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Abstract

In this paper, we investigate the problem of
reasoning over natural language statements.
Prior neural based approaches do not explic-
itly consider the inter-dependency among an-
swers and their proofs. In this paper, we pro-
pose PROBR, a novel approach for joint an-
swer prediction and proof generation. PROBR
defines a joint probabilistic distribution over
all possible proof graphs and answers via an in-
duced graphical model. We then optimize the
model using variational approximation on top
of neural textual representation. Experiments
on multiple datasets under diverse settings
(fully supervised, few-shot and zero-shot eval-
uation) verify the effectiveness of PROBR, e.g.,
achieving 10%-30% improvement on QA ac-
curacy in few/zero-shot evaluation. Our codes
and models can be found at https://github.com/
changzhisun/PRobr/.

1 Introduction

Automatic reasoning over explicitly provided
knowledge has been a persistent goal of AI (Newell
and Simon, 1956; McCarthy et al., 1960). Early ap-
proaches focus on reasoning over formal (logical or
probabilistic) representations. However, automati-
cally constructing and reasoning over formal rep-
resentations remain challenging. To bypass these
challenges, in this work, we investigate reasoning
over natural language statements instead of formal
representations.

Given a set of facts and rules and a query (ex-
pressed in natural language), we aim to predict the
answer and provide proof to prove or disprove the
query. For example, in Figure 1, there are two
facts, six rules and two queries, each of which
is expressed by natural language. To predict the
true/false of each query, starting from the facts, we
need to reason deductively by applying given rules

∗Equal contribution.
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Facts :
F1: The circuit includes the 
battery.
F2: The wire is metal.

Rules :
R1: If the circuit includes the 
battery and the battery is not flat 
then the circuit is powered.
R2: If the circuit includes the 
switch and the switch is on then 
the circuit is complete.
R3: If the circuit does not have the 
switch then the circuit is complete.
R4: If the wire is metal then the 
wire is conducting.
R5: If the wire is plastic then the 
wire is not conducting. 
R6: If the circuit is powered and 
the circuit is complete and the 
wire is conducting then the current 
runs through the circuit.

Q1 : The wire is conducting. 
A1: True
Proof：

Q2 : The current does not run 
through the circuit. 
A2: False
Proof：

F2 R4

Figure 1: An example of reasoning over natural lan-
guage statements. The goal is to predict the answer
(true/false) and generate the proof graph.

until we can derive the truth value of the query. The
process of deduction can be represented as a graph,
whose node is either a fact, rule or special NAF
node (explained in the Section 2.1). Generating
answer and proof together makes a system easier
to interpret and diagnose.

Recent work by PROVER (Saha et al., 2020) first
explored this problem through two modules: ques-
tion answering and proof generation. It trains these
two modules through implicit parameter sharing,
and then uses integer linear programming (ILP)
to enforce consistency constraints (only test time).
It is difficult to ensure that the proof generation
module contributes to the question answering mod-
ule, because the proof is not explicitly involved
in the answer prediction. Parameter sharing be-
comes more limited under few/zero-shot settings,
as demonstrated in our experiments. We expect the
proof to enhance the capability of question answer-
ing, especially under few/zero-shot settings. One

https://github.com/changzhisun/PRobr/
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promising solution is to explicitly exploit more in-
teraction between question answering and proof
generation.

In this paper, we propose PROBR, a novel
probabilistic graph reasoning framework for joint
question answering and proof generation. PROBR

defines a joint distribution over all possible proof
graphs and answers with an undirected probabilis-
tic graphical model (PGM). It directly character-
izes the interaction between proofs and answers.
PGMs generally incur intractable learning and in-
ference for the complex graph (Koller and Fried-
man, 2009). For example, computing normaliza-
tion constant in PGMs using traditional probabilis-
tic propagation algorithm (e.g.sum-product algo-
rithm (Kschischang et al., 2001)) requires large
time complexity. Therefore, we propose a varia-
tional approach to maximize the pseudolikelihood
of joint distribution to optimize the model more
efficiently. First, a variational distribution was in-
troduced based on mean-field assumption. Then we
maximize the pseudolikelihood of joint distribution
given the output of variational distribution. At the
same time, we align these two distributions using
the training data. PROBR can be efficiently trained
by stochastic gradient descent. Our contributions
are summarized as follows1:

• We propose PROBR for joint question answering
and proof generation, which defines a joint distri-
bution over all possible proofs and answers with an
undirected PGM to capture more dependencies.

• We present an efficient variational approxima-
tion method to learn PROBR.

• Experiments on several datasets verify the effec-
tiveness of PROBR under multiple settings (super-
vised, few-shot, and zero-shot evaluation).

2 Task Definition

To reason over natural language statements, we de-
sign to answer the query and generate correspond-
ing proof generation jointly. Figure 1 shows an ex-
ample. Given a declarative query Q, and given rele-
vant facts and rules (expressed in natural language),
the task aims to predict the answer A (true/false) to
the query Q based on the closed-world assumption
(described in 2.1). Meanwhile, it generates a proof
P (described in 2.2) to prove or disprove Q.

1Our codes and models can be found at https://github.com/
changzhisun/PRobr/.

2.1 Semantics

We adopt the semantics of Datalog (Ceri et al.,
1989) in this work. Following prior work (Clark
et al., 2020), we make a closed-world assumption
(CWA), which means a fact is true if it can be
deduced based on a given context, and any fact not
provable is assumed false. And we use negation
as failure (NAF) (Clark, 1978), a rule of inference
which allows one to deduce that NOT S is true if all
possible proofs of a statement S fail. For example,
in Figure 1, the NAF node before R3 represents “the
circuit does not have the switch”. Note that under
this semantics, negative facts and negative rules are
not allowed because of redundancy under the CWA
assumption.

2.2 Formulations

A proof is a directed acyclic graph (Figure 1). Each
node is either a fact, rule or special NAF node. Each
edge directs from either a fact (or NAF) to a rule
or a rule to another rule, which indicates that a
fact is consumed by a rule, or another rule con-
sumes a rule, respectively. For simplicity, let con-
text C = {s1, . . . , sn} denote the collection of
sentence, each of which is a fact or rule.

Proof Formulation We assign an indicator vari-
able (0/1) for each possible node and edge, to vec-
torize the structure of a given proof P . Specifically,
we introduce the indicator variables V = {Vi}ni=1

for each element si in the context C, and an indica-
tor variable E = {Eij}ni,j=1 (i 6= j) for a possible
edge connecting from node si to node sj , where:

• Vi = 1 indicates si is in the proof P , while
Vi = 0 means si is absent.

• Eij = 1 indicates there is an edge directing from
si to sj , while Eij = 0 means si cannot direct to
sj in the proof by an edge.

In addition, we assign a binary answer variable
A to indicate the true value of the query. Figure 2a
shows a simplified example, where context C =
{s1, s2, s3}, and the query can be decided as true
by a very simple proof, consisting of only two
nodes (s1 and s3) and a single edge (from s1 to
s3). The proof can be represented by the following
variables: A = V1 = V3 = E13 = 1, V2 = E12 =
E21 = E23 = E31 = E32 = 0.

https://github.com/changzhisun/PRobr/
https://github.com/changzhisun/PRobr/
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(a) Proof graph and its induced random variables.

𝑉! 𝑉" 𝑉# 𝐸!" 𝐸"!𝐸!# 𝐸#!𝐸"# 𝐸#" 𝑉$

Φ!
% Φ"

% Φ#
%

Φ!"
& Φ!#

& Φ"!
& Φ"#

& Φ#!
& Φ#"

&

Φ$

(b) Factor graph induced by the proof graph.

Figure 2: Joint probabilistic distribution by assigning indicator variables for the answer and proof. The solid circles
and lines in 2a indicate that these corresponding statements and edges are in the final proof graph.

3 Approach

We introduce the proposed framework PROBR,
which jointly provides the answer to the given
query over natural contexts and generates corre-
sponding proof. Different from PROVER that
makes independence assumption, PROBR can cap-
ture more dependencies between the proof and an-
swer. PROBR defines a joint distribution over all
possible proofs and answers with an undirected
graphical model (Section 3.1), and we use neural
networks to parameterize each component (Section
3.2). To optimize PROBR efficiently, we adopt a
variational approach to maximize the pseudolike-
lihood of joint distribution (Section 3.3). Finally,
we introduce the strategy during inference (Section
3.4).

3.1 Overview
We start by formalizing joint question-answering
module and proof-generation module in a proba-
bilistic way. We clarify some notations as follows:

• A context C = {s1, . . . , sn}, si is a sentence.

• A query Q.

• An answer variable A, it can take any value a in
{0, 1}.

• Node variables V = {Vi}ni=1, each Vi can take
any value vi in {0, 1}.

• Edge variables E = {Eij}ni,j=1 (i 6= j), each
Eij can take any value eij in {0, 1}.

• Let Y , (A, E ,V) denote all output variables.

In our notation, we use uppercase letters for vari-
ables (e.g., Y,A, Vi, Eij) and lowercase letters for
variables that take values (e.g., y, a, vi, eij).

Given a context C and a query Q, PROBR tries
to assign true/false values for all variables, includ-
ing answer variable A, node variables V and edge
variables E. We define a joint distribution over all
possible Y , officially denoted as p(Y ): 2

p(Y = y) ∝
ΦA(a)

∏
i

ΦV
i (vi, a)

∏
i,j

ΦE
ij(vi, vj , eij , a)(1)

Different from PROVER that makes independent
assumption, such a factorization of Equation 1 can
characterize the interaction between the variables
Vi, Vj , Eij and A. Figure 2b shows the factor graph
of joint distribution p(Y ) for the example in Figure
2a. Theoretically, when we have the ground truth
y∗, 3 we can minimize the following objective:

Ljoint = − log p(Y = y∗) (2)

However, the normalization constant of p(Y ) is
hard to calculate due to high-order factors of large
size (RHS of Equation 1). In this paper, we provide
a variational-based solution to optimize objective
Ljoint (Section 3.3).

3.2 Parameterization
We use neural networks to parameterize each po-
tential function of Equation 1: ΦA,ΦV

i and ΦE
ij .

Text Representation Network Given a con-
text C and a query Q, to obtain a contex-
tual representations, we use RoBERTa (Liu
et al., 2019) as our backbone network follow-
ing (Clark et al., 2020; Saha et al., 2020). The
input to RoBERTa is the concatenation of C
and Q, separated by [SEP] tokens, denoted as:
[CLS], C, [SEP], [SEP], Q, [SEP].

2We drop the input variables for clarity.
3We use ∗ to indicate the ground truth in the text.



Potential Function for the Answer (ΦA) After
the RoBERTa encoding, we can get the global rep-
resentation of the entire input through the first to-
ken [CLS], denoted as h[CLS]. To score the possible
values of variable A, i.e. 0 or 1, we use a multi-
layer perceptron (MLP) as a nonlinear transforma-
tion:[

ΦA(A = 0)
ΦA(A = 1)

]
= MLP1(h[CLS]) ∈ R2

Potential Function for Statements (ΦV
i ) For

each sentence si (a fact or a rule), we compute
the sentence representation hsi by performing a
mean pool of the all token representation based on
the output of RoBERTa. It is worth noting that NAF
is a special fact, we calculate hNAF through linear
transformation on hCLS. To score the possible val-
ues of variables (Vi, A), we also use another MLP
as a score function:

ΦV
i (Vi = 0, A = 0)

ΦV
i (Vi = 0, A = 0)

ΦV
i (Vi = 0, A = 0)

ΦV
i (Vi = 1, A = 1)

 = MLP2(hsi) ∈ R4,

where the dimension 4 indicates the number of
possible values for the combination of variables Vi

and A. We share the parameters of MLP2 across
all sentences.

Potential Function for Statement Relations
(ΦE

ij) For each sentence pair (si, sj), we obtain
the sentence pair representation hsi,sj , by concate-
nating hsi and hsj with their element-wise dif-
ference (directionality). To score four variables
(Vi, Vj , Eij , A) simultaneously, similarly, we use a
new MLP as score function:

ΦE
ij

(
Vi = 0, Vj = 0,
Eij = 0, A = 0

)
...

ΦE
ij

(
Vi = 1, Vj = 1,
Eij = 1, A = 1

)


= MLP3(hsi,sj )
∈ R16,

hsi,sj = hsi ⊕ hsj ⊕ (hsi − hsj ),

where⊕ is the vector concatenation, and the dimen-
sion 16 indicates the number of possible values for
the combination of four variables (Vi, Vj , Eij , A).
We also share the parameters of MLP3 across all
sentence pairs.

3.3 Learning the Model
To tackle the challenge of optimizing Ljoint (Equa-
tion 2), we adopt the widely used pseudolikeli-
hood as an alternative objective for optimization

(Richardson and Domingos, 2006), bypassing the
calculation of the normalization constant.

Pseudolikelihood Given a set of variable Y , the
pseudolikelihood of Y is defined as:

ppseduo(Y ) =
∏
y∈Y

p(y|Y−y) =

p(A|E ,V)
∏
i

p(Vi|Y−Vi)
∏
i,j

p(Eij |Y−Eij )

When we have the ground truth y∗, we can mini-
mize the following objective:

Lpseudo = − log ppseudo(Y = y∗)

However, it is difficult to decode the optimal assign-
ments based on the pseudolikelihood (Equation 3).
There is a rich body of literature on how to decod-
ing in a sampling way (Chapter 12 (Salakhutdinov,
2014)). In this paper, however, we choose a modern
approach using variational approximation.

Variational Approximation We approximate
pseudolikelihood of Y with a mean-field (Opper
and Saad, 2001) variational distribution q(Y ), in
which y ∈ Y is independent of each other. Simi-
larly, we parameterize each independent distribu-
tion with a neural network. Formally, q(Y ) is for-
mulated as below:

q(Y ) = q(A)
∏
i

q(Vi)
∏
i,j

q(Eij),[
q(A = 0)
q(A = 1)

]
= Softmax

(
MLP4(h[CLS])

)
∈ R2,[

q(Vi = 0)
q(Vi = 1)

]
= Softmax (MLP5(hsi)) ∈ R2,[

q(Eij = 0)
q(Eij = 1)

]
= Softmax

(
MLP6(hsi,sj )

)
∈ R2.

Once the variational distribution q(Y ) is obtained,
it can provide conditions for pseudolikelihood
p(y|Y−y), thus avoiding the sampling process to
obtain the optimal assignments. In the optimization
process, we adopt the simple strategy to update the
parameters of p and q.

• For node and edge variables, we optimize

Lnode= −
∑
i

log q(Vi = v∗i ),

Ledge= −
∑
i,j

log q(Eij = e∗ij).



• For the answer variable, we optimize

Lqa= − log p(A = a∗|Ê , V̂),

where Ê = {êij}, V̂ = {v̂i} are the predictions of
variational model 4.

The final objective is to minimize:

Lfinal= Lqa + Lnode + Ledge

Overall, PROBR is a mixture of independent (vari-
ational) model and undirected graphical model
through some reasonable approximations. Our final
optimized distribution can be decomposed as di-
rected graphical model q(V)q(E)p(A|E ,V), where
q(V), q(E) adopts the independent factorized prob-
ability, and p(A|E ,V) is implied by the undirected
graphical model (Equation 1). In this way, PROBR

enjoys the advantage of global normalization (undi-
rected graphical model) and is easier to optimize
(directed graphical model).

Discussion Another way to achieve consensus
between q(Y ) and ppseudo(Y ) is to directly opti-
mize the KL divergence:

Lkl =
∑
y∈Y

KL (q(y)||p(y|Y−y))

However, Lkl does not bring any improvement for
supervised learning (Section 4.6), hence we ex-
clude it during training. PROBR can be easily ex-
tended to semi-supervised learning scenario by us-
ing this Lkl term. Specifically, minimize the Lfinal

for the labeled data; and minimize the Lkl for the
unlabeled data. We save this for future work.

3.4 Inference

After training, for nodes and edges, we choose the
predictions of the variational model, and for an-
swers, we choose the prediction of the joint model
based on the output of variational model. In addi-
tion, we also employ the Integer Linear Program-
ming (ILP) to enforce consistency constraints fol-
lowing (Saha et al., 2020).

4 Experiments

To evaluate the effectiveness and generality of our
PROBR model, we conduct both fully supervised

4We also experiment with the gold proof to optimize Lqa

(Section 4.6).

learning, few-shot learning, and zero-shot learn-
ing over several datasets5 against two baselines:
RuleTakers and PROVER6.

4.1 Datasets and Metrics
We use three datasets (DU0-DU5, Birds-Electricity,
ParaRules) introduced by (Clark et al., 2020).

DU0-DU5 DUd (d=0,1,2,3,5) are five synthetic
datasets, each containing 100k queries with theo-
ries expressed in templated English, proof graphs
expressed in natural language, and answers de-
scribed as True/False. Answers require reasoning
up to depth d for queries in DUd.

Birds-Electricity This dataset is a test-only
dataset of 5k samples in total. It describes birds
and electric circuit, which was used to evaluate the
out-of-distribution performance of the models.

ParaRules ParaRules is a dataset generated and
paraphrased from sampled theories (facts + rules).
It contains 40k queries against≈2k theories, where
the original templated English facts and rules are
creatively paraphrased into more diverse natural
language by crowdsourcing. For example, the fact
“Dave is cold” can be rephrased as“After Dave got
wet in the rain, he feels cold”; the rule “If some-
one is nice then they are young” can be rephrased
into “A person described as being nice will cer-
tainly be young”. Different from DUd and Birds-
Electricity dataset composed of synthetic language,
ParaRules can better test models’ reasoning ability
over human-like language.

Metrics We evaluate the performance consider-
ing both answers and proofs. For answers, we
evaluate the QA Accuracy (QA). For proofs, we
evaluate the Proof Accuracy (PA), and PA refers
to the fraction of examples where generated proof
matches exactly with the gold proof. We also re-
port Full Accuracy (FA) to denote the faction of
examples where both the answer and the proof are
exactly correct.

4.2 Fully Supervised Learning
For the supervised setting, we train PROBR on the
training split of the DU5 dataset with gold answer

5https://allenai.org/data/ruletaker
6Please refer to supplementary materials for our hyper-

parameter and computing infrastructure. For RuleTakers
and PROVER, we directly adopt results reported in their
papers if exist, and for extra setting beyond papers, we
reproduce the baselines using provided codes and parame-
ters:https://github.com/swarnaHub/PRover.

https://allenai.org/data/ruletaker
https://github.com/swarnaHub/PRover


D Cnt QA PA FA

RT PV PB PV PB PV PB

0 6299 100 100 100 98.4 98.4 98.4 98.4
1 4434 98.4 99.0 99.9 93.2 94.3 93.1 94.3
2 2915 98.4 98.8 99.9 84.8 86.1 84.8 86.1
3 2396 98.8 99.1 100 80.5 82 80.5 82
4 2134 99.2 98.8 100 72.5 76.1 72.4 76.1
5 2003 99.8 99.3 100 65.1 72.2 65.1 72.2

All 20192 99.2 99.3 99.9 87.1 88.8 87.1 88.8

Table 1: Fully supervised learning performance com-
pared among RuleTakers (RT), PROVER (PV) and
PROBR (PB) on test split of DU5 after training on train-
ing split of DU5, reported in varying depth.

and gold proof and evaluate on the test split of
DU5. We evaluate above metrics of varying depths
d against two state-of-the-art baselines: RuleTakers
(Clark et al., 2020) and PROVER (Saha et al., 2020),
showed in Table 1. For RuleTakers and PROVER,
we directly adopt the results reported in their paper.
Note that RuleTakers can not generate a proof, so
we only report the PA and FA on PROVER and
PROBR. The corresponding validation set results
can be found in the supplementary materials .

Overall, at each depth, PROBR generates com-
parable or superior QA accuracy to baselines. And
for 88.8% of test examples, PROBR can generate
exact proofs and answers. Similar to PROVER,
the full accuracy matches the proof accuracy for
PROBR, showing that in this fully supervised set-
ting, full accuracy depends on proof accuracy at
each depth. The predicted answer is always correct
when the corresponding proof is correct. Actually,
answering predicting is much easier than a proof
generation.

When increasing depth, PROBR provides accu-
rate answers without any loss in QA performance.
It becomes harder to generate correct proofs for
both PROVER and PROBR, while PROBR out-
performs PROVER by 7 points of proof accuracy
(65.1%→ 72.2%) at depth 5.

4.3 Few-shot Learning

We explore the few-shot learning ability of PROBR

against PROVER by reducing training data size. For
the sake of comparison, we follow the same setting
in (Saha et al., 2020), that is, randomly reserve 30k,
10k, 1k queries of overall 69762 training queries to
train the model, denoted as “RQ”.

It’s worth noting that in the DU5 training dataset,
several queries can be asked from a shared con-
text. To better explore the ability when varying the
amount of training data, we conduct another set

Train Data QA PA FA

PV PB PV PB PV PB

100% 99.3 99.9 87.1 88.8 87.1 88.8

RC
10% 94.5 99.9 63.6 60.4 63.3 60.4
5% 80.6 99.7 34.0 44.2 32.1 44.2
1% 70.2 88.2 20.0 21.6 15.1 20.3

RQ
30k 97.8 99.9 72.5 86.8 72.4 86.8
10k 87.1 99.9 44.0 72.4 42.7 72.3
1k 51.3 82.1 28.0 21.1 15.0 18.4

Table 2: Few-shot performance comparison among
PROVER and PROBR on test split of DU5 after train-
ing on partial DU5 samples. (Two types of training
samples, RC: queries from randomly reserved contexts;
RQ: randomly reserved queries.)

of experiments, denoted as “RC”. Specifically, we
first randomly select context that appeared in the
DU5 training dataset by a varying percentage, i.e.,
10%, 5%, 1%, and then reserve training samples
where the query is asked from the selected con-
text. Results of both “RQ” and “RC” are showed
in Table 2.

Generally speaking, proof generation is harder
to improve with increased training data, while QA
performance improves rapidly by enlarging the
training size. PROBR widely defeats PROVER on
QA accuracy in each setting in Table 2. Surpris-
ingly, PROBR achieves 88.2% QA accuracy when
training with only 700 samples (RC-1%). Over-
all, PROBR has a more stable ability for question
answering when varying training data; however,
PROVER’s QA accuracy drops sharply when lack-
ing training data. This is because that PROBR con-
siders the joint distribution over all possible proofs
and answers, and can better learn to reason over
natural language statements. While as for proof
accuracy, even if in some settings, PROBR loses
to PROVER (RC-1%), we will soon discover that
PROVER overfits to the small training data (Section
4.4 and 4.5).

Another interesting observation is that the full
accuracy is not always consistent with the proof
accuracy in few-shot learning, which is different
from the observation in Section 4.2. Furthermore,
we find that the gap between PA and FA when
using PROBR is much smaller than that of PROVER.
This is because PROVER trains in a multi-task way,
where the question answering module and proof
generation module could make independent errors,
especially when training data is not enough. But
PROBR can better utilize limited data to reason,
which again verifies the effectiveness of PROBR.



Test Cnt QA PA FA

RT PV PB PV PB PV PB

B1 40 97.5 95.0 100.0 92.5 100.0 92.5 100.0
B2 40 100 95.0 100.0 95.0 100.0 95.0 100.0
E1 162 96.9 100 100.0 95.1 97.5 95.1 97.5
E2 180 98.3 100 100.0 91.7 93.3 91.7 93.3
E3 624 91.8 89.7 98.2 72.3 79.3 71.8 79.3
E4 4224 76.7 84.8 95.6 80.6 77.7 80.6 77.7

All 5270 80.1 86.5 96.3 80.7 79.3 80.5 79.3

Table 3: Zero-shot performance comparison among
RuleTakers, PROVER, and PROBR on Birds-Electricity
dataset after training on DU5.

4.4 Zero-shot Evaluation

Following previous work (Clark et al., 2020; Saha
et al., 2020), we evaluate the out-of-distribution
(OOD) performance of PROBR against baselines
on six sub-datasets of Birds-Electricity. We con-
duct zero-shot experiments using DU5-trained
models, which means that the model does not see
any bird-domain or any electricity-domain samples
during training. Results are showed in Table 3.

For QA accuracy, PROBR outperforms PROVER

and RuleTakers obviously in all of sub-datasets. As
for proof accuracy, PROBR performs better when
the depth of the out-of-domain sample ≤ 3, while
there is a PA drop compared to PROVER when
testing on E4. This is a very interesting thing: su-
perficially, proof accuracy drops for complicated
unseen queries, but the QA accuracy for out-of-
domain queries improves a lot (11 points on E4:
84.8% → 95.6%). We save it for future work to
explore the portability of the proof and how an out-
of-domain proof can help with question answering.

Moreover, we evaluate the zero-shot perfor-
mance after few-shot learning. In Table 4, we re-
port the results when testing on Birds-Electricity
after training the model only on partial DU5 (RC-
k and RQ-k, described in 4.3) training partitions.
As shown in Table 4, when testing zero-shot per-
formance after few-shot learning, PROBR is well
ahead of PROVER on QA accuracy. However, as for
proof accuracy, PROBR seems worth than PROVER

on the zero-shot test. Again we point out this amaz-
ing observation. This indicates that data from dif-
ferent domains might have different proof form.
The well-learned proof from one domain might not
be directly adopted to another, but, by training with
PROBR, the well-learned proof from one domain
can help answer out-of-distribution queries.

Train Data QA PA FA

PV PB PV PB PV PB

100% 86.5 96.3 80.7 79.3 80.5 79.3

RC
10% 71.2 99.9 59.4 55.4 59.2 55.4
5% 59.4 99.5 55.0 69.1 46.6 69.0
1% 47.1 60.6 15.1 34.6 10.6 24.4

RQ
30k 83.3 99.9 76.79 76.91 76.72 76.91
10k 78.2 99.7 54.3 56.6 54.3 56.6
1k 50.4 51.3 59.5 34.6 29.9 17.3

Table 4: Zero-shot performance comparison between
PROVER and PROBR after few-shot learning. Test on
Birds-Electricity after training on DU5 or partial DU5
(RC-k and RQ-k) training partitions.

Train
Data

QA PA FA

RT PV PB PV PB PV PB

DU0 53.5 68.7 56.9 44.4 50.7 42.8 41.3
DU1 63.5 73.7 97.7 63.8 63.9 61.9 63.9
DU2 83.9 89.6 99.9 72.6 74.5 72.3 74.4
DU3 98.9 98.6 99.9 79.1 83.2 79.1 83.2

DU5 99.2 99.3 99.9 87.1 88.8 87.1 88.8

Table 5: Performance comparison between RuleTakers,
PROVER, and PROBR when testing on DU5 after train-
ing on DU0, DU1, DU2, DU3, respectively.

4.5 Generalization Ability
Generalize to Unseen Depth We conduct exper-
iments to explore how well PROBR can generate
proofs and provide answers at depths unseen during
training. Following PROVER, we train the model
on the training splits of DU0, DU1, DU2, and
DU3, respectively, and test the QA performance
and proof performance on the overall DU5 test set.
As DU5 contains queries with higher depth than
those seen during training, we can evaluate the
model’s ability when generalized to higher depth.

As shown in Table 5, PROBR performs better
than RuleTakers and PROVER on all of QA/PA/FA
performance when training on D1, D2 and D3,
especially a significant improvement on QA per-
formance. PROBR shows a high and comparable
QA performance when training only on depth=1
(97.7%), which demonstrates PROBR’s superior
generalization ability on depth. This means PROBR

can perfectly answer complicated queries using
only simple training samples, which reduces the
cost of constructing training data.

Generalize to Complex Language We also
evaluate the robustness of PROBR when general-
ized to more diverse natural language. Following
(Clark et al., 2020; Saha et al., 2020), we train our
model on the combined training partitions of DU3



D Cnt
QA PA FA

RT PV PB PV PB PV PB

0 2968 99.8 99.7 99.8 99.5 99.5 99.4 99.4
1 2406 99.3 98.6 99.7 98.0 98.0 97.3 98.0
2 1443 98.2 98.2 99.9 88.9 88.9 88.7 88.9
3 1036 96.7 96.5 99.8 90.0 90.1 89.9 90.1
4 142 90.1 88.0 100 76.1 82.4 76.1 82.4

All 8008 98.8 98.4 99.8 95.4 95.6 95.1 95.5

Table 6: Performance comparison between PROVER
and PROBR when testing on ParaRules test partitions
after training on D3 + ParaRules training partitions.

Train Data QA PA FA

PV PB PV PB PV PB

100% 53.6 82.8 40.0 43.8 38.4 41.6

RC
10% 64.4 89.3 42.0 41.3 41.0 40.3
5% 73.6 84.7 33.1 36.5 29.3 35.1
1% 59.0 56.3 30.4 25.0 18.1 18.3

RQ
30k 59.0 85.8 38.6 43.2 37.5 41.7
10k 59.7 87.7 41.7 42.3 40.3 41.3
1k 51.4 56.3 35.0 25.0 18.4 16.5

Table 7: Performance comparison between PROVER
and PROBR when testing on ParaRules test partitions
after training on DU5 or partial DU5 (RC-k and RQ-k)
training partitions.

and ParaRules, and then test on the ParaRules test
partition. The results in Table 6 show that PROBR

is more robust for human-like language.

To better test the generalization ability for com-
plex natural language, we train the model only
on DU5 or partial DU5 (RC-k and RQ-k, de-
scribed in 4.3) training partitions and test on test
split of ParaRules. This is a more convincing
setup since the model will never see the human-
like language but all templated language during
training. Results are shown in Table 7. When
testing on ParaRules after only training on DU5,
PROBR outperforms PROVER by nearly 30 points
on QA accuracy(53.6% → 82.8%). A similar
trend is observed for training on RC-k and RQ-
k datasets, where PROBR improves the QA accu-
racy when generalized to human-like natural lan-
guage. And the change for proof accuracy is not
significant between PROBR and PROVER, which
supports the observation in Section 4.3 and 4.4,
that PROBR improves QA performance by joint
question-answering and proof-generation learning,
but not necessarily improve the proof performance.

4.6 Ablation Studies

We investigate the effect of training strategy and
objective term Lkl for our model. Specifically we
compare PROBR with the following three variants:
1) PROBR + Gold, that is, we replace predicted
proofs with gold proofs when we optimize Lqa dur-
ing training. 2) PROBR + KL, that is, we add
Lkl between q(Y ) and ppseudo(Y ) during train-
ing. 3)PROBR + Gold + KL means both. For
PROBR and above three variants, we first train on
DU5 or partial DU5 (RC-k) training splits respec-
tively, and Figure 3 reports the QA accuracy on
test split of DU5 (left), ParaRules test partitions
(middle) and Birds-Electricity (right). We observe
that PROBR always achieves the best QA accuracy
on all of three test datasets (DU5, ParaRules, Birds-
Electricity) after training on all of four datasets
with varying size (RC-1%, RC-5%, RC-10%, RC-
100%). And the other three model variants show
inconsistent performance in different settings7.

5 Related Work

Text Reasoning over Formal Representation
Early work employs a pipeline of methods that
converts free text into logic form first (semantic
parsing), and then uses formal logical reasoning
(Musen and Van der Lei, 1988). Due to the seri-
ous error propagation caused by semantic parsing
(Zettlemoyer and Collins, 2005; Berant et al., 2013;
Berant and Liang, 2014), researchers focus on de-
veloping theorem provers by combining the sym-
bolic techniques with the differentiable learning
from neural networks (Reed and de Freitas, 2016;
Abdelaziz et al., 2020; Abboud et al., 2020), such
as NLProlog (Weber et al., 2019), SAT solving
(Selsam et al., 2019) and Neural programme (Nee-
lakantan et al., 2016). To bypass this expensive
and error-prone intermediate logical representation,
reasoning over natural language statements in an
end-to-end manner is promising.

Text Reasoning over Natural Language Natu-
ral logic (MacCartney and Manning, 2009) focuses
on semantic containment and monotonicity by in-
corporating semantic exclusion and implicativity.
Subsequently, Clark et al. (2020) proposes to use
a Transformer-based model to emulate deductive
reasoning and achieves high accuracy on syntheti-
cally generated data. PROVER (Saha et al., 2020)

7For more details, please refer to the supplementary mate-
rials.



PROBR PROBR+GOLD PROBR+KL PROBR+GOLD+KL

Figure 3: QA accuracy compared among PROBR, PROBR + Gold, PROBR + KL, and PROBR + Gold + KL on
DU5 test partition (left), on ParaRules test partitions (middle) and on Birds-Electricity dataset (right), after training
on DU5 or partial DU5 (RC-k) training splits.

points out that a reasoning system should not only
answer queries but also generate a proof. However,
PROVER adopts the multi-task learning framework
in the training stage and cannot effectively capture
the interactions between question answering and
proof generation. Along this line, we explore more
powerful joint models to achieve deep reasoning.

QA and NLI There are bAbI (Weston et al.,
2016), QuaRTz (Tafjord et al., 2019), ROPES (Lin
et al., 2019) and Hotpot QA (Yang et al., 2018)
(QA datasets) involved in rule reasoning. However,
for those datasets, implicit rules (i.e., which multi-
hop chains are valid) need to be inferred from the
training data. In our task, the rules of reasoning are
given in advance. Compared with the Natural Lan-
guage Inference (MacCartney and Manning, 2014),
our task can be regarded as its deductive subset. In
particular, NLI allows for unsupported inferences
(Dagan et al., 2013).

6 Conclusion

In this work, we propose PROBR, a novel proba-
bilistic graph reasoning framework for joint ques-
tion answering and proof generation. PROBR de-
fines a joint distribution over all possible answers
and proofs, which can directly characterize the
interaction between answers and proofs. Experi-
ments prove the effectiveness of proposed PROBR.
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Parameter Value

Training Epochs 30
Optimizer AdamW
Gradient Clipping 1.0
Batch Size 8
Dropout Rate 0.1
Learning rate 1e-5
Max Sequence Length 300

Table 8: Model configurations.

Table 8 lists the default model configurations.
We produce PROBR on 8 NVIDIA Tesla-V100
GPUs. We implement PROBR with PyTorch, using
RoBERTa (Liu et al., 2019) as pre-trained language
model.

B Results on Development Set

Table 9 shows the results on development set under
the fully supervised setting, and the corresponding
test set results are shown in Table 1. Overall, it is
consistent with the findings of the test set results.
PROBR achieves the best performance in three ac-
curacy metrics (QA, PA and FA).

D Cnt QA PA FA

RT PV PB PV PB PV PB

0 6299 100 100 100 98.5 98.7 98.5 98.7
1 4434 98.4 98.8 100 92.2 93.6 92.2 93.6
2 2915 98.4 99.2 99.0 85.6 87.3 85.6 87.3
3 2396 98.8 98.7 100 82.8 85.4 82.8 85.4
4 2134 99.2 98.8 99.7 76.9 80.8 76.9 80.8
5 2003 99.8 99.3 99.9 67.4 74.6 67.4 74.6

All 20192 99.2 99.3 99.9 88.0 90.0 88.0 90.0

Table 9: Fully supervised learning performance com-
pared among RuleTakers (RT), PROVER (PV) and
PROBR (PB) on development split of DU5 after train-
ing on training split of DU5, reported in varying depth.

Table 10 lists the results on development set of
DU5 after training on DU0, DU1, DU2, DU3, re-
spective. The corresponding test set resluts are
shown in Table 5. Comparing with Table 5, each
number is very close (fluctuates within 1% ) and
similar conclusions can be drawn.

Train
Data

QA PA FA

PV PB PV PB PV PB

DU0 68.3 57.0 43.8 50.7 42.3 41.7
DU1 73.2 98.5 63.9 64.3 61.8 64.3
DU2 89.3 99.9 72.6 74.3 72.3 74.3
DU3 98.3 99.9 79.4 83.2 79.4 83.2

DU5 99.3 99.9 88.0 90.0 88.0 90.0

Table 10: Performance comparison between PROVER
and PROBR development split of DU5 after training on
DU0, DU1, DU2, DU3, respectively.

C Results of Ablation Studies

Table 11 lists the comparison results of PROBR

and the three variants of PROBR (mentioned in
Section 4.6). Regarding the Table 11, we have
three observations:

1. In all ablation experiments, PROBR achieved the
best QA performance, demonstrating that PROBR

can capture critical information for question an-
swering in a variety of settings. However, since
some of the dataset are artificially synthesized, it
is difficult to guarantee that PROBR will work in
the real dataset as well. We leave it as future work.

2. In some cases, variant d) (PROBR + Gold +
KL) outperforms PROBR in PA and FA. It shows
the potential advantages of the KL term. In the
future, we will explore proof generation in a semi-
supervised learning scenario through this KL term.

3. When we compare the performance of the two
models PROBR and PROBR + Gold, we can see
that whether the predicted proof or the correct
proof is used during training significantly affects
the final performance. Applying some heuristic
strategies may give better results, such as sched-
uled sampling (Bengio et al., 2015). We will try it
in the future.



Test on DU5 Test on ParaRules Test on Birds-Electricity

QA PA FA QA PA FA QA PA FA

RC-1%

a)88.2
b)53.4
c)76.6
d)70.4

a)21.6
b)21.6
c)21.6
d)21.6

a)20.3
b)21.3
c)14.8
d)20.0

a)56.3
b)47.8
c)50.1
d)52.0

a)25.0
b)25.0
c)25.0
d)25.0

a)18.3
b)14.1
c)12.9
d)14.5

a)60.6
b)55.5
c)51.3
d)54.8

a)34.6
b)34.6
c)34.6
d)34.6

a)24.4
b)17.4
c)17.6
d)19.9

RC-5%

a)99.7
b)92.6
c)83.1
d)61.6

a)44.2
b)43.7
c)31.4
d)47.9

a)44.2
b)43.6
c)30.1
d)45.9

a)84.7
b)57.0
c)73.8
d)50.6

a)36.5
b)37.1
c)36.6
d)38.9

a)35.1
b)35.4
c)27.6
d)37.2

a)99.5
b)84.2
c)60.6
d)81.9

a)69.1
b)62.0
c)45.3
d)73.4

a)69.0
b)62.0
c)42.0
d)65.4

RC-10%

a)99.9
b)97.1
c)93.5
d)95.3

a)60.4
b)57.9
c)52.2
d)69.3

a)60.4
b)57.9
c)51.8
d)69.0

a)89.3
b)59.8
c)63.4
d)59.2

a)41.3
b)40.0
c)40.7
d)37.5

a)40.3
b)38.6
c)39.2
d)35.9

a)99.9
b)80.9
c)69.6
d)75.0

a)55.4
b)59.6
c)53.3
d)66.2

a)55.4
b)59.6
c)53.2
d)66.1

RC-100%

a)99.9
b)99.9
c)99.8
d)99.8

a)88.8
b)88.7
c)89.1
d)89.6

a)88.8
b)88.7
c)89.1
d)89.6

a)82.8
b)60.1
c)60.9
d)59.8

a)43.8
b)42.7
c)42.9
d)43.2

a)41.6
b)39.8
c)41.2
d)41.5

a)96.3
b)86.7
c)84.8
d)88.5

a)79.3
b)81.4
c)78.6
d)80.9

a)79.3
b)81.3
c)78.6
d)80.9

Table 11: QA accuracy, proof accuracy and full accuracy compared among PROBR, PROBR + Gold, PROBR + KL,
and PROBR + Gold + KL on DU5 test partition (left), on ParaRules test partitions (middle) and on Birds-Electricity
dataset (right), after training on DU5 or partial DU5 (RC-k) training splits, where a)–PROBR, b)–PROBR + Gold,
c)–PROBR + KL, d)–PROBR + Gold + KL.


