Lecture 17 SVM (Part Il)
and Online Learning

Lei Li, Yu-Xiang Wang

(some slides from my convex optimization class,
originally taught by Ryan Tibshirani in CMU)



Recap: Support Vector Machines

Given y € {—1,1}", X € R™*P having rows z1, ...x,, recall the
support vector machine or SVM problem:

B,80,&
subject to & >0,i=1,...n
yi(zTB+B0) >1—¢,i=1,...n
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This is a quadratic program



Recap: Lagrange dual problem

Given a minimization problem

subject to  h; (a:)

we defined the Lagrangian:

Zl/
N~

L(xz,u,v) )+ Zuzhz(ac) + Zvjéj(a:)
j=1 "

and Lagrange dual function:

g(u,v) = min L(z,u,v)
SN =



Recap: Lagrange dual problem

The subsequent dual problem is:

max g(u,v)
u,v T

subject to u >0

Important properties:

). Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

® The primal and dual optimal values, f* and ¢*, always satisfy
weak duality: f* > g*
e Slater’'s condition: for convex primal, if there is an x such that

hi(xz) <0,...hAp(x) <0 and 4i(x)=0,...0.(x) =0

then strong duality holds: f* = ¢g*. Can be further refined to
strict inequalities over the nonaffine h;, 1 =1,...m



Recap: Deriving the dual of SVM

Introducing dual variables v, w > 0, we form the Lagrangian:
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Recap: Dual SVM

Minimizing over (3, By, & gives Lagrange dual function:

C/, ﬁ) .
—00 otherwise

——

o L
{—%wTXXTw—i—lTw ifw=Cl—v, wly=0
g(v,w) = —

where X = diag(y)X. Thus SVM dual problem, eliminating slack
variable v, becomes

w

subject to wly =0

Check: Slater's condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

1 .
max — ZwlxxTw + 17w \

b= XTw Sewe CX) — ﬁTx_{A?po
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This is not a coincidence, as we'll later via the KKT conditions
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“Kernel trick” in SVM sty v
* The dual SVM depends only on inner products

\E T
(X <O»Q -
[/% > max — le[XXTw + 17w
Z 9 w
{’ L Subjectto O<w<01wy_0
Ax >0\ ]

Wk K w = lfwwynx

ﬂ\ At ‘"\‘”Ji)U a
B4
D

* How to make predictions?
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This lecture

* KKT conditions
* SVM as an example

* Online Learning



Optimality conditions: the conditions
that characterizes the optimal solutions

* What you learned in high school

minz? — 4z + 9 - &
rER

/
xelo) =0 9{,&) =0
* Slight generalization: For convex and differentiable

objective function min f($)
ﬁRd Vﬁxj —Q V%[)(X) ;

Does not handle non-differentiable functions, does not handle constraints. .



Handling constraints with first-
order optimality conditions

For a convex problem \TYxe “p(&) = FCK} ﬁ@@x}/ .(1’99

=
m@jn f(x) subject to x € {\%} »

and differentiable f, a feasible point x is optimal if and only if X‘GQ 4

Vi) (y—x)>0 forallyeC 09 < &7
oot =

This is called the first-order condition &[}0/9/"&/

for optimality

In words: all feasible directions from z
/ are aligned with gradient V f(x)

Important special case: if C' = R" (unconstrained optimization),
L] = L = ﬂ g
then optimality condition reduces to familiar Vf(z) =0
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Handling non-differentiable
functions with “subgradient”

Recall that for convex and differentiable f,

fy) > fx)+ Vi) (y—x) forall z,y
|.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any g € R" such that

e

fly) > f(z) + gT(y —x) forall y

e Always exists!
e |f f differentiable at x, then g = V f(x) uniquely

® Same definition works for nonconvex f (however, subgradients
need not exist) - -

'On the relative interior of dom(f)



Examples of subgradients

Consider f: R — R, f(z) = |z

1.0 1.5 2.0
|

0.5

0.0

-0.5
|

® For x # 0, unique subgradient g = sign(x)

® For x = 0, subgradient g is any element of [—1, 1]
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R = R, f(z) =zl =

Consider f

X1

L2
e,
§25%827%
(25582555
(Ge54855545555
5555555555
227227,

=z/|z|2
® For x = 0, subgradient g is any element of {z

ique subgradient g

® For x £ 0, un

Iz]l2 < 1}
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) ={g € R": g is a subgradient of f at x}

® Nonempty (only for convex f)

® J0f(x) is closed and convex (even for nonconvex f)

e If f is differentiable at x, then 0f(x) = {V f(z)}

If Of(x) = {g}, then f is differentiable at z and Vf(z) =g
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First order optimality condition

Y

with subgradient [ .-
o) = o5 bt Tl

For any f (convex or not),

fa*) =min f(z) <= 0€0f(")

N

l.e., * is a minimizer if and only if 0 is a subgradient of f at x*.
This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

) = f@*) + 00 (y —a*) = f(2¥)
- )

Note the implication for a convex and differentiable function f,

with 9f(x) = {V f(z)}



Karush-Kuhn-Tucker conditions

Given general problem

min f(x)
subject to Vh;(x) <0,i=1,...m
KJ(ZE) :O, j: 1,. . T

The Karush-Kuhn-Tucker conditions or KKT conditions are:

° )€ 8(f(513) + Z uihi(z) + Z Vil (a:)) (stationarity) Xéayu%
i=1 =1 x5

® u;-hi(x) =0 for all i (complementary slackness) Z@‘Lu

® hi(x) <0, ¢;(x) =0 forall 7,7 (primal feasibility)

*| u; = 0 for al i (dual feasibility)
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Necessity

Let z* and w*,v* be primal and dual solutions with zero duality
gap strong duallty holds, e.g., under Slater’s condition). Then

@
Q
Q
@

g@&h\/\&\nhj

fx™) + Z urhi(x) + Z vl (z*)
E‘ @ Caw @,&/f

ﬁ In other words, all these inequalities are actua\ﬁ/ equélltles
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Two things to learn from this:

® The point x* minimizes L(x,u*,v*) over z € R™. Hence the
subdifferential of L(x,u*,v*) must contain 0 at x = x*—this
Is exactly the stationarity condition

® We must have > ", ufh;(z*) = 0, and since each term here
is < 0, this implies u}h;(z*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If 2* and u*,v* are primal and dual solutions, with zero duality
gap, then x*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f,h;,{;)



Sufficiency
If there exists x*, u*, v* that satisfy the KKT conditions, then
. sty r
g(u* ) = f(2*) + Y ufhi(a®) + ) vt (a”)
> - ]:1

= f(a7) Y,

&

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x* and u*, v* are primal and
dual feasible) so z* and u*,v* are primal and dual optimal. Hence,
we've shown:

If x* and u*, v* satisfy the KKT conditions, then z* and u*, v*
are primal and dual solutions
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Putting it together
In summary, KKT conditions:
® always sufficient

® necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-

affine inequality contraints),

2™ and u*,v™ are primal and dual solutions

<= z* and u*, v"* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable

function f, we cannot use 0f(z) = {V f(x)} unless f is convex!
There are other versions of KKT conditions that deal with local

optima. )
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Example: support vector machines

Given y € {—1,1}", and X € R™*P, the support vector machine
problem is:

1 2 n
min —1Bll5 + C E -
BaﬁOag 2H ||2 . 57’

_ 1=1
subject to & >0,1=1,...n F

yi(xlB+B0)>1—&, i=1,...n \J

Introduce dual variables v, w > 0. KKT stationarity condition:

n
0= Z wiYsi,
=1

\Z‘>_.___

W llfww =0

Complementary slackness:

vi& =0, wi(1—& —yi(z; B+ Bp)) =0, i=1,...n
- ="
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Hence at optimality we have 8 = 2?21 w;y;x;, and w; IS nonzero
only if y;(xl'B+ By) =1 — &;. Such points i are called the support
points
® For support point 7, if & = 0, then x; lies on edge of margin,
and w; € (0,C]; |

® For support point z’ if & £ 0, then x; lies on wrong side of
margln and w; =

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization

AQ’&/L(ew‘ﬁya 4(7/),(/) .,

Cr
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Checkpoint: KKT conditions and
SVM

* A generalized set of conditions that characterizes
the optimal solutions
* Stationarity, complementary slackness, primal / dual
feasibility
* Always sufficient for optimality
* Necessary when we have strong duality

* Complementary slackness implies

* SVM dual solutions are sparse!
* The number of “support vector”s is small



This lecture

* Online Learning
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Recap Statistical Learning Setting
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(Adversarial) Online Learning
Setting

* Data points show up sequentially (non-iid), learner

makes online predictions
X, c&m @5 Vlocbury y
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Algorithm A “Consistency”
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Algorithm B “Halfing”
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Now let’s get rid of “Realizability”. The

setting is called "Agnostic learning”
Compete /¢, e best hENT l‘éﬁﬁ[’

Pk = Zﬂwmﬁ%) h\;gﬁ W9 ) e T s 50
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Example: Stock forecasting |
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/gL/FWeighted Majority
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How do we fix “weighted majority”?
Instead of discounting by 1/2, let’s try
discounting by 1-€

Fact: Forall 0 < x <0.5

. o P —_— 2 —_ -
e Following the same analysis z—z" <log(l—2) < -2
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Algorithm D: Randomized n=|H|
Weighted Majority
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Analysis of RWM



From mistake bounds to loss

minimization —— O
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Checkpoint: Online Learning

* Learning with expert advice

* A summary of regret bound: # mistakes - Oracle # of
mistakes

Weighted Randomized
Consistency Halfing Majority WM

Realizable min(T, |H|) min(T,log|H]|)
setting

min(T,log|H|) min(T,log|H|)

————

Agnostic A o @ + e)m Jmlog|H| =

setting + log|H| /€ 0(/T log|H])
Y
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Next lecture

* Online Learning (Part Il)
* Online Gradient Descent

* Reinforcement Learning
* Markov Decision Processes



