Lecture 17 SVM (Part II) and Online Learning

Lei Li, Yu-Xiang Wang

Recap: Support Vector Machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ having rows $x_1, \dots x_n$, recall the support vector machine or SVM problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \ge 0, \ i = 1, \dots n$$

$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

This is a quadratic program

Recap: Lagrange dual problem

Given a minimization problem

$$\min_{x} f(x)$$
subject to $h_{i}(x) \leq 0, i = 1, \dots m$

$$\ell_{j}(x) = 0, j = 1, \dots r$$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x} L(x,u,v)$$

Recap: Lagrange dual problem

The subsequent dual problem is:

$$\max_{u,v} \qquad g(u,v)$$
subject to $u \ge 0$

Important properties:

- Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex)
 - The primal and dual optimal values, f^{\star} and g^{\star} , always satisfy weak duality: $f^{\star} \geq g^{\star}$
 - ullet Slater's condition: for convex primal, if there is an x such that

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds: $f^* = g^*$. Can be further refined to strict inequalities over the nonaffine h_i , $i = 1, \ldots m$

Recap: Deriving the dual of SVM

Introducing dual variables $v, w \ge 0$, we form the Lagrangian:

$$L(\beta, \beta_{0}, \xi, v, w) = \frac{1}{2} \|\beta\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} v_{i} \xi_{i} + \sum_{i=1}^{n} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\sum_{i=1}^{n} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0}))$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^{N} w_{i} (1 - \xi_{i} - y_{i} (x_{i}^{T} \beta + \beta_{0})$$

$$\nabla_{\beta} = \sum_{i=1}^$$

Recap: Dual SVM

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } \underline{w = C1 - v}, \ \underline{w}^T \underline{y} = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$

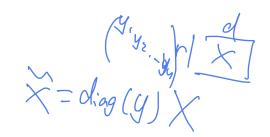
subject to $0 \le w \le C1$, $w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall that at optimality

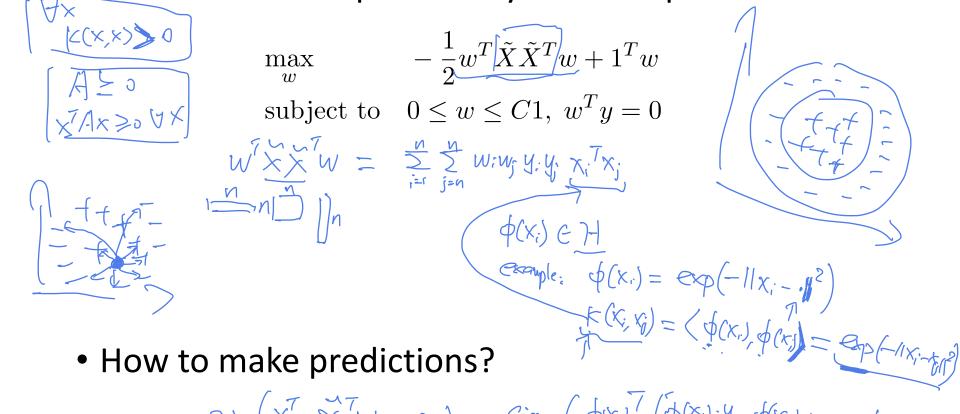
$$\beta = \underbrace{\tilde{X}^T w} \qquad \text{Score}(x) = \beta^T x + \beta_0$$

This is not a coincidence, as we'll later via the KKT conditions

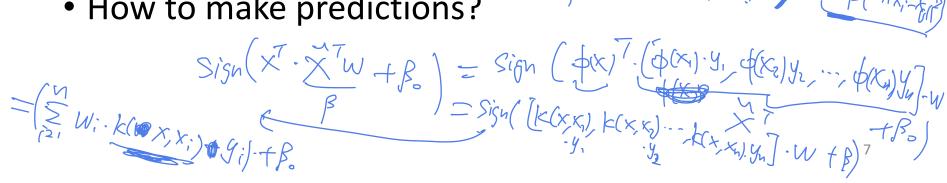
"Kernel trick" in SVM



The dual SVM depends only on inner products



How to make predictions?



This lecture

- KKT conditions
 - SVM as an example

Online Learning

Optimality conditions: the conditions that characterizes the optimal solutions

What you learned in high school

$$\min_{x \in \mathbb{R}} x^2 - 4x + 9 = f(x)$$

$$x \in \mathbb{R}$$

• Slight generalization: For convex and differentiable objective function

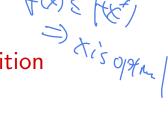
$$\min_{x \in \mathbb{R}^d} f(x) \qquad \text{fixed } 0$$

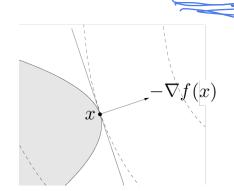
Handling constraints with firstorder optimality conditions

For a convex problem

and differentiable f, a feasible point x is optimal if and only if $x \in \mathcal{C}$

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C$$





This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with gradient $\nabla f(x)$

Important special case: if $C=\mathbb{R}^n$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x)=0$

Handling non-differentiable functions with "subgradient"

Recall that for convex and differentiable f,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all x, y

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any $g \in \mathbb{R}^n$ such that

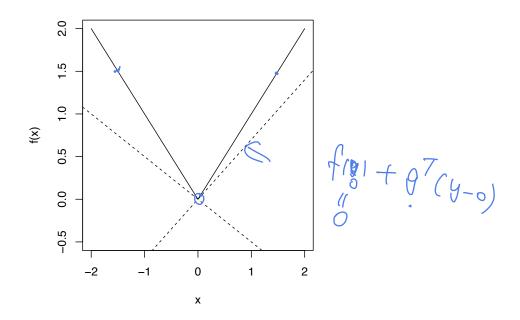
$$f(y) \ge f(x) + g^T(y - x) \quad \text{for all } y$$

- Always exists¹
- If f differentiable at x, then $g = \nabla f(x)$ uniquely
- Same definition works for nonconvex f (however, subgradients need not exist)

 $^{^1}$ On the relative interior of $\mathrm{dom}(f)$

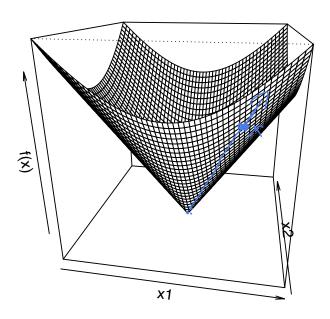
Examples of subgradients

Consider $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|



- For $x \neq 0$, unique subgradient g = sign(x)
- For x=0, subgradient g is any element of [-1,1]

Consider
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $f(x) = ||x||_2 = \int_{\mathbb{R}^n} ||x||_2$



- For $x \neq 0$, unique subgradient $g = x/\|x\|_2$
- For x=0, subgradient g is any element of $\{z: ||z||_2 \le 1\}$

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

$$\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$$

- Nonempty (only for convex f)
- $\partial f(x)$ is closed and convex (even for nonconvex f)
- If f is differentiable at x, then $\partial f(x) = {\nabla f(x)}$
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$

First order optimality condition with subgradient

For any f (convex or not),

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

I.e., x^* is a minimizer if and only if 0 is a subgradient of f at x^* . This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note the implication for a convex and differentiable function f, with $\partial f(x) = {\nabla f(x)}$

Karush-Kuhn-Tucker conditions

Given general problem

min
$$f(x)$$

subject to $h_i(x) \le 0, i = 1, \dots m$
 $\ell_j(x) = 0, j = 1, \dots r$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

he Karush-Kuhn-Tucker conditions or KKT conditions are:
$$0 \in \partial \left(f(x) + \sum_{i=1}^m u_i h_i(x) + \sum_{j=1}^r v_j \ell_j(x) \right) \qquad \text{(stationarity)} \qquad \text{(stationarity)}$$

$$u_i \cdot h_i(x) = 0 \text{ for all } i \qquad \text{(complementary slackness)}$$

- $h_i(x) \leq 0$, $\ell_i(x) = 0$ for all i, j
- $u_i \ge 0$ for all i

(complementary slackness)

(primal feasibility)

(dual feasibility)

Necessity

Let x^* and u^*, v^* be primal and dual solutions with zero duality gap (strong duality holds, e.g., under Slater's condition). Then

$$f(x^{\star}) = g(u^{\star}, v^{\star})$$

$$= \min_{x} f(x) + \sum_{i=1}^{m} u_{i}^{\star} h_{i}(x) + \sum_{j=1}^{r} v_{j}^{\star} \ell_{j}(x)$$

$$\leq f(x^{\star}) + \sum_{i=1}^{m} u_{i}^{\star} h_{i}(x^{\star}) + \sum_{j=1}^{r} v_{j}^{\star} \ell_{j}(x^{\star})$$

In other words, all these inequalities are actually equalities

Two things to learn from this:

- The point x^* minimizes $L(x, u^*, v^*)$ over $x \in \mathbb{R}^n$. Hence the subdifferential of $L(x, u^*, v^*)$ must contain 0 at $x = x^*$ —this is exactly the stationarity condition
- We must have $\sum_{i=1}^{m} \underline{u_i^{\star} h_i(x^{\star})} = 0$, and since each term here is ≤ 0 , this implies $u_i^{\star} h_i(x^{\star}) = 0$ for every i—this is exactly complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If x^\star and u^\star, v^\star are primal and dual solutions, with zero duality gap, then $x^\star, u^\star, v^\star$ satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity of our problem, i.e., of f, h_i, ℓ_j)

Sufficiency

If there exists $x^{\star}, u^{\star}, v^{\star}$ that satisfy the KKT conditions, then

$$g(u^{\star}, v^{\star}) = f(x^{\star}) + \sum_{i=1}^{m} \underbrace{u_{i}^{\star} h_{i}(x^{\star})}_{\mathcal{O}} + \sum_{j=1}^{r} v_{j}^{\star} \ell_{j}(x^{\star})$$

$$= f(x^{\star})$$

where the first equality holds from stationarity, and the second holds from complementary slackness

Therefore the duality gap is zero (and x^* and u^* , v^* are primal and dual feasible) so x^* and u^* , v^* are primal and dual optimal. Hence, we've shown:

If x^* and u^*, v^* satisfy the KKT conditions, then x^* and u^*, v^* are primal and dual solutions

Putting it together

In summary, KKT conditions:

- always sufficient
- necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condition: convex problem and there exists x strictly satisfying non-affine inequality contraints),

 x^* and u^*, v^* are primal and dual solutions $\iff x^*$ and u^*, v^* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable function f, we cannot use $\partial f(x) = \{\nabla f(x)\}$ unless f is convex! There are other versions of KKT conditions that deal with local optima.

Example: support vector machines

Given $y \in \{-1,1\}^n$, and $X \in \mathbb{R}^{n \times p}$, the support vector machine problem is:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \ge 0, \ i = 1, \dots n$$

$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introduce dual variables $v, w \geq 0$. KKT stationarity condition:

$$0 = \sum_{i=1}^{n} w_i y_i, \quad \beta = \sum_{i=1}^{n} w_i y_i x_i, \quad w = C1 - v$$
antary slackness:
$$\sqrt{2} L(\beta w_i) \approx 0$$

Complementary slackness:

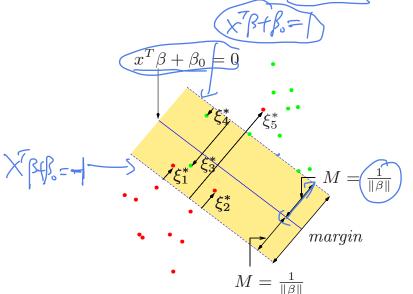
$$v_i \xi_i = 0, \ \underline{w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))} = 0, \quad i = 1, \dots n$$

Hence at optimality we have $\beta = \sum_{i=1}^{n} w_i y_i x_i$, and w_i is nonzero only if $y_i(x_i^T \beta + \beta_0) = 1 - \xi_i$. Such points i are called the support points

• For support point i, if $\xi_i = 0$, then x_i lies on edge of margin, and $w_i \in (0, C]$;

• For support point i, if $\xi_i \neq 0$, then x_i lies on wrong side of

margin, and $w_i = C$



KKT conditions do not really give us a way to find solution, but gives a better understanding

distance between two hyperplanes

In fact, we can use this to <u>screen</u> away non-support points before performing optimization

Checkpoint: KKT conditions and SVM

- A generalized set of conditions that characterizes the optimal solutions
 - Stationarity, complementary slackness, primal / dual feasibility
 - Always sufficient for optimality
 - Necessary when we have strong duality
- Complementary slackness implies
 - SVM dual solutions are sparse!
 - The number of "support vector"s is small

This lecture

- KKT conditions
 - SVM as an example

Online Learning

Batch

Recap: Statistical Learning Setting

$$(x_1,y_1)\cdots(x_n,y_n)^{iid}$$
 $(x_1,y_1)\cdots(x_n,y_n)^{iid}$
 $(x_1,y$

(Adversarial) Online Learning Setting

 Data points show up sequentially (non-iid), learner makes online predictions

X, cheen by nothing

$$h_1 \leftarrow X_1$$
, predict $\hat{y}_1 = h(X_1)$
 y_1 is revealed by nothing

 $\{ (X_1, y_1) \cdot -1 (X_{t-1}, y_{t-1}), X_t \text{ predict } h_t(X_t), \text{ receive } y_t \}$

Performance metric: Mistake bounds M

for all seq. of
$$(x_1, h^*(x_1))$$
 $(x_2, h^*(x_1))$. —. In then $A \mid g \mid A$ has a mixture mixture bound of M .

Algorithm A "Consistency"

1. VI = H

2. for f=1,2,3;

Receive Xt, pide any heVt

prediction
$$\hat{y}_t = hlx_t$$
)

Receive $y_t = hlx_t$)

Receive $y_t = hlx_t$

Update $y_{t+1} = hlx_t$

Check. $y_t = hlx_t$

for $y_t = hlx_t$

Each mistake, we can eliminate at least I hypothysis
thual upper band

/ Consistency] < | 7-1 | -1

Example: 7= 1, 2, -, 14} H= 4hy - - / hAI} $N:(X) = \begin{cases} 0 & \text{if } X < \frac{1}{2} \\ 1 & \text{otherwise} \end{cases}$ X1=1, X5=3 -... X4= 14 $y_1 = 0$, $y_2 = 0$, ..., $y_{041} = 1$ predict h1, h2, --; h11-1, h11-1

Algorithm B "Halfing"

Claim: M(halfy) < log_(lit) Prof: for each mitale at least 141 hypothesps are Wrong, $|V_{t+1}| \leqslant |V_t| \cdot \frac{1}{2}$ < (VEN) < 14/.2-11 $2^{M} \leq |H| \Rightarrow M \leq (\log_2 |H|)$ Now let's get rid of "Realizability". The setting is called "Agnostic learning"

Compete V.S. the best
$$h \in \mathbb{N}$$
 in hadershy

Regret = $\sum_{t=1}^{J} \mathbb{I}(h(x_t) \neq y_t) - \min_{h \in \mathbb{N}} \sum_{t=1}^{J} \mathbb{I}(h(x_t) \neq y_t)$

Ort $T \neq \infty$

(X+, Y1) Chosen by advancen

Thereof $T = O(T)$

Example: Stock forecasting nearest

	Expl(Sigi)	(Explisher)	(Exp(Lei)	(Gy4(Raffle) the Cay) Outone
Day /	Down	UP	up	Down	Dowy
Day	UP	UP	Donn	Down	
Days	4	Down		UP	Doun
Weight Mg	ovity /			/ Do	

Alg C Weighted Majority

predictly = 1 (
$$\frac{1}{2}$$
 Wh h(Xr) $\frac{1}{2}$ Levy Wh here models a histole

Vector H. discount Wh = Wh = $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ hor $\frac{1}{2}$ for $\frac{1}{2}$

How do we fix "weighted majority"? Instead of discounting by 1/2, let's try discounting by $1-\epsilon$

Following the same analysis

Following the same analysis
$$(1-\xi)^{m} \leq M \leq n \cdot (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M \leq n \cdot (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M + M(s) \leq (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M + M(s) \leq (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M + M(s) \leq (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M + M(s) \leq (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M + M(s) \leq (1-\xi)^{m}$$

$$M(s) \leq (1-\xi)^{m} \leq M(s) \leq M(s)$$

$$M(s) \leq$$

Fact: For all $0 \le x \le 0.5$

Algorithm D: Randomized Weighted Majority

9= | 77 |

At
$$\mathfrak{b}$$
 t, f is fraction of the weekly of the expert melon instalce.

(inc) $M = M \cdot (I - 2F_{\bullet}) (I - 2F_{\bullet}) (I - 2F_{\bullet}) \cdots (I - 2F_{\bullet})$

$$= M \cdot (I - 2F_{\bullet}) (I - 2F_{\bullet}) (I - 2F_{\bullet}) \cdots (I - 2F_{\bullet})$$

$$= W \cdot (I - 2F_{\bullet}) \cdots (I - 2F_{\bullet}) W \cdot (I - 2F_{\bullet}) \cdots (I$$

Analysis of RWM

From mistake bounds to loss

minimization

Loss function

• The "Hedge" Algorithm:

Checkpoint: Online Learning

- Learning with expert advice
 - A summary of regret bound: # mistakes Oracle # of mistakes

	Consistency	Halfing	Weighted Majority	Randomized WM
Realizable setting	$\min(T, \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$	$\min(T, \log \mathcal{H})$
Agnostic setting	n.a.	n.a.	$(2 + \epsilon)m$ + $\log \mathcal{H} /\epsilon$	$\sqrt{m\log \mathcal{H} } = O(\sqrt{T\log \mathcal{H} })$

Next lecture

- Online Learning (Part II)
 - Online Gradient Descent

- Reinforcement Learning
 - Markov Decision Processes