we have a single pulse transmission
at time tick τ = 1, i.e., f(τ) = β · pulse(1).

4.2. Threshold condition for SPIKEM

Given a social network and a brand new rumor (e.g., a newly released movie), can we
determine whether the rumor will take off or die out quickly? That is, given a new,
unknown rumor, how can we guess whether the whole community will be instantly
thrown into an uproar, or just ignore it as meaningless information?

We now provide the threshold of the take off vs. die out conditions for SPIKEM.

THEOREM 4.3 (SPIKEM TAKE-OFF CONDITION). Given a network of N bloggers
and the infectivity decay function: f(τ) = β · τ−p with exponent p (p < 1), where β
is the strength of the infection, SPIKEM will take off, if it satisfies the following condi-
tion:

s = Nβ · ζ(p) ≥ 1.0 (10)

where, ζ(p) is the Riemann zeta function.

PROOF. Consider that one person/blogger was infected at time τ = 0. At time τ = 1
(i.e., the first burst), this blogger infects Nβ · 1−p neighboring bloggers. Similarly, at
time τ = 2 he/she infects Nβ · 2−p bloggers 3 .

Consequently, the total number s of bloggers who are infected by the first blogger is,

s = Nβ · 1−p +Nβ · 2−p +Nβ · 3−p + · · ·+Nβ · τ−p + . . . (11)

That is, summing up all the above counts, we have

s = Nβ ·
∞
∑

τ=1

τ−p = Nβ · ζ(p) (12)

3 More specifically, it is (N −Nβ)β · 2−p at time τ = 2, but we can discard O(β2) terms when β ≪ 1.
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Fig. 3. Illustration of the SPIKEM take-off condition: it shows a scatter plot of our threshold (i.e., Nβ ·ζ(p))
vs. the footprints (i.e., the maximum value of each spike, i.e., max∆B(n)). We vary the condition 0 ≤ Nβ ·
ζ(p) ≤ 2, with the influence exponent p = 1.5, 2.0, . . . ,∞. Note that each point corresponds to each spike,
and the tipping point exactly matches our condition: s = Nβ · ζ(p) = 1.0.

where, ζ(p) is the Riemann zeta function, i.e., ζ(p) =
∑∞

τ=1

1

τp . Here, if s is less than
1.0, this means that the first blogger cannot infect enough (i.e., more than 1) people
in his/her community, thus the news/rumor dies out without receiving any attention.
Similarly, if there are multiple infected bloggers at time τ = 0, each blogger needs to
infect more than 1 neighbor (i.e., s ≥ 1.0) to satisfy the take-off condition.

Behavior analysis. Figure 3 shows the threshold analysis simulation result. It
shows the scatter plot of the threshold vs. footprints, that is, the take-off condition
(i.e., s = Nβ · ζ(p)) vs. the peak position of each spike (i.e., max∆B(n))). We vary
the infection rate β with the fixed population N = 104 so that we have the condition
0 ≤ s ≤ 2, with several influence exponents p = 1.5, 2.0, . . . ,∞. For example, the red
points correspond to the spikes with the slope p = 1.5. In Figure 3, as we expected, the
footprint of the infection in all spikes suddenly jumps at s = 1.

We should also note that this condition covers the condition of the basic SIR model.
It is well known that the traditional SIR model has an epidemic threshold Nβ/δ ≥
1 [Hethcote 2000]. In Figure 3, the green points show the footprints with the influence
exponent p = ∞ (here, ζ(∞) = 1.0), which is equivalent to the SIR model with a
healing rate δ = 1.0. Also note that the SI model has no inherent epidemic threshold
as all nodes will eventually become infected.

In Figure 4, we present several results for specific parameter settings (N = 2000 or
so, β = 2 · 10−4 or so). The figure shows linear-linear (left column) and log-log (right
column) scales. We fixed the remaining parameters, i.e., nb = 0, ǫ = 0, Pa = 0, B(0) =
1, p = 1.5. Figure 4 (a) shows the behavior of SPIKEM, where we vary the total popu-
lation N from 2000 to 5000, with a fixed infection strength β, while Figure 4 (b) shows
the result for β = {2 · 10−4, . . . , 5 · 10−4}, with a fixed population N = 2000. It should be
noted that SPIKEM always takes off, if the condition holds, (that is, s ≥ 1.0), otherwise,
it dies out very quickly, as shown by the blue arrows in the figure (a) and (b). Figure 4
(c) shows another special case, where we vary both parameters N and β, so that we
have the fixed condition s = 2.3.
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Fig. 4. Behavior analysis: several spikes for a specific setting. We varied the total population N from 2, 000
to 5, 000, and the infection rate β from 2 ∗ 10−4 to 5 · 10−4, with constant values of nb = 0, ǫ = 0, Pa =
0, B(0) = 1. We tried (a) varying N with a fixed β, (b) varying β with a fixed N , and (c) varying both N and
β so as to fix the condition s = 2.3. SPIKEM always takes off, if the condition holds (i.e., s ≥ 1), otherwise, it
dies out quickly, as shown by the blue lines in figures (a) and (b).
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4.3. Model extenisions - general arbitrary graph

Thus far, we have seen how SPIKEM behaves in a clique network, where all nodes (i.e.
bloggers) are potentially connected to all other nodes. The next question is: given an
arbitrary graph of N bloggers, how will the blogging activity evolve over time?

Let A be the adjacency matrix of an arbitrary graph of N nodes (i.e., bloggers), and
let ∆Ii(n) be the probability of node i to be infected/informed at time n. We introduce
a new model, namely SPIKEM-G, which can describe the dynamics of information dif-
fusion in an arbitrary graph.

MODEL 3 (SPIKEM-G). We can generate the spike of the bloggers in an arbitrary
graph network A with the following equations:

∆Ii(n+ 1) = (1− Ii(n)) ·
n
∑

t=1

N
∑

j=1

(

Aji ·∆Ij(t) · f(n+ 1− t)
)

(13)

∆B(n+ 1) =
N
∑

i=1

∆Ii(n+ 1) (14)

U(n+ 1) = U(n)−∆B(n+ 1) (15)

with the initial conditions:

∆Isid(nb) = 1.0, U(0) = N

where, sid is the index of the starting node(s)/blogger(s).

Justification. We have the following:

— The adjacency matrix A stands for the connectivity between each node/blogger pair.
Here, SPIKEM-G is identical to SPIKEM, if the adjacency matrix A is the clique (i.e.,
∀i,j

Aji = 1).
— Ii(n) describes the cumulative probability of node i to be infected at time n, that is,

Ii(n) =
∑n

t=1
∆Ii(t), where, 0 ≤ ∆Ii(n) ≤ Ii(n) ≤ 1.

— The term (1 − Ii(n)) shows the probability of node i that remains uninformed (i.e.,
available for the infection) at time n.

— The summation
∑n

t=1

∑N

j=1

(

Aji · ∆Ij(t) · f(n + 1 − t)
)

represents the cumulative

stimuli for node i, where we have N nodes/bloggers. Here, the cumulative stimuli
shows the strength of the propagation effects from the neighbor nodes at time tick
n, and it is set to be [0, 1].

— We can compute ∆B(n) (the number of bloggers who were just infected at time tick

n), by summing up the probability of each node, i.e., ∆B(n) =
∑N

i=1
∆Ii(n).

— We assume that a new event happened at time tick nb, and Sb blogger(s) immediately
blogged about it. Here, sid is the node/blogger ID, who started blogging at time tick
nb.

4.4. Real-time monitoring of information diffusion

In many Web-based services (such as blogs, news and Twitter), we observe a large
collection of activity/event logs at every time tick. For example, Twitter generates mil-
lions of event entries (e.g., hashtags) every hour. From this huge collection of online
events, web-site owners can monitor daily activity patterns, find bursts or spikes of
information diffusion, and predict the subsequent week to aid the design of advertise-
ments.

One big challenge when analyzing these logs is to handle such large volumes of
data at a very high logging rate. Moreover, in practice, real-life event streams contain
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Fig. 5. Illustration of SPIKESTREAM: Given an event stream X, it requires only a single scan to detect
the SPIKEM segment(s), and report each cut point (i.e., starting position: nm, subsequence length: lm) and
model parameter set θm. Here, Xc = X(ns : ne) is the subsequence of the current window of length lc.

various types of diffusion patterns of different durations, e.g., multiple spikes for the
Harry Potter movie series, as we will see later in Figure 18 (d). That is, we need to
identify any sudden discontinuity in an event stream, and recognize the current time-
series pattern, immediately, so that we can predict/understand the current diffusion
dynamics, adaptively, at any time.

So, how can we deal with this issue? Does our model, SPIKEM help us to solve it?
Ideally, we would like to solve the following problem:

PROBLEM 3 (REAL-TIME MONITORING OF INFORMATION DIFFUSION). Given a
data stream of online user activities: X = {X(1), X(2), · · · , X(n), · · · }, where n is the
current time tick, find the segments that have the characteristics of the information
diffusion process, incrementally and quickly, that is, we want to

— identify all subsequences in X that match the SPIKEM model,
— find cut-points (i.e., starting position nm and length lm) of each subsequence,
— estimate model parameter set θm for each subsequence.

Main ideas behind our method. We present a fast, one-path algorithm, namely,
SPIKESTREAM. Assume that we have a semi-infinite sequence of activity volume
X (e.g., the number of blog-postings/hashtags), i.e., X = {X(1), X(2), · · · , X(n), · · · },
where n is the most recent value. Given a set of newly arriving events for each time
tick 1, 2, · · · , n, · · · , our algorithm reports all the qualifying subsequences (i.e., SPIKEM
segments), immediately, at any point in time, while discarding redundant information
(e.g., background noise). Also note that we might detect very short and meaningless
spike sequences (say, less than a half-day duration), but this is usually insufficient
for many real applications. We thus introduce the minimum length lc of subsequence
matches to enable us to ignore such small subsequences.

Figure 5 illustrates how the algorithm works. Given an event stream X, it extracts
the most recently arrived event set, Xc = X(ns : ne) of window size lc. Here, ns and ne

show the starting and ending positions of the subsequence Xc, and we refer to Xc as a
current window. For each disjoint window Xc, SPIKESTREAM tries to fit the SPIKEM
model, and it then finds the optimal segment (shown as a red line). Finally, it reports
the optimal solution {nm, lm,θm}, (i.e., its starting position, subsequence length, and
model paraemter set) in stream processing.

SPIKESTREAM assumes that there are two hidden statuses for each disjoint window
in the event stream, i.e.,
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1: Input: (a) a new event X(n) at time tick n and (b) the previous status sc
2: Output: a qualifying subsequence {nm, lm} and its parameter set θm (if any)
3: if (n mod lc) == 0 then
4: /* For each disjoint subsequence Xc of window length lc */
5: ns = n− lc + 1; // ns: starting position
6: ne = n; // ne: ending position
7: Xc = X(ns : ne); // Xc: subsequence of the current window
8: /* Calculate the likelihood values of Xc */
9: // (1) Treat as background noise, starting from ns

10: Lǫ = N (Xc|µǫ, σ
2

ǫ ); // ǫ = {µǫ, σ
2

ǫ }: µǫ = mean(Xc), σ
2

ǫ = var(Xc)
11: // (2) Treat as a new-born spike, starting from ns

12: {θ,∆B} = SPIKEM-FIT (Xc,θ
∗) // θ∗: initial SPIKEM parameter set

13: Lc = N (Xc −∆B|µθ, σ
2

θ
); // Likelihood value for θ

14: if sc == SpikeM then
15: {θm,∆B} = SPIKEM-FIT (X(nm : ne),θm); // Model fit using X(nm : ne)
16: lm = ns − nm; // lm: length of the current SPIKEM window
17: // (3) Xc belongs to the continuing spike θm, starting from nm

18: Lm = N (Xc −∆B(lm : lm + lc)|µθm
, σ2

θm
); // Likelihood value for θm

19: if Lc > Lm or Lǫ > Lm then
20: // Background noise or new-born spike - terminate the current spike
21: Report {nm, lm,θm}; // Report the optimal subsequence
22: if Lǫ > Lc then
23: sc =background noise; // Switch to background noise
24: else
25: nm = ns; θm = θ; // New-born spike - switch to SpikeM

26: end if
27: end if
28: else
29: if Lc > Lǫ then
30: // New-born spike - switch to SpikeM

31: sc =SpikeM; nm = ns; θm = θ;
32: end if
33: end if
34: end if

Algorithm 1: SpikeStream

(a) background noise: independent activity trend (e.g., random noise or short spikes
of less than lc duration, shown as blue lines in Figure 5). We treat this status as a
Gaussian distribution ǫ (i.e., N (µǫ, σ

2

ǫ )).
(b) SpikeM: a subsequence/segment that has the characteristics of SPIKEM (i.e., a

word-of-mouth phenomenon, shown as a red line in Figure 5).

If the current window Xc belongs to SpikeM, the algorithm keeps the starting position
nm of the current subsequence (i.e., nm ≤ ns). If the current window status switches
from SpikeM to background noise, or, there is a new-born spike, starting at ns, it re-
ports {nm, lm,θm} as the optimal subsequence.

Proposed algorithm. Algorithm 1 describes the overall procedure. For each in-
coming event X(n), it first creates a disjoint subsequence Xc of window length lc.
It then computes the likelihood values of Xc with respect to the following three
conditions: (1) Lǫ: The current subsequence Xc is treated as background noise (i.e.,
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Lǫ = N (Xc|µǫ, σ
2

ǫ )); (2) Lc: There is a new-born spike θ, starting from ns; (3) Lm: The
subsequence Xc belongs to the continuing spike θm, starting from nm. For each con-
dition, we use a Gaussian distribution to compute the likelihood value of Xc. It then
determines the optimal condition (i.e., finds the maximum likelihood) so that we ob-
tain the best segmentation. More specifically, if the previous disjoint window belongs
to SpikeM and the algorithm detects the ending position of the SPIKEM segment, (that
is, if the current status sc switches from SpikeM to background noise, or it finds a new-
born spike θ starting at ns), it reports {nm, lm,θm}, i.e., the starting position nm, length
lm and the parameter set θm, as the optimal solution.

Complexity. Let n be the event stream length and lm be the maximum length of
the qualifying subsequences.

LEMMA 4.4. SPIKEM-OFFLINE requires O(n2) time and O(n) space per time tick.

PROOF. SPIKEM requires O(n2) time and O(n) space to calculate the activity vol-
ume of length n, i.e., {∆B(1), · · ·∆B(n)} (see Equation 3 in Model 1).

LEMMA 4.5. SPIKESTREAM requires at least O(1) and at most O(lm
2) time and at

least O(1) and at most O(lm) space per time tick.

PROOF. If the current status is the background noise, SPIKESTREAM requires
O(lc

2) time and O(lc) space to compute the new SPIKEM parameter using a current
window Xc of length lc. If the current status is SPIKEM, it needs to update the current
SPIKEM parameter set using X(nm : ne), where, the length of X(nm : ne) is at most
lm+ lc. Here, since lc is a small constant value compared with lm and n, the complexity
can be simplified to O(1) ∼ O(lm

2) time and O(1) ∼ O(lm) space.

5. EXPERIMENTS

To evaluate the effectiveness of SPIKEM, we carried out experiments on real datasets.
The experiments were designed to answer the following questions:

— Q1: Can we explain the cluster centers of K-SC?
— Q2: How well does our model match MemeTracker data?
— Q3: How well does it fit other data?
— Q4: How well does it forecast future patterns?
— Q5: How does it behave in an arbitrary graph?
— Q6: How well does it capture information diffusion patterns in real event streams?

Dataset description. We performed experiments on the following three real
datasets.

— MemeTracker: This dataset covers three months of blog activity from August 1 to
October 31 20084. It contains short quoted textual phrases (“memes”), each of which
consists of the number of mentions over time. We choose 1,000 phrases in blogs with
the highest volume in a 7-day window around their peak volume.

— Twitter: We used more than 7 million Twitter5 posts of 20 million users covering
an 8-month period from June 2011 to January 2012. We selected the 10,000 most
frequently used hashtags in a one-week window around their peak volume, with
100,000 users that mentioned these items most frequently.

4http://memetracker.org/
5http://twitter.com/
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Table III. The model parameters of our SPIKEM best fitting on six
patterns of K-SC (see Figure 1). Note that the total populations
N are around 2, 000 − 3, 000, and the strength of the infection
β ∗N = 0.8− 1.0 for each pattern (also see the text for details).
We see that Pattern C3 has a big exogenous shock at nb = 40,
and Patterns C4, C5 and C6 exhibit daily periodicity (Pa ≃ 0.4).

C1 C2 C3 C4 C5 C6
N 2407 1283 1466 3079 4183 3435

β ∗N 0.95 1.00 0.86 0.92 0.79 0.69
nb 26 17 40 35 0 34
Sb 4.73 0.06 114.13 23.24 2.58 45.58
ǫ 0.36 0.01 0.43 1.48 0.32 13.97
Pa 0.18 0.06 0.22 0.38 0.28 0.39
Ps 12 5 7 6 2 2

— Google: This dataset consists of the volume of searches for various queries (i.e.,
words) on Google6. Each query represents search volumes related to keywords over
time.

5.1. Q1: Explaining K-SC clusters

The results for this dataset were presented in section 1 (see Figure 1). Our model cor-
rectly captures the six patterns of K-SC.

Model analysis. Table III gives a further description of the SPIKEM fitting. Our
model consists of seven parameters, each of which describes the behavior of the spikes.
Note that the total populations N are almost the same for all patterns (around 2,000
to 3,000). This is because these six patterns are scaled on the y-axis so that they all
have a peak volume of 100. In our model, the strength of the infection is described as
β ∗ N . Specifically, we can see that β ∗ N is between 0.7 − 1.0 for these six patterns.
We also see that Pattern C3 includes an extreme shock Sb = 114 at time nb = 40,
which means that this spike was strongly affected by an external burst of activity.
Actually, it has a sudden peak and relatively rapid relaxation (see Figure 1 (c)). On the
other hand, Patterns C4, C5 and C6 have several peaks about 24 hours apart with a
strength Pa ≃ 0.4.

Model fitting accuracy. We also evaluated our fitting accuracy by using the root
mean square error (RMSE) between estimated values and real values:

RMSE =

√

√

√

√

1

nd

nd
∑

n

(X(n)−∆B(n))2

where, X(n) and ∆B(n) are original and predicted sequences, respectively. We com-
pared SPIKEM with the (a) SI, (b) SIRS and (c) C-S (i.e., a self-exciting Hawkes pro-
cess with endogenous/exogenous bursts [Crane and Sornette 2008]) models. Here, for
each model, we used the LM method to fit the parameter set, and minimize the error
between the original and predicted sequences.

Figure 6 shows the fitting accuracy result for six patterns of K-SC. Note that a lower
value indicates a better fitting accuracy. SI has symmetric rise-and-fall patterns, while
SIRS generates different rise-and-fall slopes. However, as discussed in section 3 (see
Figure 2), these models cannot model the power-law tail parts of the spikes. C-S has
the ability to describe power-law growth (i.e., endogenous) or sudden peaks (i.e., exoge-
nous), and it generates power-law relaxation patterns, but cannot generate exponen-

6https://www.google.com/trends/
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Fig. 6. Fitting accuracy of SPIKEM on six patterns of K-SC (Patterns C1-C6). SPIKEM consistently out-
performs its competitors (i.e., C-S, SIRS, SI) with respect to accuracy (RMSE) between the original values
and the models. Note that a lower value indicates a better fitting accuracy.

tial growing patterns. Also note that, these three competitors cannot describe periodic
user activities. On the other hand, our solution, SPIKEM achieves high accuracy for
every pattern of K-SC.

5.2. Q2: Matching MemeTracker patterns

Figure 7 and Figure 8 show the results of model fitting on the MemeTracker dataset.
We selected six typical sequences according to the K-SC clusters. That is, each se-
quence corresponds to each pattern (C1-C6). We show the original sequences (black
dots) and SPIKEM fitting, ∆B(n) (red line) in both linear-linear (top) and log-log (bot-
tom) scales. In the log-log scale, we also show the count of uninformed bloggers, U(n).
In Figure 7, the bottom text shows the short phrase (meme) of each sequence. All of
the phrases are sourced from U.S. politics in 2008. We obtained several observations
for each sequence:

— Patterns C1 and C2: they have almost the same size of population, N ≃ 500, except
that C2 has a quicker rise and fall (i.e., stronger infection, β ∗ N = 1.4) than C1
(β ∗N = 0.94).

— Pattern C3: this sequence has a sudden rise and a power law decay. There is a slight
daily periodicity.

— Patterns C4 and C5: there are clearly daily periodicities. Pattern C6, “lipstick on a
pig”, has the largest population of all six sequences (i.e., N = 6259).

— Pattern C6: the sequence, “yes we can”, consists of huge spikes around n = 40, and
constant periodic noise. This is because the bloggers mention this phrase as Barack
Obama’s slogan as well as with more general meanings. We can also find that there
are several extreme points (i.e., missing values) around n = 120 (see blue circle in
log-log scale).

5.3. Q3: Matching other data

We also demonstrate the effectiveness of our model for other types of spikes.

Fitting on Twitter data. Figure 9 and Figure 10 show our fitting results as re-
gards the hashtags of Twitter data. A hashtag is used to mark keywords or topics in a
Tweet, e.g., #christmas, #newyear. In these figures, we can see that Twitter data behave
similarly to MemeTracker data (see C1-C6).

Our model captures the following characteristics:

— #assange (Pattern C2): this is a topic about Julian Assange, the founder of Wik-
iLeaks. There are several mentions before the peak point (December 5, 2011).
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“i love this country too much to let them take over another election”
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(c) Pattern C3: Meme #13
“hope over fear, unity of purpose over conflict and discord”

Fig. 7. Fitting results of SPIKEM on six typical patterns from the MemeTracker dataset (Pattern C1-C3).
The figures are shown in both ‘linear-linear’ (left) and ‘log-log’ (right) scales. The bottom text shows the
phrase (“meme”) of each pattern. We can see that SPIKEM successfully captures each pattern on both linear
and log scales.
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(d) Pattern C4: Meme #87
“what is required of us now is a new era of responsibility”

50 100 150
0

50

100

150

200

Time

V
a

lu
e

N =6259, beta*N=0.73

 

 

Original

∆ B(n)

10
2

10
0

10
2

10
4

Time

V
a
lu

e

N =6259, beta*N=0.73

 

 

Original

∆ B(n)

U(n)

(e) Pattern C5: Meme #9
“you can put lipstick on a pig”
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(f) Pattern C6: Meme #3
“yes we can yes we can”

Fig. 8. Fitting results of SPIKEM for six patterns from the MemeTracker dataset (Pattern C4-C6). Also note
that SPIKEM is robust against noise: we found several extreme points (i.e., missing values) around n = 120
in the figure (f) - see blue circle in log-log scale.
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(a) Pattern C1 #blacktuesday
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(b) Pattern C2 #assange (Wikileaks)
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(c) Pattern C3 #ripstevejobs (Rest in peace, Steve Jobs)

Fig. 9. Fitting results of SPIKEM for six hashtags from the Twitter dataset (Pattern C1-C3). The left and
right columns show linear-linear and log-log scales, respectively.
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(d) Pattern C4 #arresteddevelopment (TV series)
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(e) Pattern C5 #ACC (Atlantic Coast Conference)
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(f) Pattern C6 #BogorRockStage (music event)

Fig. 10. Fitting results of SPIKEM for six hashtags from the Twitter dataset (Pattern C4-C6). The left and
right columns show linear-linear and log-log scale, respectively.
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(a) “tsunami” (2005) (b) “Harry Potter” (2007)

Fig. 11. SPIKEM fitting for the Google dataset: the volume of searches for the keyword (in black dots) and
fitting results (in red lines). Note that the window size is per week.

— #ripstevejobs (Pattern C3): there is a sudden peak on October 5, 2011, with a long
heavy tail (see Figure 9(b) in log-log scale). This was caused by the death of Steve
Jobs (i.e., Rest in Peace, Steve Jobs).

— #arresteddevelopment (Pattern C4): this a topic about the TV series, “Arrested De-
velopment”. There is a clear daily periodicity with a peak point.

Fitting on GoogleTrend data. We can also observe influence propagation in
queries on Internet search engines. Figure 11 shows two different types of spikes on
Google. Note that this dataset is calculated on a weekly basis, and each volume is
scaled so that they all have a peak volume of 100. For an external catastrophic event
(a) “tsunami”, we see that there is a super quick rise immediately after the Indian
Ocean earthquake and tsunami in 2005. In contrast, (b) “harry potter” has a slower
rise, which is because this spike was generated by “word-of-mouth” activity surround-
ing the release of a Harry Potter movie in 2007. SPIKEM successfully captures both
types of spikes.

5.4. Q4: Tail part forecasts

So far we have seen how SPIKEM captures the temporal dynamics for various spikes.
Here, we answer a more practical question: given the first part of the spike, how can we
forecast the future behavior of the tail part? Figure 12 shows our forecasting results for
MemeTracker data. We selected two phrases with the highest populations (#9 and #13
in Figures 7 and 8). We trained our models by using values obtained over a period of
54 hours (solid black lines in the figure), and then forecasted the following days (solid
red lines, about five days). Note that the vertical axis uses a logarithmic scale.

We compared our method with the following forecasting methods: (a) AR, i.e., a
traditional forecasting algorithm (for a fair comparison, we used seven regression co-
efficients with the same size as our model parameters), (b) SARIMA, i.e., seasonal
ARIMA (we set Pp = 24 hours), where we determined the optimal parameter set using
AIC, and (c) TBATS [Livera et al. 2011], i.e., a state-of-the-art forecasting algorithm
for complex seasonal time series (we set Pp = 24 hours).

As discussed in section 1, AR, SARIMA and TBATS are unsuitable for capturing
non-linear dynamics; they are linear models, and they cannot generate power law de-
cays. Note that, SARIMA and TBATS have the ability to capture sinusoidal cyclic
patterns, however, they quickly converge to the zero, or some constant value, and fail
to forecast long-range non-linear diffusion patterns.

The right column of Figure 12 shows the forecasting error of each approach (i.e.,
RMSE between the original and estimated volumes). A lower value indicates a bet-
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Fig. 12. Results of tail-part forecasting for the MemeTracker data. We train spikes from n = 0 to 54, and
then start forecasting at time n = 54. Our SPIKEM better reflects reality, while other methods (i.e., AR,
SARIMA, TBATS) cannot capture long-tail decay patterns.

ter forecasting accuracy. Our method achieves a high forecasting accuracy for both
sequences.

More importantly, our model can forecast the rise part of spikes as well as the tail
part (we discuss this in detail in Section 6).

5.5. Q5: Information diffusion in an arbitrary graph

Next, we demonstrate how our proposed model behaves in an arbitrary graph
topology. Figure 13, Figure 14 and Figure 15 show our results for Kronecker-
Graph [Leskovec et al. 2010], Twitter and Google [McAuley and Leskovec 2012], re-
spectively 7.

For each figure, the left column shows (i) the adjacency matrix of the given graph,
and (ii) the PageRank score of each node. Note that the nodes in figure (ii) are sorted in
descending order. The right column shows the results for our model, that is, figure (iii)
shows scatter plots of PageRank vs. nmode (left, shown as blue points) and PageRank vs.
max∆B(n) (right, shown as red points). In figure (iii), each point represents each trial,
starting with a different node (i.e., sid). Figure (iv) shows the spikes of several trials,
and the legend box shows the PageRank scores. Note that nmode describes the time tick
at which the spike ∆B(n) reached its maximum value (that is, nmode = arg max

n

∆B(n)).

With respect to the SPIKEM-G analysis, we made several interesting and important
observations.

OBSERVATION 1 (FAST-RISE). The PageRank scores of the starting nodes and the
time-to-peak values nmode are negatively correlated, for all datasets.

7http://snap.stanford.edu/data/
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Fig. 13. Behavior analysis for KroneckerGraph: the left column shows (i) the adjacency matrix and (ii)
PageRank of the given graph, while the right column shows our results, that is, (iii) PageRank vs. nmode

(left) and PageRank vs. max∆B(n) (right), and (iv) several spikes starting with different nodes (i.e., differ-
ent PageRank).
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Fig. 14. Behavior analysis for Twitter: the left column shows (i) the adjacency matrix and (ii) PageRank of
the given graph, while the right column shows our results, that is, (iii) PageRank vs. nmode (left) and PageR-
ank vs. max∆B(n) (right), and (iv) several spikes starting with different nodes (i.e., different PageRank).
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Fig. 15. Behavior analysis for Google: the left column shows (i) the adjacency matrix and (ii) PageRank of
the given graph, while the right column shows our results, that is, (iii) PageRank vs. nmode (left) and PageR-
ank vs. max∆B(n) (right), and (iv) several spikes starting with different nodes (i.e., different PageRank).
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Fig. 16. Real-time monitoring of information diffusion in the MemeTracker streams. The top figure shows
the original event stream, and the bottom figure shows our discoveries. Note that the optimal diffusion
segments are shown as red lines.

If the starting blogger is strong and popular, that is, he/she has a high PageRank
score, a new event/rumor will propagate very quickly through the network. In contrast,
if the starting node has a lower connectivity, the model tends to have a long-term
propagation process (please see, e.g., the lightblue spike in Figure 14 (a)-(iv)).

OBSERVATION 2 (HIGH-PEAK). The PageRank scores and the maximum (i.e., peak)
points max∆B(n) have a weak positive correlation, but no clear difference.

Compared with the previous plots (i.e., PageRank vs. nmode), there is no clear distinc-
tion here. For example, in Figure 15 (b), which has a total population N = 522, the
peak values max∆B(n) are almost the same for all trials, i.e., between 11-14 (please
see the red points in (b)-(iii)).

5.6. Q6: Pattern discovery in real event streams

We now describe how our algorithm effectively and efficiently discovers important pat-
terns and trends in real event streams.

Discovery of information diffusion. SPIKESTREAM discovered the following in-
teresting diffusion patterns:

— MemeTracker: Figure 16 shows our results for MemeTracker streams (i.e., (a) Meme
#3 “yes we can yes we can” and (b) Meme #4 “joe the plumber”). Each stream con-
sists of blogging activities covering over 6 months, starting from August 1 2008 (on
an hourly basis). As shown in the figure, our proposed algorithm identified all the
important diffusion spikes (shown as red lines), as well as the positions of the all
cut points (shown as vertical lines).
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— Twitter: Figure 17 shows the results for Twitter (hashtags) event streams (starting
from August 1, 2008 on an hourly basis). The first three event streams are related to
popular TV programs (i.e., “BONES”, “Big Bang Theory”, “Breaking Bad”), where
there are clear weekly cyclic spikes, each of which corresponds to the broadcast of
a new episode. For example, as shown in figure (c), there are strong weekly spikes
and these spikes continue to grow significantly until October 9. In fact, Breaking
Bad was one of the most popular TV shows in the U.S., and the final episode of
Season 4 was broadcast on October 9. Similarly, SPIKESTREAM can also identify
long-range diffusion patterns (as shown in figure (d) “Hurricane”), as well as non-
periodic multiple spikes (e.g., (e) “Boxing”).

— Google: Figure 18 shows our results for Google streams, which consist of keyword-
search volumes covering over ten years (from 2004 to the present, on a weekly basis).
SPIKESTREAM captures important trends and the influence propagation process in
various types of data streams, such as political terms, e.g., ((a) “Barak Obama” and
(b) “Obama care”), popular keywords, e.g., (c) “Olympic” and (d) “Harry Potter” and
economic crisis ((e) “Subprime”).

Scalability. Figure 19 compares SPIKESTREAM with SPIKEM-OFFLINE in terms of
computation time for varying sequence lengths n. Note that the figures are shown in
log-log scales. As we expected, SPIKESTREAM determines the qualifying subsequences
and their model parameters significantly faster than the offline algorithm for large
datasets (i.e., up to several orders of magnitude).

6. DISCUSSION - SPIKEM AT WORK

Our proposed model, SPIKEM is capable of various applications. Here, we describe
important applications and show some usefulness examples of our approach.

6.1. “What-if” forecasting

We discussed tail-part forecasting in subsection 5.4. Ideally, we want to forecast not
only the tail part, but also the rise part of a spike. This is much more difficult, because
we usually have very few points in the rise part of a spike. However, if this is a repeat-
ing event, such as, say, the spikes induced by the release of ‘Harry Potter’ movies, can
we forecast future spikes if we know the release date of the next movie? It transpires
that our SPIKEM model can also help with this (difficult) task.

Thus, the problem we address in Figure 20 is as follows: we are given (a) the first
spike in 2009, “Harry Potter and the Half-Blood Prince” (n = 185); (b) the release dates
of the two sequel movies (blue text with arrows pointed at n = 255 and 289), and (c) the
access volume before the release dates (and specifically from 8 to 2 weeks in advance).
Can we forecast the rise and fall shapes of upcoming spikes and their peak points?

Solution and results. SPIKEM can predict the potential population N of users who
are interested in “Harry Potter”, and the strength of ‘word-of-mouth’ infection: β. Our
solution is to assume that these values are fixed for all subsequent spikes. The only
difference is the strength of the “external shock”, i.e., nb and Sb. Our solution consists
of the following three-step process:

(1) Train the parameter set θ by using the first spike (solid black line in the figure).
(2) With the fixed parameters θ, infer the new values of ñb and S̃b by using the be-

ginning part of the next spike (blue lines between double arrows at n = 250 and
280).

(3) Generate the spikes using θ and ñb and S̃b (red lines).
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Fig. 17. Real-time monitoring of information diffusion in the Twitter streams. The top figure shows the
original event stream, and the bottom figure shows our discoveries. Note that the optimal diffusion segments
are shown as red lines.

ACM Transactions on the Web, Vol. 11, No. 1, Article 39, Publication date: February 2017.



Non-linear Dynamics of Information Diffusion in Social Networks 39:31

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 

Original

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 
Original

SpikeM

(a) “Barak Obama”

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 

Original

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 
Original

SpikeM

(b) “Obama care”

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

V
a

lu
e

 

 

Original

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

V
a

lu
e

 

 Original

SpikeM

(c) “Olympic”

2004 2005 2006 2007 2008 2009 2010 2011 2012
0

50

V
a

lu
e

 

 
Original

2004 2005 2006 2007 2008 2009 2010 2011 2012
0

50

V
a

lu
e

 

 Original

SpikeM

(d) “Harry Potter”

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 

Original

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

50

100

V
a

lu
e

 

 
Original

SpikeM

(e) “Subprime”

Fig. 18. Real-time monitoring of information diffusion in the Google streams. The top figure shows the
original event stream, and the bottom figure shows our discoveries. Note that the optimal diffusion segments
are shown as red lines.
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Fig. 19. Scalability of SPIKESTREAM: Wall clock time vs. sequence length n, shown in log-log scales.
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Fig. 21. Outlier detection on Google dataset (in log-log scale). Notice that the biggest spike, “world marks
tsunami anniversary” occurred after one year (i.e., 52 weeks later).

Figure 20 shows that our model successfully captures the two sequel spikes and peak
points nmode, especially for around rise parts and peak points, which are the most
important for the spike forecasts.

6.2. Outlier detection

Since SPIKEM has a very high fitting accuracy on real datasets (described in section 5),
another natural application would be anomaly detection. Figure 21 shows the fitting
result of Figure 11 (a), in a log-log scale. Note that the black circles are the original
sequence, and the pink line is our model fitting. We can visually observe that there are
several points that do not overlap the model. For example, (a) on March 29, there is
one spike, since another earthquake occurred on March 28. (b) There is a huge spike
on December 26, 2005, which is exactly one year after the Indian Ocean earthquake.

6.3. Reverse engineering

Most importantly, our model can provide an intuitive explanation such as the potential
number of interested bloggers, and the quality of news. Figure 22 shows the scatter/pdf
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Fig. 22. Reverse engineering: scatter/pdf plots of several parameters: (1) β ∗ N vs. log(N) and (2) Pa vs.
Ps over 1,000 memes/hashtags. (a) MemeTracker: total potential bloggers N ≃ 1, 000, and strength of the
infection β ∗ N ≃ 0.6 − 1.2. Almost all the memes have clear daily periodicity with high activities around
6pm (i.e., Ps ≃ 0). (b) Twitter: similar trends except more spread in Ps, possibly, due to multiple time zone.
Also see the text for more observations.

plots of several parameters: (1) β ∗N vs. logN , (2) Pa vs. Ps. Here we report our discov-
eries on MemeTracker and Twitter datasets (see Figure 22).

OBSERVATION 3 (TOTAL POPULATION OF BLOGGERS). The total populations of po-
tential bloggers/users N are almost the same for both datasets (around N = 1, 000 −
2, 000).

We also note that they are skewed to the right, i.e., there is a long tail of larger values.

OBSERVATION 4 (STRENGTH OF FIRST INFECTION). The strength of the “first
burst” is β ∗N ≃ 0.6− 1.2, for each dataset.

The above two observations agree with the intuition: we can see common behavior
for MemeTracker and Twitter, which means that they have similar characteristics in
terms of social activities.
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OBSERVATION 5 (COMMON ACTIVITY AND PERIODICITY). Typical user behavior is
to have a daily periodicity with (a) phase shift Ps = 0 (small population during early
morning, large population at peak point, 6pm) for MemeTracker, while (b) more spread
in Ps.

Note that almost all spikes have a daily periodicity in both datasets. The only the dif-
ference between the two datasets is that Twitter has several Ps values. This is because
Twitter has multiple time zones (e.g., US, UK, Australia, and India).

7. RELATED WORK

We provide a survey of the related literature, which falls broadly into three categories:
(a) time series analysis, (b) influence propagation and (c) burst detection.

7.1. Time series Analysis

There is a lot of interest in mining time series and data streams [Sakurai et al. 2015;
Matsubara and Sakurai 2016; Box et al. 1994; Papadimitriou and Yu 2006;
Aggarwal 2014; Jr. et al. 2014; Wang et al. 2006; Ferlez et al. ; Chen and Ng 2004;
Papadimitriou et al. 2005; Vlachos et al. 2005; Matsubara et al. 2014a;
Sakurai et al. 2005b; Toyoda et al. 2013; Chang et al. 2014; Lee et al. 2007;
Sun et al. 2006; Davidson et al. 2013]. Traditional approaches applied to data
mining include auto-regression (AR), and variations [Li et al. 2011], linear dynamical
systems (LDS), Kalman filters (KF) and their variants [Jain et al. 2004; Li et al. 2009;
Li et al. 2010; Tao et al. 2004]. With respect to the non-linear time-series analysis,
the work in [Matsubara et al. 2013] uses the power laws and fractal dimensions to
characterize the temporal patterns of trajectories, while Korn et al. [Korn et al. 2006]
presented a scalable algorithm for the power-law/fractal modeling of data streams.

Non-linear methods for forecasting tend to be hard to interpret, because they rely
on nearest-neighbor search [Chakrabarti and Faloutsos 2002], interpolation in state-
space [Sauer 1994], or artificial neural networks [Weigend and Gerschenfeld 1994].
Similarity search, indexing and pattern discovery in time sequences have
also attracted huge interest [Faloutsos et al. 1994; Kahveci and Singh 2001;
Gilbert et al. 2001; Patel et al. 2002; Keogh et al. 2004; Papadimitriou and Yu 2006;
Lin et al. 2004; Vlachos et al. 2009; Papapetrou et al. 2011; Sakurai et al. 2007;
Sakurai et al. 2005a; Matsubara et al. 2009].

Regarding large-scale time-series mining, TriMine [Matsubara et al. 2012a] is
a scalable method for forecasting co-evolving multiple (thousands of) sequences,
while, [Matsubara et al. 2014] developed a fully-automatic mining algorithm for co-
evolving sequences. Rakthanmanon et al. [Rakthanmanon et al. 2012] proposed a
similarity search algorithm for “trillions of time series” under the DTW distance.
Yang et al. [Yang et al. 2014] developed a new model for mining time-evolving
event sequences. As regards parameter-free mining, the work in [Böhm et al. 2008;
Chakrabarti et al. 2004; Tatti and Vreeken 2012], focused on summarization and clus-
tering based on the MDL principle. However, none of these methods specifically focused
on modeling bursts.

7.2. Influence propagation

In recent years, there has been an explosion of interest in mining and analyses of blogs,
online news, social media, epidemics and online user activities [Sakurai et al. 2016;
Leskovec et al. 2007; Beutel et al. 2012; Prakash et al. 2012; Leskovec et al. 2009;
Yang and Leskovec 2010; Kumar et al. 2010; Prakash et al. 2011; Kempe et al. 2003a;
Tong et al. 2010; Goetz et al. 2009; Koren 2008; Shmueli et al. 2012; Lu et al. 2010;
Eirinaki and Vazirgiannis 2003; Cui et al. 2013; Gruhl et al. 2004; Guha et al. 2004;
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Weng et al. 2010b; Saez-Trumper et al. 2012], and recently the reverse problem (‘find
who started it’) [Lappas et al. 2010; Shah and Zaman 2011]. The canonical text-
book for epidemiological models such as SI and SIR models is Anderson and
May [Anderson and May 1991]. The power-law decay of influence has been reported
in blogs [McGlohon et al. 2007], with a exponent of -1.5. Barabasi and his col-
leagues reported exponents of -1 and -1.5, for the response time in correspondence
[Barabasi 2005].

Analysis of information diffusion and influence propagation in social networks
have also attracted considerable interest [Lou and Tang 2013; Weng et al. 2010a;
Kwon et al. 2013; Cha et al. 2010; Kempe et al. 2003b; Chen et al. 2009;
Leskovec et al. 2007a]. Yang et al. [Yang and Leskovec 2011] examined patterns
of temporal behavior on Twitter, blog posts and news media articles. They did an em-
pirical classification of rise-and-fall patterns, and found six typical patterns that pop-
ularity of online content exhibits (see Figure 1). The work in [Matsubara et al. 2012b]
studied the rise and fall patterns in the information diffusion process through online
social media. The work in [Figueiredo et al. 2014] investigated the effect of revisits
on content popularity, while [Ribeiro 2014] focused on the daily number of active
users, and studied the mechanisms of the growth and death of membership-based
websites. Prakash et al. [Prakash et al. 2012] described a case where two competing
products/ideas spreading over the network, and provided a theoretical analysis
of the propagation model (winner takes all: WTA) for arbitrary graph topology.
FUNNEL [Matsubara et al. 2014b] is a non-linear model for spatially co-evolving
epidemic tensors, while EcoWeb [Matsubara et al. 2015] is the first attempt to bridge
the theoretical modeling of a biological ecosystem and user activities on the Web.
The work in [Figueiredo et al. 2014] investigated the effect of revisits on content
popularity, while [Ribeiro 2014] focused on the daily number of active users. For
online activity analysis, Gruhl et al. [Gruhl et al. 2005] explored online “chatter” (e.g.,
blogging) activity, and measured the actual sales ranks on Amazon.com. Ginsberg
et al. [Ginsberg et al. 2009] examined a large number of search engine queries
tracking influenza epidemics. They reported that the evolutions of search engine
keywords are highly correlated with actual flu virus activity. The work reported
in [Matsubara et al. 2016; Choi and Varian 2012; Preis et al. 2013; Goel et al. 2010]
studied keyword volume, to predict online user behavior.

7.3. Burst detection

Remotely related to our work are the efforts to spot bursts. This includes the work of
Kleinberg [Kleinberg 2002], the algorithm of Zhu and Shasha [Zhu and Shasha 2003],
and the algorithm of Parikh et al. [Parikh and Sundaresan 2008]. None of the above
gives a parsimonious model for describing the activity in a network.

8. CONCLUSIONS

In this paper, we study the rise-and-fall patterns in information diffusion process
through online media. We present SPIKEM, a general, accurate and succinct model
that explains the rise-and-fall patterns. Our proposed SPIKEM has the following ap-
pealing advantages:

— Unification power: it includes earlier patterns (K-SC) and models as special cases
(i.e., the SI and SIR models), and it can handle an arbitrary graph topology;

— Practicality: it matches the behavior of numerous, diverse, real datasets, including
the power law decay and much more beyond;

— Parsimony: our model requires only a handful of parameters;
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— Usefulness: we describe how to use our model to do ‘short-term’ forecasting, to
answer what-if scenarios, to spot outliers, and to learn more about the mechanisms
of the spikes. We also introduce SPIKESTREAM, which identifies all the important
information-diffusion spikes in a large collection of event stream.
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