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Abstract
End-to-end speech translation models have become a new trend
in research due to their potential of reducing error propaga-
tion. However, these models still suffer from the challenge of
data scarcity. How to effectively use unlabeled or other paral-
lel corpora from machine translation is promising but still an
open problem. In this paper, we propose Cross Speech-Text
Network (XSTNet), an end-to-end model for speech-to-text
translation. XSTNet takes both speech and text as input and
outputs both transcription and translation text. The model ben-
efits from its three key design aspects: a self-supervised pre-
trained sub-network as the audio encoder, a multi-task training
objective to exploit additional parallel bilingual text, and a pro-
gressive training procedure. We evaluate the performance of
XSTNet and baselines on the MuST-C En-X and LibriSpeech
En-Fr datasets. In particular, XSTNet achieves state-of-the-art
results on all language directions with an average BLEU of
28.8, outperforming the previous best method by 3.2 BLEU.
Code, models, cases, and more detailed analysis are available at
https://github.com/ReneeYe/XSTNet.

1. Introduction
Speech-to-text translation (ST) has found increasing applications.
It takes speech audio signals as input and outputs text translations
in the target language. Recent work on ST has focused on unified
end-to-end neural models with the aim to supersede pipeline
approaches combining automatic speech recognition (ASR) and
machine translation (MT). However, training end-to-end ST
models is challenging - there is limited parallel speech-text data.
For example, there are only a few hundreds hours for English-
German in MuST-C corpus. Existing approaches to this problem
can be grouped into two categories: a) multi-task supervision
with the speech-transcript-translation triple data [1, 2]; b) pre-
training with external large-scale MT parallel text data [3, 4, 5, 6].
We notice that the triple data can decompose into three sub-tasks
with parallel supervision, ST, ASR, and MT. This motivates us
to design a multi-task model.

In this paper, we designed Cross Speech-Text Network
(XSTNet) for end-to-end ST to joint train ST, ASR and MT tasks.
XSTNet supports either audio or text input and shares a Trans-
former [7] module. To bridge the gap between the audio and
text modality, we use a self-supervised trained Wav2vec2.0 rep-
resentation of the audio [8], which provides a more compressed
and contextual representation than the log-Mel filter bank fea-
ture. Furthermore, our method is able to incorporate external
large-scale MT data. Finally, to support the training of XSTNet,
we carefully devise the progressive multi-task learning strategy,
a multi-stage procedure following the popular pre-training and
fine-tuning paradigm.

Despite the model’s simplicity, the experimental results on
MuST-C and Augment LibriSpeech datasets improved by a big
margin (+3.2 BLEU) against the previous SOTA method.

2. Related Work
End-to-end ST [9] gave the first proof of the potential for end-
to-end ST without using the intermediate transcription. And
recent Seq2Seq models have received impressive results [10, 11,
12, 13]. Techniques, such as pre-training [4, 5, 14, 3], multi-
task learning [15, 2], self-training [16] and meta-learning [1]
have further improved the performance of end-to-end ST models.
Very recently, [6] proposed a Fused Acoustic and Text Masked
Language Model to pre-train and improved ST by fine-tuning.
Self-supervised Pretraining This work is partially motivated
by the recent success of self-supervised contrastive learning for
speech [17, 18, 8]. These representations have been shown to
be effective in low-resource ASR [8], ST [19, 20] and multi-
lingual ST [21]. Recently, many audio-related tasks have demon-
strated the feasibility and outstanding performance by using the
wav2vec2.0 representation [22, 23]. Maybe the most related
work is [21]. However, our work focuses more on the training
strategy, while theirs focused on incorporating two pre-trained
modules to strengthen the multi-lingual ST.

3. Proposed Method: XSTNet
3.1. Problem Formulation

The speech translation corpus contains speech-transcript-
translation triples D = {(s,x,y)}, where s = (s1, ..., s|s|)
is the input sequence of the audio wave (or the acoustic features),
x = (x1, ..., x|x|) is the transcript from the source language,
and y = (y1, ..., y|y|) represents the corresponding translation
in the target language. Despite the fact that transcripts are pro-
vided during training, the end-to-end speech translation models
directly produce the translation vecy without producing the tran-
script vecx as an intermediate output. As a result, understand-
ing how to leverage ancillary transcript supervision and make
the most of the triple-supervised dataset is critical. The triple-
supervised dataset can be pairwise combined into three parallel-
supervised sub-datasets, DASR = {(s,x)}, DST = {(s,y)} and
DMT = {(x,y)} , which solve ASR, end-to-end ST and MT
respectively.

We also introduce external MT datasetDMT-ext = {(x′,y′)}.
The amount of external MT corpus is much larger than the ST
corpus, i.e. |DMT-ext| � |D|.

3.2. Speech Encoder

The first part of XSTNet is Wav2vec2.0 sub-network to pro-
cess speech data in waveform. Wav2vec2.0 [8] is a model to
learn the contextualized speech representation from unlabelled
audio data. It consists of a multi-layer convolutional feature
encoder and a Transformer-based context encoder. The multi-
layer convolutional encoder takes the raw audio signal as in-
put and outputs the latent speech representation, which is then
used by the Transformer encoder to output the contextual rep-
resentation. The self-supervised pre-trained contextual audio
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Figure 1: The model structure of XSTNet. It accepts either audio
or text input. For the audio input, we deploy wav2vec2.0 followed
by two convolution layers to get the audio embedding. The
Transformer encoder and decoder are shared for both modalities.

representation c = [c1, ...cT ] offers a good initialization for the
model’s audio presentation. In the experiment, we use the raw
16-bit 16kHz mono-channel audio as the audio input and follow
a base configuration of wav2vec2.0, trained on audio data from
Librispeech [24] but without fine-tuning1.
Convolution layers The sequence of Wav2vec2.0 output for a
voice utterance typically has a length of a few hundred, larger
than that of a sentence. To further match the lengths of the
audio representation and text sequences, we add two additional
layers of 2-stride 1-dimensional convolutional layers with GELU
activation after Wav2vec2.0, reducing the time dimension by a
factor of 4. Hence, we have es = CNN(c), es ∈ Rd×T/4,
where d is the same as the hidden size of Transformer. We set
the kernel size of CNN 5, and the hidden size d = 512.

3.3. Encoder-Decoder with Modality and Language Indica-
tors

Since XSTNet supports both speech and text as input, we add an
additional lookup table for text tokens to map the embeddings.
We adopt the standard Transformer-base model [7] to accomplish
the specific generation tasks, ST, ASR, and MT. We use pre-layer
normalization for stable training.

We use different indicators [src tag] to distinguish the
three tasks and audio/text inputs. The input embedding e (either
audio or text) is fed into the Transformer encoder. Specifically,
• For the audio input, we add extra [audio] token with em-

bedding e[audio] ∈ Rd, and the embedding of the audio
e ∈ Rd×(T/4+1) is the concatenation of e[audio] and es in
terms of the sequence length.

• For the text input, we put the language id symbol before the
sentence. For example, the embedding of English sentence
“This is a book.” is the embedding of “[en] This
is a book.”.

When decoding, the language id symbol serves as the initial
token to predict the output text. For example, if the audio input
for sentence “This is a book.” is in English, to do ASR,
we use [en] as the BOS and decode “[en] This is a
book.”, while to translate into French, we use [fr] as the
BOS and decode “[fr] c’est un livre.”

3.4. Progressive Multi-task Training

The progressive multi-task training strategy consists of two
stages, large-scale MT pre-training with external parallel text
and multi-task fine-tuning.

1https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_small.pt

Algorithm 1 Progressive Multi-task Training for XSTNet

1: Input: Tasks T={ST,ASR,MT,MT-ext}
2: Initialize the speech module parameters in θ using

wav2vec2.0-base, and the rest at random.
3: MT pre-training: optimize Eq (1) on DMT-ext.
4: while not converged do
5: Step 1: random select a task τ from T.
6: Step 2: sample a batch of (x,y) fromDτ , and optimize

the cross entropy loss defined in Eq (2).
7: end while

Large-scale MT Pre-training We first pre-train the transformer
encoder-decoder module using external MT data D′MT.

L(θ) = −Ex,y∈DMT-ext logP (y|x; θ) (1)

, where θ is the model parameters. Experimental results show
that the MT pre-training provide a good warm-up for the shared
transformer module.
Multi-task Fine-tuning During the fine-tuning, we combine
external MT, ST, ASR, and MT parallel data from the in-domain
speech translation dataset and jointly optimize the negative log-
likelihood loss.

L(θ) = −Ex,y∈D∪DMT-ext logP (y|x; θ) (2)

,whereD = DST∪DASR∪DMT is the union set of all the parallel
subsets (the same notation hereinafter).

The overall training process is shown in Algorithm 1. It
is progressive, because the external MT data, used in the pre-
training stage, is continuously used in the fine-tuning stage. In
Section 5.1, we will show that the training procedure largely
influences the translation performance, and the progressive multi-
task training process is the most effective. In the experiment,
we use Adam optimizer [25] with learning rate = 2× 10−4 and
warm-up 25k steps.

4. Experiments
4.1. Datasets

ST datasets We conduct experiments on MuST-C [26] and
Augmented LibriSpeech En-Fr (LibriTrans) [27] datasets.
MuST-C contains Engish speech to 8 languages: German (De),
Spanish (Es), French (Fr), Italian (It), Dutch (Nl), Portuguese
(Pt), Romanian (Ro), and Russian (Ru). We evaluate the BLEU
scores on tst-COMMON of MuST-C and the test set of Libri-
Trans.
MT datasets We use external WMT machine transla-
tion datasets2 [28] for En-De/Es/Fr/Ro/Ru directions, and
OPUS1003 [29] for En-It/Nl/Pt directions. We also introduce
OpenSubtitle4 [30] for En-De.

4.2. Experimental Setups

We jointly tokenize the bilingual text (En and X) using sub-
word units with a vocabulary size of 10k, learned from Senten-
cePiece5 [34]. The model configurations have been stated in
Section 3.2 and 3.3. We save the checkpoint with the best BLEU

2https://www.statmt.org/wmt16/
translation-task.html

3http://opus.nlpl.eu/opus-100.php
4https://opus.nlpl.eu/OpenSubtitles-v2018.php
5https://github.com/google/sentencepiece
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Models External Data Pre-train Tasks De Es Fr It Nl Pt Ro Ru Avg.

Transformer ST [13] × ASR 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9
AFS [31] × × 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7 23.9
Dual-Decoder Transf. [15] × × 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2 25.6
Tang et al. [2] MT ASR, MT 23.9 28.6 33.1 - - - - - -
FAT-ST (Big) [6] ASR, MT, mono-data† FAT-MLM 25.5 30.8 - - 30.1 - - - -

W-Transf. audio-only* SSL* 23.6 28.4 34.6 24.0 29.0 29.6 22.4 14.4 25.7
XSTNet (Base) audio-only* SSL* 25.5 29.6 36.0 25.5 30.0 31.3 25.1 16.9 27.5
XSTNet (Expand) MT, audio-only* SSL*, MT 27.8§ 30.8 38.0 26.4 31.2 32.4 25.7 18.5 28.8

Table 1: Performance (case-sensitive detokenized BLEU) on MuST-C test sets. †: “Mono-data” means audio-only data from Librispeech,
Libri-Light, and text-only data from Europarl/Wiki Text; *: “Audio-only” data from LibriSpeech is used in the pre-training of wav2vec2.0-
base module, and “SSL” means the self-supervised learning from unlabeled audio data. § uses OpenSubtitles as external MT data.

Models Uncased-tok Cased-detok

Transformer ST [13] 18.7 16.3
AFS [31] 18.6 17.2
Curriculum [4] 18.0 -
LUT [32] 18.3 -
STAST [33] 18.7 -

W-Transf. 14.6 13.0
XSTNet (Base) 21.0 18.8
XSTNet (Expand) 21.5 19.5

Table 2: Performance (case-insensitive tokenized BLEU and
case-sensitive detokenized BLEU) on LibriTrans En-Fr test set.

on dev-set and average the last 10 checkpoints. We use a beam
size of 10 for decoding. We report the case-sensitive detokenized
BLEU using sacreBLEU6 [35] for MuST-C dataset. We also
list both case-insensitive tokenized (Uncased-tok) BLEU and
case-sensitive detokenized (Cased-detok) BLEU for LibriTrans
for a fair comparison.

4.3. Main Results

We compared our method with other strong end-to-end base-
line models, including: Transformer ST [13], AFS [31], Dual-
decoder Transformer [15], STAST [33], Tang et al. [2], Curricu-
lum pretrain [4], LUT [32], and FAT-ST [6]. These baselines
all take the 80-channel log Mel-filter bank feature (fbank80) as
the audio inputs. We also implement wav2vec2+transformer
model (abbreviated W-Transf.) with the same configuration
as XSTNet. XSTNet (Base) is only trained based on MuST-C
by optimizing L = −Ex,y∈D logP (y|x). XSTNet (Expand)
uses external WMT data and follows the progressive multi-task
training method described in Section 3.4.

Table 1 and Table 2 respectively show the BLEU scores
of MuST-C and LibriTrans datasets. Compared to the current
speech transformer, which acts as a solid baseline for ST, our
method achieves a remarkable +3.9 BLEU gain on average. We
attribute the gain to the following factors:
Wav2vec2.0 vs. Fbank Comparing the models using the
fbank80 feature with the ones applying wav2vec2, we find that
even the simplest structure (W-Transf.) without ASR pre-training
outperforms the Transformer ST baseline. This indicates the po-
tential of wav2vec2.0 representation.
Multi-task vs. ST-only Comparing XSTNet (Base) and W-
Transf., we find that the translation performance improved by
around +2 BLEU in all directions. This demonstrates that our
model can make the most of the triple-supervised data by apply-
ing the multi-task paradigm.
Additional MT data Since XSTNet accepts text input, it is

6https://github.com/mjpost/sacrebleu

easy to introduce additional MT parallel data. XSTNet (Ex-
pand) attributes an average of +1.3 BLEU improvement against
XSTNet-Base from the additional MT data and the training pro-
cedure described in Section 3.4.

4.4. Results on Auxiliary MT and ASR Tasks

XSTNet can perform MT and ASR tasks provided different input
modalities and target language indicators. The performance of
auxiliary MT and ASR (measured in WER) tasks are shown in
Table 3 and Table 4. Our XSTNet with progressive training is
better than other training strategies in both tasks. Comparing
Row “I” and “IV” in Table 3, it is worth noting that adding
speech-to-text data improves MT performance even further. We
attributed the improvement to the information from the speech.

Pretrain Finetune En-De En-Fr En-Ru

- DMT ∪ DMT-ext 31.65 43.46 21.06

- D 30.74 42.91 19.54
DMT-ext D 32.82 44.82 21.29
DMT-ext D ∪DMT-ext 33.20 45.25 21.51

Table 3: Comparisons of the auxiliary MT tasks among different
multi-task training strategies. The model in the first row is
trained based on the external MT dataDMT-ext and the transcript-
translation parallel data in MuST-C.

Pretrain Finetune En-De En-Fr En-Ru

- DASR 12.99 12.27 12.05

- D 11.08 10.74 10.94
DMT-ext D 10.98 10.44 10.90
DMT-ext D ∪DMT-ext 10.80 10.38 10.86

Table 4: Comparisons of the auxiliary ASR tasks, measured by
word error rate (WER↓) versus the reference English transcript.

4.5. Comparsion with Cascaded Baselines

We also compare XSTNet to the cascaded models, i.e. Trans-
former ASR →Transformer MT in Table 6. We also imple-
mented a strong cascaded model whose ASR part is trained
based on W-Transf., and the MT part is Transformer-base model
trained based on DMT ∪ DMT-ext. The results show that XSTNet-
expand translates better, meaning that XSTNet can avoid the
error propagation problem that plagues the cascaded models.

5. Analysis
5.1. The Influence of Training Procedure

In this section, we investigate the impact of the training strategy.
We perform six groups of experiments with different pre-train

https://github.com/mjpost/sacrebleu


#Exp. Pretrain Finetune En-De En-Fr En-Ru Avg.

M
LT

I DMT-ext D ∪DMT-ext 27.12 38.01 18.36 27.8
II DMT-ext D 26.99 37.37 18.03 27.5 (-0.3)
III - D ∪DMT-ext 26.28 36.15 17.33 26.6 (-1.2)

ST
-o

nl
y IV DMT-ext → DASR ∪ DMT ∪ DMT-ext DST 26.96 35.42 17.87 26.6 (-1.2)

V DMT-ext → DASR ∪ DMT DST 25.86 34.44 16.94 25.6 (-2.2)
VI DMT-ext ∪ DMT → DASR DST 24.32 35.30 17.50 25.7 (-2.1)

Table 5: The ablation study results on the pre-train and fine-tuning strategies, whereD = DST ∪DASR ∪DMT, and Exp.I uses the training
strategy described in Section 3.4. Experiments are preformed on MuST-C En-De, En-Fr and En-Ru datasets.

Models En-De En-Fr En-Ru

Cascaded Espnet[12] 23.6 33.8 16.4
Our implement* 25.2 34.9 17.0

End-to-end XSTNet 27.1 38.0 18.4

Table 6: XSTNet versus the cascaded models on MuST-C En-De,
En-Fr and En-Ru test sets. Our implement* is a strong cascaded
model composed of W-Transf. as ASR and Transformer-base
trained on DMT ∪ DMT-ext as MT.

and fine-tune strategies, categorizing into two groups according
to the different fine-tuning tasks - multi-task fine-tuning (Exp. I,
II and III) and ST-only fine-tuning (Exp. IV, V and VI). The
multi-task fine-tuning incorporates ST, ASR and MT tasks using
MuST-C dataset D(= DST ∪DASR ∪DMT) and optional DMT-ext.
In the ST-only fine-tuning group, we perform a two-stage pre-
training. For example, Exp. IV first pre-trains with external MT
data, then pre-trains with ASR and all the MT parallel (both
MuST-C and WMT) data, following the idea of “progressive”.
Table 5 illustrates the detailed training process and their BLEU
scores, with the following empirical conclusions.

MT pretraining is effective. Comparing Exp.I and III, we find
that canceling the pre-training using external WMT reduces the
average performance by 1.2 BLEU. Furthermore, the results
of Exp. III are inferior to those of Exp. II. These findings sug-
gest that MT pre-training provides a strong initialization for the
model, leading it to perform better.

Don’t stop training the data in the previous stage. An inter-
esting discovery is that data used in the previous training stage
can also be helpful in the subsequent training stage. In other
words, progressive training works. Concretely, we can see
from Exp. I vs. III and Exp. IV vs. V that the BLEUs decrease
as we stop using the WMT data at the fine-tuning period.

Multi-task fine-tuning is preferred. Comparing the BLEU
results in the multi-task and ST-only groups, the models trained
from multi-task perform better than the models trained by ST-
only tasks.

5.2. Convergence Analysis

Figure 2 depicts the evolution of the BLEU score over time steps
for different training methods on the MuST-C En-De dev-set.

Progressive multi-task training converges faster. With WMT
pre-trained parameters for the Transformer module, XSTNet-
Expand with progressive multi-task training (red line) is found
to converge faster than the model without pre-training.

Multi-task training generalizes better. Due to the small data
scale,the model is tend to overfit the training set if it is trained
only based on audio-translation parallel data. However, by adopt-
ing a multi-task framework, the model is more robust and has a
better generalization ability.

20.0k 40.0k 60.0k 80.0k
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W-Transf.
XSTNet(Expand)
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XSTNet(Expand) w/o WMT pre-trained

Figure 2: The evolution of BLEU on MuST-C En-De dev set.
“XSTNet (Expand) w/o WMT pre-trained” is trained directly on
D ∪ DMT-ext. “XSTNet (Expand) w/o WMT fine-tuned” means
fine-tuning only on D, i.e. not progressively. The actual training
has been performed until full convergence.

5.3. Influence of Additional MT Data

We gradually increase the dataset size to assess the impact of the
amount of external WMT data and test BLEU scores (Figure 3).
There are increases in the pretrained MT BLEU and ST BLEU as
the increase of the external MT data size increases. Substituting
WMT with larger OpenSubtitles dataset (Table 7), the ST BLEU
score of MuST-C En-De is even higher, achieving 27.8.
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External WMT Data Size
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Figure 3: BLEU curve for MuST-C En-De against the amount
of external MT data used. The red curve is the evolution of
the ST BLEU. The blue curve is the evolution of the MT BLEU
pre-trained based on WMT data.

Corpora Size MT(Pretrain) ST

WMT 4.6M 28.2 27.1
OpenSubtitles 18M 28.5 27.8

Table 7: BLEU scores for different external MT dataset (WMT
v.s. OpenSubtitles)

6. Conclusion
We propose Cross Speech-Text Network (XSTNet), an extremely
concise model which can accept bi-modal inputs and jointly train
ST, ASR and MT tasks. We also devise progressive multi-task
training algorithm for the model. As compared to the SOTA
models, XSTNet can achieve a significant improvement on the
speech-to-text translation task.
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