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Final Project Presentation

» Poster Presentation, Dec 5, 10am-12:30pm.

« Clearly present
— broad motivation / larger context
— what is the problem you are trying to solve
— why is it important
— what is your novel contribution
— experimental/theoretical validation
— what are observations/discoveries
— Takeaway message/insights.

« do not use too much text, instead put figures, tables,
illustrations, examples.

* Good news: CS department will sponsor printing/post stand
cost!



Deep Latent Model

+ 7 follows a prior
distribution, e.q.
Gaussian(0, I)

* p(x|z) is defined by a deep
neural network f(z; 6) @
 To learn @, use ~
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: 4 0“‘
N




Variational Auto-Encoder
(VAE)



VAE
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Graphical Model for VAE

« Assuming data X is generated from a latent
variable Z

» Generation process
— draw Z~N(u, 2)

—draw X | Z ~ p(f(Z)) , defined by a neural
network f

* The goal is to maximize the data log-likelihood

logp(X;0) = log Jp(X \ Z)p(Z)dZ

» Hard to optimize over 0, if f(Z) is very complex
such as a CNN, RNN, or Transformer.



Lower bound for VAE

Objective: maximize the data loglikelihood

max £(0) = ) log p(x,; 6)



Lower-bound

max £(0) = )’ log p(x,; 6)

~ 2 log Jp(xn | z,; D)p(z,; O)dz,

- Butlog p(x; @) is intractable. _ _
q(z| x; @) is the posterior

« For any distribution g(z | x, ¢): distribution from encoder!

p(x, z;0)
logp(x;0) > E_ ., [log = ELBO
TP gl )

» Derivation via Jensen’s inequality.
 Maximizing the ELBO instead of maximizing log p(x; 0)




Understanding ELBO

p(X, Z;0)
logp(X;0) = E,llog

qZ| X > ®)
max max ELBO = Zn: E, llog p(x;(lzin|’jf,);pf/2§zn) ]

= E, [log p(x, 1 2,:0)] ~ KL (4(z, | 5,2 H)llpo(z,)

Reconstruction loss Regularization



VAE

Let g(z| x; @) and p(x| z; @) share the same parameter 0

(Representation/Feature/Embedding] po(2) = HO.D)

gzlxe A JL

e.g. FFN Encoder Decoder p(x|z;0)
or CNN B e.g. FFN

= N (fenc) 1> fenc(*)2) % @ Or C N N

[ Data (Image, Text, ...) ]
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Training VAE

gradient descent(ascent for max)

max max ELBO = Z E . 1x.0) |108

o ¢

n
= Z B .0
n

P (xn | Zn; 9)17 O(Zn) _

q(z, | x,; 0)

:r(H, 05 xn)]

p(x, |z, Opy(z,)

r0,z,,x,) = log

q(z, | x,; 0)

Computing gradient:

VoEqc 00 102 %)
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Gradient of ELBO

p(x, | z,; Dpy(z,)

(2, | X, 0)
Computing gradient:

VQEq(anxn;Q) [I’(é’, Zno Xn) ]

r0,z,x,) = log
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Gradient of ELBO

p(x, | s H)Po(Zn)
q(z, | X3 0)
Computing gradient:
V(9]5“61(z,,|xn;0) [I’(Q, ot xn)] = Eq(znlxn;e) [Ve”(ea > xn)] + [r(e’ ot xn) VQQ(Zn |xn; e)dz,,

1. sample z, ~ g(z,|x,;60) = N (f(x,), [(x,)r),

then compute average of V,r(0, z,,x,)

r0,z,x,) = log
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Gradient of ELBO

P (xn | Zn; 9)]9 O(Zn)
q(z, | x5 0)

r0,z,,x,) = log

Computing gradient:

Voo 10,50 5)] = By [Vor®.2,5)] + [10.5,05) Voa(a, 15,00,

2. rewrite as

70, 2, %) Voq(z, | %,:0)d. =E . .o [r(6,2,x,) Vglog 4(z,| x,; 0)]

then sample z, ~ ¢(z, | x,; 0) = A (f(x,)1, (%))
compute average of r(0,z,,x,) Voq(z,|x,; 0)

Problem — high variance
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Reparameterization Trick

(2,1 X3 0) = N (f(x,)1, J(x,)0) = N (pg(x,), Zg(x,))

Treating € ~ N(0,1), standard Gaussian
distribution, then

Eq(znlxn;ﬁ) [” (0, ot xn): = Ee~N(0,1) [’” (0, er xn)]

1
where z, = 2.2(x,, )€ + py(X,,)

Taking gradient does not depend on the
distribution
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Reparameterization Trick

P, | 2,5 O)po(z,)

VoE (1.0 [log AT

= VeEq(znlxn;H) :logp (xn | Zn> 9):
= VQEGNN(O,D :10g px, | Ty 9):

= VyE. no.1 log p(x, | z,; 0)]

|

— KL (g(z, | 5%, P)Ipo(z,))
— KL (ﬂf (Ug(%,)s Zge NI A(0,1))

1
— = (o) ) + tr(Zg)(x,) — M — logDet(Z(x,)))

1
= By [ Volog p0s, 12,2 0)] = Vi (gs)” glx,) + tr(Z,)) — M — logDet(Z(x,))

1
where z, = 2.2(x, )€ + py(x,,)
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Compute Gradient using
Reparameterization Trick

For each data point x_n, current parameter 6

Step 1: sample € ~ N(0,1)

Step 2: using encoder forward to compute y, 2 = f, (x,; 0)
Step 3: z(0) = Y7 + U

Step 4: using decoder forward to compute p(x, | z(6); 0)
Step 5: define

err = log p(x, | z,:0) — - KL (g(z| x,; D) lpy(2)) , then
using back-propagation to compute gradient for 6 \

1
2 (ﬂe(xn)Tﬂe(xn) + tr(2g)(x,) — M — logD et(Ze(xn)))
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Training VAE

IRY

vy \ J
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* Reparameterization trick

WEEUTTIAY

Sample = from. .\ 1\

Tutorial on Variational Autoencoders

(Doersch Carl, 2016)
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Sentence VAE



Generating Sentence from Continuous
vectors

* Key challenge: Interpolation in continuous
space should yield reasonable sentences

| want to talk to you

\

?

\

she didn’t want to be
with him

-
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Conditional Sequence Generation

Given a latent variable z, a sequence of text
tokens x = (x,, X,, ..., X;) can be
generated with RNN (or LSTM, transformer),
CRNN model:

p(x | Z, 9) — HP(X_t | Xcps s 0)
)

p(xt ‘ Xty 2, 9) = softmax(W - h,)
h, = RNN(h,_,, |x,_;, z|,0)
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VAE for Sentence Generation

Decoding: - Decoder
T EncAOder ****** A ;:at S|ts onar
Z ~N (O,I ) i [Softm] [Softm] [Softm]

generate X from Enco| |[Enco| [Enco| |Enco —>[D<%co] [D(;co] [D;co]
TranSfOFmer(Z) or [Enco% |Enco| [Enco| %Enco: — Deco || | Deco | Deco
LSTM(z) =<

§ (o) (2 ) (8] —»[Deco] 'Deco || | Deco |

Encoding: Fr e
<BOS ¥ Y2
Q(Z ‘ x) — N(,u, 0} ) ‘Acat SitSTona mat LA

p=W-h, o> =expW,-h,

h, = Transformer(x; 0)
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Training VAE: Posterior Collapse

« KL term in ELBO collapses to zero and
latent variable encodes little information.

* Solution: KL annealing & word dropout

100% - 8.0

5 7.0
§ 80% L 8.0 5
: 60% 50 S
40 E
g 40% 30 8
2 20% _r20¢

T T -f.0

0% - | | | | - 0.0

0 10000 20000 30000 40000 50000

Step
= KL term weight ——KL term value
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Examples on Sentence Interpolation

“ i want to talk to you . ”

“ want to be with you . 7
“t do n’t want to be with you .

1 do n’t want to be with you .
she did n’t want to be with him .

vy

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .
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Variants

» Controllable sentence generation with both
continuous and discrete labels

x » Encoder — z c — Generator | X

Discriminators M

Toward Controlled Generation of Text, (Hu et. al. ICML 2017)
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Generating with Varying Semantic
Label

the film is strictly routine ! the acting is bad .
the film is full of imagination . the movie is so much fun.

after watching this movie , i felt that disappointed . none of this is very original . .
after seeing this film , i ’'m a fan . highly recommended viewing for its courage , and ideas .

too bland

the acting is uniformly bad either . highly watchable

the performances are uniformly good .

1 can analyze this movie without more than three words .

this is just awful . 1 highly recommend this film to anyone who appreciates music .
this 1s pure genius .

Toward Controlled Generation of Text, (Hu et. al. ICML 2017)
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Deep Latent Variable Models for Text

* Interpretable Deep Latent Representation from
Raw Text

— Learning Exponential Family Mixture VAE [ICML
20]

* Disentangled Representation Learning for Text
Generation

— Data to Generation: VTM [ICLR 20b]
— Learning syntax-semantic representation [ACL 19c]

* One model to acquire 4 language skills
— Mirror Generative NMT [ICLR 20a]

27



Learning Interpretable Latent
Representation

Latent structure
dialog actions GENERATOR “Remind me about
_ : he football game.”

X, X X Samplin
_— ' [action=remind]

“Will it be overcast
tomorrow?”’
[action=request]

Generate Sentences with
interpretable factors ’




How to Interpret Latent Variables in
VAEs?

Variational Auto-encoder (VAE)

iInterpretable
structure H@_’®

(Kingma & Welling, 2013)

7 ECER difficult to
continuou . ;\,,'5-:.5"{ i nterpret
s latent . AR :
variables P N discrete factors

: A
'ndwit be humid in New York today?
Remind me about my

meeting.
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VAESs Introduce Latent Variables

Variational Auto-encoder (VAE)

iInterpretable
structure

(Zhao et al, 2018b)

c: discrete | ? :
latent /\ expressiveness
variables /j \

Remind me about my
meeting.

1S limited.

Remind me about the
football game.
30



Discrete Variables Could Enhance
Interpretability - but one has to do it right!

Gaussian Mixture Variational Auto-
encoder (GM-VAE)

interpretable‘ ) M
structure

......

(Dilokthanakul et al., 2016; Jiang et al., 2017)

o AR ?
C. dlscrete s @:.:32’\.\ . 1 L mOde_
component s R — 1

A\ ] How to fix it? EEEEIEEE

g ConliNUOUS vy i 1 “overcast  Rendind me

latent variable tomorrow? about the
football game.
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Do it right for VAE w/ hierarchical priors -
Dispersed Exponential-family Mixture VAE

Exponential-family Mixture VAE

BRGE

~ adding dispersion term in training

Dispersed EM-VAE

L(6;x) = ELBO + 8 |L,,

dispersion term
Ly = BoyeppAle) — A(Bg o) -

2

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]



Generation Quality and Interpretability

DGM-VAE obtains the best performance in
interpretability and reconstruction

Homogeneity with golden label in DD

0.24

0.18
' 0.12
0,06
0

M DI-VAE semi-VAE
B semi-VAE + Lmi GM-VAE
B GM-VAE + Lmi B DGM-VAE

B DGM-VAE + Lm|

actlon emotion

Best interpretability

BLEU of reconstruction in DD

M DI-VAE semi-VAE

B semi-VAE + Lmi GM-VAE
B GM-VAE + Lmi DGM- VAE*
B DGM-VAE + Lm*

BLEU

Best reconstruction
33
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DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]



Latent Variables Learned by DEM-VAE
are Semantically Meaningful

Example actions and corresponding
utterances (classified by g,(c | X))

Inferred action=Inform-route/address

“There is a Safeway 4 miles away.” “What is the weather today?”

“There are no hospitals within 2 miles.” | “What is the weather like in the city?”

“There is Jing Jing and PF Changs.” “What's the weather forecast in New
York?”

Utterances of the same actions could be assigned
with the same discrete latent variable c.

34

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]



Generate Sensible Dialog Response
with DEM-VAE

Sys: “Taking you to Chevron.”
7

Input Context

{

sampling different values of disCrete latent variables

(action/= thanks) (action = request-address)
Predict Predict
User: “Thank you car, let's go there!” | |User: “What is the address?”

Responses with different actions are generated by
sampling different values of discrete latent variables.

35

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]



Topic Modelling

« We want to automatically find
themes/grouped keywords from a
collection of articles

— e.g. finding the trending topics from
NYT news of past 100 years B

— finding scientific topics from all
papers published in Science/
Nature/PNAS

 Tell the covered topics of each article,
and proportion change over time

 discover latent topics from corpus

36



Dirichlet Distribution

K
1 £ I, (o)
p@|a) = HQIS"‘_I, where B(a) = k_lK ‘
B(O(, ﬁ) k=1 F(HL—1 ak)
1
3 |
— a=0.1,=09

- 1 — a=058=05
2 | { — a=10,8=1.0
! | — a=5.0,8=5.0
. — a=10.0,3=5.0
0 % — ﬁ\

0 0.2 0.4 0.6 0.8 1




Latent Dirichlet Allocation

« K topics, M docs, each with N words

« 0~ Dir(a)

« 7, ~ Multinomial(0)

. W, ~ Multinomial(f, )

oo =oll

- N
pw) = Y | p@OpB)] [ Pz, | Op(w, | B, ))dOdp 5
. n=1




Latent Dirichlet Allocation

* A generative model for document

* Each word is generated from a topic’s
distribution over vocabulary

* A document is a mixture of proportions
(topic vector)

* Also known as Mixed membership models

39



Inference and Learning for LDA

* Inference:
— given a document D

— estimate P(@ | a, f, D)
* Learning:
— given a collection of documents {D}

— Estimate parameters a,
arg max Z log P(D,, | @, )

40



Approximate Inference

 Variational inference

— using a variational distribution (fully factorized)
to approximate posterior

« MCMC
— Gibbs sampling

41



“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch, education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be 5200.000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual S$100.000
donation, too.




Topics of NIH grants
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Summary

* Auto-Encoder: learning representation by
reconstruction

 Variational Auto-Encoder: put prior on
latent representation and use variational
method to train

 Variational method is a general
approximation method for intractable
density

44



Next Up

* Monte Carlo sampling
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