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Abstract. We present a new, embarrassingly simple approach to in-
stance segmentation. Compared to many other dense prediction tasks,
e.g., semantic segmentation, it is the arbitrary number of instances that
have made instance segmentation much more challenging. In order to
predict a mask for each instance, mainstream approaches either follow
the “detect-then-segment” strategy (e.g., Mask R-CNN), or predict em-
bedding vectors first then use clustering techniques to group pixels into
individual instances. We view the task of instance segmentation from
a completely new perspective by introducing the notion of “instance
categories”, which assigns categories to each pixel within an instance
according to the instance’s location and size, thus nicely converting in-
stance segmentation into a single-shot classification-solvable problem. We
demonstrate a much simpler and flexible instance segmentation frame-
work with strong performance, achieving on par accuracy with Mask
R-CNN and outperforming recent single-shot instance segmenters in ac-
curacy. We hope that this simple and strong framework can serve as a
baseline for many instance-level recognition tasks besides instance seg-
mentation. Code is available at https://git.io/AdelaiDet

Keywords: Instance segmentation, Location category

1 Introduction

Instance segmentation is challenging because it requires the correct separation of
all objects in an image while also semantically segmenting each instance at the
pixel level. Objects in an image belong to a fixed set of semantic categories, but
the number of instances varies. As a result, semantic segmentation can be easily
formulated as a dense per-pixel classification problem, while it is challenging to
predict instance labels directly following the same paradigm.

To overcome this obstacle, recent instance segmentation methods can be cat-
egorized into two groups, i.e., top-down and bottom-up paradigms. The former
approach, namely ‘detect-then-segment’, first detects bounding boxes and then
segments the instance mask in each bounding box. The latter approach learns
an affinity relation, assigning an embedding vector to each pixel, by pushing
away pixels belonging to different instances and pulling close pixels in the same
instance. A grouping post-processing is then needed to separate instances. Both
these two paradigms are step-wise and indirect, which either heavily rely on ac-
curate bounding box detection or depend on per-pixel embedding learning and
the grouping processing.

https://git.io/AdelaiDet
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Fig. 1. Comparison of the pipelines of Mask R-CNN and the proposed SOLO.

In contrast, we aim to directly segment instance masks, under the supervi-
sion of full instance mask annotations instead of masks in boxes or additional
pixel pairwise relations. We start by rethinking a question: What are the funda-
mental differences between object instances in an image? Take the challenging
MS COCO dataset [16] for example. There are in total 36, 780 objects in the
validation subset, 98.3% of object pairs have center distance greater than 30
pixels. As for the rest 1.7% of object pairs, 40.5% of them have size ratio greater
than 1.5×. To conclude, in most cases two instances in an image either have dif-
ferent center locations or have different object sizes. This observation makes one
wonder whether we could directly distinguish instances by the center locations
and object sizes?

In the closely related field, semantic segmentation, now the dominate paradigm
leverages a fully convolutional network (FCN) to output dense predictions with
N channels. Each output channel is responsible for one of the semantic categories
(including background). Semantic segmentation aims to distinguish different se-
mantic categories. Analogously, in this work, we propose to distinguish object
instances in the image by introducing the notion of “instance categories”, i.e.,
the quantized center locations and object sizes, which enables to segment objects
by locations, thus the name of our method, SOLO.

Locations An image can be divided into a grid of S×S cells, thus leading to
S2 center location classes. According to the coordinates of the object center, an
object instance is assigned to one of the grid cells, as its center location category.
Note that grids are used conceptually to assign location category for each pixel.
Each output channel is responsible for one of the center location categories, and
the corresponding channel map should predict the instance mask of the object
belonging to that location. Thus, structural geometric information is naturally
preserved in the spatial matrix with dimensions of height by width. Unlike Deep-
Mask [24] and TensorMask [4], which run in a dense sliding-window manner and
segment an object in a fixed local patch, our method naturally outputs accurate
masks for all scales of instances without the limitation of (anchor) box locations
and scales.

In essence, an instance location category approximates the location of the ob-
ject center of an instance. Thus, by classification of each pixel into its instance
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location category, it is equivalent to predict the object center of each pixel in the
latent space. The importance here of converting the location prediction task into
classification is that, with classification it is much more straightforward and eas-
ier to model varying number of instances using a fixed number of channels, at the
same time not relying on post-processing like grouping or learning embeddings.

Sizes To distinguish instances with different object sizes, we employ the
feature pyramid network (FPN) [14], so as to assign objects of different sizes
to different levels of feature maps. Thus, all the object instances are separated
regularly, enabling to classify objects by “instance categories”. Note that FPN
was designed for the purposes of detecting objects of different sizes in an image.

In the sequel, we empirically show that FPN is one of the core components
for our method and has a profound impact on the segmentation performance,
especially objects of varying sizes being presented.

With the proposed SOLO framework, we are able to optimize the network in
an end-to-end fashion for the instance segmentation task using mask annotations
solely, and perform pixel-level instance segmentation out of the restrictions of
local box detection and pixel grouping. For the first time, we demonstrate a very
simple instance segmentation approach achieving on par results to the dominant
“detect-then-segment” method on the challenging COCO dataset [16] with di-
verse scenes and semantic classes. Additionally, we showcase the generality of our
framework via the task of instance contour detection, by viewing the instance
edge contours as a one-hot binary mask, with almost no modification SOLO can
generate reasonable instance contours. The proposed SOLO only needs to solve
two pixel-level classification tasks, thus it may be possible to borrow some of the
recent advances in semantic segmentation for improving SOLO. The embarrass-
ing simplicity and strong performance of the proposed SOLO method may predict
its application to a wide range of instance-level recognition tasks.

1.1 Related Work

We review some instance segmentation works that are closest to ours.
Top-down Instance Segmentation. The methods that segment object in-
stance in a priori bounding box fall into the typical top-down paradigm. FCIS [13]
assembles the position-sensitive score maps within the region-of-interests (ROIs)
generated by a region proposal network (RPN) to predict instance masks. Mask
R-CNN [9] extends the Faster R-CNN detector [25] by adding a branch for seg-
menting the object instances within the detected bounding boxes. Based on Mask
R-CNN, PANet [19] further enhances the feature representation to improve the
accuracy, Mask Scoring R-CNN [10] adds a mask-IoU branch to predict the qual-
ity of the predicted mask and scoring the masks to improve the performance.
HTC [2] interweaves box and mask branches for a joint multi-stage processing.
TensorMask [4] adopts the dense sliding window paradigm to segment the in-
stance in the local window for each pixel with a predefined number of windows
and scales. In contrast to the top-down methods above, our SOLO is totally box-
free thus not being restricted by (anchor) box locations and scales, and naturally
benefits from the inherent advantages of FCNs.
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Bottom-up Instance Segmentation. This category of the approaches gen-
erate instance masks by grouping the pixels into an arbitrary number of object
instances presented in an image. In [22], pixels are grouped into instances us-
ing the learned associative embedding. A discriminative loss function [7] learns
pixel-level instance embedding efficiently, by pushing away pixels belonging to
different instances and pulling close pixels in the same instance. SGN [18] de-
composes the instance segmentation problem into a sequence of sub-grouping
problems. SSAP [8] learns a pixel-pair affinity pyramid, the probability that two
pixels belong to the same instance, and sequentially generates instances by a
cascaded graph partition. Typically bottom-up methods lag behind in accuracy
compared to top-down methods, especially on the dataset with diverse scenes.
Instead of exploiting pixel pairwise relations SOLO directly learns with the in-
stance mask annotations solely during training, and predicts instance masks
end-to-end without grouping post-processing.
Direct Instance Segmentation. To our knowledge, no prior methods directly
train with mask annotations solely, and predict instance masks and semantic cat-
egories in one shot without the need of grouping post-processing. Several recently
proposed methods may be viewed as the ‘semi-direct’ paradigm. AdaptIS [26]
first predicts point proposals, and then sequentially generates the mask for the
object located at the detected point proposal. PolarMask [28] proposes to use
the polar representation to encode masks and transforms per-pixel mask predic-
tion to distance regression. They both do not need bounding boxes for training
but are either being step-wise or founded on compromise, e.g., coarse parametric
representation of masks. Our SOLO takes an image as input, directly outputs
instance masks and corresponding class probabilities, in a fully convolutional,
box-free and grouping-free paradigm.

2 Our Method: SOLO

2.1 Problem Formulation

The central idea of SOLO framework is to reformulate the instance segmentation
as two simultaneous category-aware prediction problems. Concretely, our system
divides the input image into a uniform grids, i.e., S×S. If the center of an object
falls into a grid cell, that grid cell is responsible for 1) predicting the semantic
category as well as 2) segmenting that object instance.

Semantic Category For each grid, our SOLO predicts the C-dimensional out-
put to indicate the semantic class probabilities, where C is the number of classes.
These probabilities are conditioned on the grid cell. If we divide the input image
into S×S grids, the output space will be S×S×C, as shown in Figure 2 (top).
This design is based on the assumption that each cell of the S×S grid must
belong to one individual instance, thus only belonging to one semantic category.
During inference, the C-dimensional output indicates the class probability for
each object instance.
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Fig. 2. SOLO framework. We reformulate the instance segmentation as two sub-
tasks: category prediction and instance mask generation problems. An input image is
divided into a uniform grids, i.e., S×S. Here we illustrate the grid with S = 5. If the
center of an object falls into a grid cell, that grid cell is responsible for predicting the
semantic category (top) and masks of instances (bottom). We do not show the feature
pyramid network (FPN) here for simpler illustration.

Instance Mask In parallel with the semantic category prediction, each positive
grid cell will also generate the corresponding instance mask. For an input image
I, if we divide it into S×S grids, there will be at most S2 predicted masks in
total. We explicitly encode these masks at the third dimension (channel) of a
3D output tensor. Specifically, the instance mask output will have HI×WI×S2

dimension. The kth channel will be responsible to segment instance at grid (i,
j), where k = i · S + j (with i and j zero-based)3. To this end, a one-to-one
correspondence is established between the semantic category and class-agnostic
mask (Figure 2).

A direct approach to predict the instance mask is to adopt the fully convolu-
tional networks, like FCNs in semantic segmentation [20]. However the conven-
tional convolutional operations are spatially invariant to some degree. Spatial
invariance is desirable for some tasks such as image classification as it introduces
robustness. However, here we need a model that is spatially variant, or in more
precise words, position sensitive, since our segmentation masks are conditioned
on the grid cells and must be separated by different feature channels.

Our solution is very simple: at the beginning of the network, we directly
feed normalized pixel coordinates to the networks, inspired by ‘CoordConv’ op-
erator [17]. Specifically, we create a tensor of same spatial size as input that
contains pixel coordinates, which are normalized to [−1, 1]. This tensor is then
concatenated to the input features and passed to the following layers. By simply
giving the convolution access to its own input coordinates, we add the spatial
functionality to the conventional FCN model. It should be noted that Coord-
Conv is not the only choice. For example the semi-convolutional operators [23]
may be competent, but we employ CoordConv for its simplicity and being easy
to implement. If the original feature tensor is of size H×W×D, the size of new

3 We also show an equivalent and more efficient implementation in Section 4.



6 Wang et al.

x7

H ×W ×(256+2) H ×W ×256

S ×S ×C

2H ×2W ×𝑆2

Category

Mask 

S ×S ×256 S ×S ×256

x7Align

Fig. 3. SOLO Head architecture. At each FPN feature level, we attach two sibling
sub-networks, one for instance category prediction (top) and one for instance mask
segmentation (bottom). In the mask branch, we concatenate the x, y coordinates and
the original features to encode spatial information. Here numbers denote spatial res-
olution and channels. In the figure, we assume 256 channels as an example. Arrows
denote either convolution or interpolation. ‘Align’ means bilinear interpolation. Dur-
ing inference, the mask branch outputs are further upsampled to the original image
size.

tensor becomes H×W×(D + 2), in which the last two channels are x-y pixel
coordinates. For more information on CoordConv, we refer readers to [17].
Forming Instance Segmentation. In SOLO, the category prediction and the
corresponding mask are naturally associated by their reference grid cell, i.e.,
k = i · S + j. Based on this, we can directly form the final instance segmenta-
tion result for each grid. The raw instance segmentation results are generated
by gathering all grid results. Finally, non-maximum-suppression (NMS) is used
to obtain the final instance segmentation results. No other post processing op-
erations are needed.

2.2 Network Architecture

SOLO attaches to a convolutional backbone. We use FPN [14], which generates
a pyramid of feature maps with different sizes with a fixed number of channels
(usually 256-d) for each level. These maps are used as input for each prediction
head: semantic category and instance mask. Weights for the head are shared
across different levels. Grid number may varies at different pyramids. Only the
last conv is not shared in this scenario.

To demonstrate the generality and effectiveness of our approach, we instanti-
ate SOLO with multiple architectures. The differences include: (a) the backbone
architecture used for feature extraction, (b) the network head for computing the
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instance segmentation results, and (c) training loss function used to optimize
the model. Most of the experiments are based on the head architecture as shown
in Figure 3. We also utilize different variants to further study the generality.
We note that our instance segmentation heads have a straightforward structure.
More complex designs have the potential to improve performance but are not
the focus of this work.

2.3 SOLO Learning

Label Assignment For category prediction branch, the network needs to give
the object category probability for each of S×S grid. Specifically, grid (i, j) is
considered as a positive sample if it falls into the center region of any ground
truth mask, Otherwise it is a negative sample. Center sampling is effective in
recent works of object detection [27,12], and here we also utilize a similar tech-
nique for mask category classification. Given the mass center (cx, cy), width w,
and height h of the ground truth mask, the center region is controlled by con-
stant scale factors ε: (cx, cy, εw, εh). We set ε = 0.2 and there are on average 3
positive samples for each ground truth mask.

Besides the label for instance category, we also have a binary segmentation
mask for each positive sample. Since there are S2 grids, we also have S2 output
masks for each image. For each positive samples, the corresponding target binary
mask will be annotated. One may be concerned that the order of masks will
impact the mask prediction branch, however, we show that the most simple
row-major order works well for our method.

Loss Function We define our training loss function as follows:

L = Lcate + λLmask, (1)

where Lcate is the conventional Focal Loss [15] for semantic category classifica-
tion. Lmask is the loss for mask prediction:

Lmask =
1

Npos

∑
k

1{p∗
i,j>0}dmask(mk,m

∗
k), (2)

Here indices i = bk/Sc, j = kmodS, if we index the grid cells (instance category
labels) from left to right and top to down. Npos denotes the number of positive
samples, p∗ and m∗ represent category and mask target respectively. 1 is the
indicator function, being 1 if p∗i,j > 0 and 0 otherwise.

We have compared different implementations of dmask(·, ·): Binary Cross En-
tropy (BCE), Focal Loss [15] and Dice Loss [21]. Finally, we employ Dice Loss
for its effectiveness and stability in training. λ in Equation (1) is set to 3. The
Dice Loss is defined as

LDice = 1−D(p,q), (3)

where D is the dice coefficient which is defined as

D(p,q) =
2
∑

x,y(px,y · qx,y)∑
x,y p2

x,y +
∑

x,y q2
x,y

. (4)
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Here px,y and qx,y refer to the value of pixel located at (x, y) in predicted soft
mask p and ground truth mask q.

2.4 Inference

The inference of SOLO is very straightforward. Given an input image, we forward
it through the backbone network and FPN, and obtain the category score pi,j

at grid (i, j) and the corresponding masks mk, where k = i · S + j. We first use
a confidence threshold of 0.1 to filter out predictions with low confidence. Then
we select the top 500 scoring masks and feed them into the NMS operation. We
use a threshold of 0.5 to convert predicted soft masks to binary masks.
Maskness. We calculate maskness for each predicted mask, which represents
the quality and confidence of mask prediction maskness = 1

Nf

∑Nf

i pi. Here Nf

the number of foreground pixels of the predicted soft mask p, i.e., the pixels
that have values greater than threshold 0.5. The classification score for each
prediction is multiplied by the maskness as the final confidence score.

3 Experiments

We present experimental results on the MS COCO instance segmentation bench-
mark [16], and report ablation studies by evaluating on the 5k val2017 split.
For our main results, we report COCO mask AP on the test-dev split, which
has no public labels and is evaluated on the evaluation server.
Training details. SOLO is trained with stochastic gradient descent (SGD). We
use synchronized SGD over 8 GPUs with a total of 16 images per mini-batch.
Unless otherwise specified, all models are trained for 36 epochs with an initial
learning rate of 0.01, which is then divided by 10 at 27th and again at 33th epoch.
Weight decay of 0.0001 and momentum of 0.9 are used. All models are initialized
from ImageNet pre-trained weights. We use scale jitter where the shorter image
side is randomly sampled from 640 to 800 pixels, following [4].

3.1 Main Results

We compare SOLO to the state-of-the-art methods in instance segmentation on
MS COCO test-dev in Table 1. SOLO with ResNet-101 achieves a mask AP
of 37.8%, the state of the art among existing two-stage instance segmentation
methods such as Mask R-CNN. SOLO outperforms all previous one-stage meth-
ods, including TensorMask [4]. Some SOLO outputs are visualized in Figure 6,
and more examples are in the supplementary.

3.2 How SOLO Works?

We show the network outputs generated by S = 12 grids (Figure 4). The sub-
figure (i, j) indicates the soft mask prediction results generated by the corre-
sponding mask channel. Here we can see that different instances activates at dif-
ferent mask prediction channels. By explicitly segmenting instances at different
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Table 1. Instance segmentation mask AP (%) on the COCO test-dev. All entries
are single-model results. Here we adopt the “6×” schedule (72 epochs), following [4].
Mask R-CNN∗ is our improved version with scale augmentation and longer training
time. D-SOLO means Decoupled SOLO as introduced in Section 4.

backbone AP AP50 AP75 APS APM APL

two-stage:
MNC [5] Res-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
FCIS [13] Res-101-C5 29.2 49.5 − 7.1 31.3 50.0
Mask R-CNN [9] Res-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
MaskLab+ [3] Res-101-C4 37.3 59.8 39.6 16.9 39.9 53.5
Mask R-CNN∗ Res-101-FPN 37.8 59.8 40.7 20.5 40.4 49.3

one-stage:
TensorMask [4] Res-50-FPN 35.4 57.2 37.3 16.3 36.8 49.3
TensorMask [4] Res-101-FPN 37.1 59.3 39.4 17.4 39.1 51.6
YOLACT [1] Res-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1
PolarMask [28] Res-101-FPN 30.4 51.9 31.0 13.4 32.4 42.8

ours:
SOLO Res-50-FPN 36.8 58.6 39.0 15.9 39.5 52.1
SOLO Res-101-FPN 37.8 59.5 40.4 16.4 40.6 54.2
D-SOLO Res-101-FPN 38.4 59.6 41.1 16.8 41.5 54.6
D-SOLO Res-DCN-101-FPN 40.5 62.4 43.7 17.7 43.6 59.3

Table 2. The impact of grid number and FPN. FPN significantly improves the
performance thanks to its ability to deal with varying sizes of objects.

grid number AP AP50 AP75 APS APM APL

12 27.2 44.9 27.6 8.7 27.6 44.5
24 29.0 47.3 29.9 10.0 30.1 45.8
36 28.6 46.3 29.7 9.5 29.5 45.2

Pyramid 35.8 57.1 37.8 15.0 38.7 53.6

positions, SOLO converts the instance segmentation problem into a position-
aware classification task. Only one instance will be activated at each grid, and
one instance may be predicted by multiple adjacent mask channels. During in-
ference, we use NMS to suppress these redundant masks.

3.3 Ablation Experiments

Grid number. We compare the impacts of grid number on the performance
with single output feature map as shown in Table 2. The feature is generated by
merging C3, C4, and C5 outputs in ResNet (stride: 8). To our surprise, S = 12
can already achieve 27.2% AP on the challenging MS COCO dataset. SOLO
achieves 29% AP when improving the grid number to 24. This results indicate
that our single-scale SOLO can be applicable to some scenarios where object
scales do not vary much.
Multi-level Prediction. From Table 2 we can see that our single-scale SOLO
could already get 29.0 AP on MS COCO dataset. In this ablation, we show
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Fig. 4. SOLO behavior. We show the visualization of soft mask prediction. Here S =
12. For each column, the top one is the instance segmentation result, and the bottom
one shows the mask activation maps. The sub-figure (i, j) in an activation map indicates
the mask prediction results (after zooming out) generated by the corresponding mask
channel.

that the performance could be further improved via multi-level prediction using
FPN [14]. We use five pyramids to segment objects of different scales (details in
supplementary). Scales of ground-truth masks are explicitly used to assign them
to the levels of the pyramid. From P2 to P6, the corresponding grid numbers are
[40, 36, 24, 16, 12] respectively. Based on our multi-level prediction, we further
achieve 35.8 AP. As expected, the performance over all the metrics has been
largely improved.

CoordConv. Another important component that facilitates our SOLO paradigm
is the spatially variant convolution (CoordConv [17]). As shown in Table 3, the
standard convolution can already have spatial variant property to some extent,
which is in accordance with the observation in [17]. As also revealed in [11], CNNs
can implicitly learn the absolute position information from the commonly used
zero-padding operation. However, the implicitly learned position information is
coarse and inaccurate. When making the convolution access to its own input co-
ordinates through concatenating extra coordinate channels, our method enjoys
3.6 absolute AP gains. Two or more CoordConvs do not bring noticeable im-
provement. It suggests that a single CoordConv already enables the predictions
to be well spatially variant/position sensitive.

Loss function. Table 4 compares different loss functions for our mask optimiza-
tion branch. The methods include conventional Binary Cross Entropy (BCE),
Focal Loss (FL), and Dice Loss (DL). To obtain improved performance, for Bi-
nary Cross Entropy we set a mask loss weight of 10 and a pixel weight of 2 for
positive samples. The mask loss weight of Focal Loss is set to 20. As shown,
the Focal Loss works much better than ordinary Binary Cross Entropy loss. It
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Table 3. Conv vs. CoordConv. CoordConv can considerably improve AP upon
standard convolution. Two or more layers of CoordConv are not necessary.

#CoordConv AP AP50 AP75 APS APM APL

0 32.2 52.6 33.7 11.5 34.3 51.6
1 35.8 57.1 37.8 15.0 38.7 53.6
2 35.7 57.0 37.7 14.9 38.7 53.3
3 35.8 57.4 37.7 15.7 39.0 53.0

Table 4. Different loss functions may be employed in the mask branch. The Dice
loss (DL) leads to best AP and is more stable to train.

mask loss AP AP50 AP75 APS APM APL

BCE 30.0 50.4 31.0 10.1 32.5 47.7
FL 31.6 51.1 33.3 9.9 34.9 49.8
DL 35.8 57.1 37.8 15.0 38.7 53.6

is because that the majority of pixels of an instance mask are in background,
and the Focal Loss is designed to mitigate the sample imbalance problem by de-
creasing the loss of well-classified samples. However, the Dice Loss achieves the
best results without the need of manually adjusting the loss hyper-parameters.
Dice Loss views the pixels as a whole object and could establish the right bal-
ance between foreground and background pixels automatically. Note that with
carefully tuning the balance hyper-parameters and introducing other training
tricks, the results of Binary Cross Entropy and Focal Loss may be considerably
improved. However the point here is that with the Dice Loss, training typically
becomes much more stable and more likely to attain good results without using
much heuristics. To make a fair comparison, we also show the results of Mask
R-CNN with Dice loss in the supplementary, which performs worse (-0.9AP)
than original BCE loss.

Alignment in the category branch. In the category prediction branch, we
must match the convolutional features with spatial size H×W to S×S. Here,
we compare three common implementations: interpolation, adaptive-pool, and
region-grid-interpolation. (a) Interpolation: directly bilinear interpolating to the
target grid size; (b) Adaptive-pool: applying a 2D adaptive max-pool over H×W
to S×S; (c) Region-grid-interpolation: for each grid cell, we use bilinear inter-
polation conditioned on dense sample points, and aggregate the results with
average. From our observation, there is no noticeable performance gap between
these variants (± 0.1AP), indicating that the alignment process does not have a
significant impact on the final accuracy.

Different head depth. In SOLO, instance segmentation is formulated as a
pixel-to-pixel task and we exploit the spatial layout of masks by using an FCN.
In Table 5, we compare different head depth used in our work. Changing the
head depth from 4 to 7 gives 1.2 AP gains. The results show that when the
depth grows beyond 7, the performance becomes stable. In this paper, we use
depth being 7 in other experiments.
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Table 5. Different head depth. We use depth being 7 in other experiments, as the
performance becomes stable when the depth grows beyond 7.

head depth 4 5 6 7 8

AP 34.6 35.2 35.5 35.8 35.8

Previous works (e.g., Mask R-CNN) usually adopt four conv layers for mask
prediction. In SOLO, the mask is conditioned on the spatial position and we
simply attach the coordinate to the beginning of the head. The mask head must
have enough representation power to learn such transformation. For the semantic
category branch, the computational overhead is negligible since S2 � H ×W .

3.4 SOLO-512

Speed-wise, the Res-101-FPN SOLO runs at 10.4 FPS on a V100 GPU (all post-
processing included), vs. TensorMask’s 2.6 FPS and Mask R-CNN’s 11.1 FPS.
We also train a smaller version of SOLO designed to speed up the inference. We
use a model with smaller input resolution (shorter image size of 512 instead of
800). Other training and testing parameters are the same between SOLO-512
and SOLO.

Table 6. SOLO-512. SOLO-512 uses a model with smaller input size. All models are
evaluated on val2017. Here the models are trained with “6×” schedule.

backbone AP AP50 AP75 fps

SOLO ResNet-50-FPN 36.0 57.5 38.0 12.1
SOLO ResNet-101-FPN 37.1 58.7 39.4 10.4

SOLO-512 ResNet-50-FPN 34.2 55.9 36.0 22.5
SOLO-512 ResNet-101-FPN 35.0 57.1 37.0 19.2

With 34.2 mask AP, SOLO-512 achieves a model inference speed of 22.5
FPS, showing that SOLO has potentiality for real-time instance segmentation
applications. The speed is reported on a single V100 GPU by averaging 5 runs.

3.5 Error Analysis

To quantitatively understand SOLO for mask prediction, we perform an error
analysis by replacing the predicted masks with ground-truth values. For each
predicted binary mask, we compute IoUs with ground-truth masks, and replace
it with the most overlapping ground-truth mask. As reported in Table 7, if we
replace the predicted masks with ground-truth masks, the AP increases to 68.1%.
This experiment suggests that there are still ample room for improving the mask
branch. We expect techniques developed (a) in semantic segmentation, and (b)
for dealing occluded/tiny objects could be applied to boost the performance.
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Table 7. Error analysis. Replacing the predicted instance mask with the ground-
truth ones improves the mask AP from 37.1 to 68.1, suggesting that the mask branch
still has ample room to be improved. The models are based on ResNet-101-FPN.

AP AP50 AP75 APS APM APL

baseline 37.1 58.7 39.4 16.0 41.1 54.2
w/gt mask 68.1 68.3 68.2 46.1 75.0 78.5
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(a) Vanilla head
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(b) Decoupled head

Fig. 5. Decoupled SOLO head. F is input feature. Dashed arrows denote convolu-
tions. k = i · S + j. ‘⊗’ denotes element-wise multiplication.

4 Decoupled SOLO

Given an predefined grid number, e.g., S = 20, our SOLO head outputs S2 = 400
channel maps. However, the prediction is somewhat redundant as in most cases
the objects are located sparsely in the image. In this section, we further introduce
an equivalent and significantly more efficient variant of the vanilla SOLO, termed
Decoupled SOLO, shown in Figure 5.

In Decoupled SOLO, the original output tensor M ∈ RH×W×S2

is replaced
with two output tensors X ∈ RH×W×S and Y ∈ RH×W×S , corresponding
two axes respectively. Thus, the output space is decreased from H×W×S2 to
H×W×2S. For an object located at grid location (i, j), the mask prediction of
that object is defined as the element-wise multiplication of two channel maps:

mk = xj ⊗ yi, (5)

where xj and yi are the jth and ith channel map of X and Y after sigmoid

operation. The motivation behind this is that the probability of a pixel belonging
to location category (i, j) is the joint probability of belonging to ith row and jth

column, as the horizontal and vertical location categories are independent.
We conduct experiments using the the same hyper-parameters as vanilla

SOLO. As shown in Table 1, Decoupled SOLO even achieves slightly better
performance (0.6 AP gains) than vanilla SOLO. With DCN-101 [6] backbone,
we further achieve 40.5 AP, which is considerably better than current dominant
approaches. It indicates that the Decoupled SOLO serves as an efficient and
equivalent variant in accuracy of SOLO. Note that, as the output space is largely
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reduced, the Decoupled SOLO needs considerably less GPU memory during
training and testing.

Fig. 6. Visualization of instance segmentation results using the Res-101-FPN
backbone. The model is trained on the COCO train2017 dataset, achieving a mask
AP of 37.8 on the COCO test-dev.

5 Conclusion

In this work we have developed a direct instance segmentation framework, termed
SOLO. Our SOLO is end-to-end trainable and can directly map a raw input im-
age to the desired instance masks with constant inference time, eliminating the
need for the grouping post-processing as in bottom-up methods or the bounding-
box detection and RoI operations in top-down approaches. Given the simplicity,
flexibility, and strong performance of SOLO, we hope that our SOLO can serve
as a cornerstone for many instance-level recognition tasks.
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