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1 SAMPLING VMF DISTRIBUTIONS
Numerically stable sampling of the vMF distribution

𝑣 (𝝎𝐷 ; 𝝁, 𝜅) =
𝜅

4𝜋 sinh(𝜅) 𝑒
𝜅𝝁 ·𝝎𝐷 (1)

is provided by [Jakob 2012]:

𝝎 = (
√︁
1 −𝑊 2 cos(𝜉1),

√︁
1 −𝑊 2 sin(𝜉1),𝑊 )𝑇 (2)

where𝑊 can be sampled using the inversion method:

𝐹−1𝑊 (𝜉2) =
log(𝑒−𝜅 + 2𝜉2 sinh(𝜅))

𝜅
. (3)

𝜉1, 𝜉2 are two independent, uniformly random variables in [0, 1).

2 RECONSTRUCTING DISTRIBUTIONS FROM
PHOTONS

Photons generated by a typical photon mapper can be used to gen-
erate the initial distribution for seed chains. In our experiment, we
treat photon samples in the same manner as sub-path samples. This
is well-studied in the context of guided path sampling [Jensen 1995;
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Vorba et al. 2014; Zhu et al. 2021]. The only difference lies in the
evaluation of weights. Here, we directly use their flux as the weight:

𝑤 (x𝐷 , x∗𝑆 , x𝐿) = Φ(x𝐷 , x∗𝑆 , x𝐿) . (4)

3 PSEUDO-CODES
In this section, we present several pseudo-codes to explain our
implementation details further. We will release the source code
upon acceptance.

3.1 Interfaces
To begin with, we list the interfaces of our spatial hierarchy and
chain distribution (including the discrete decisions and directional
sampling).

1 class ChainDistrbution:
2 # Build a chain distribution from a set of subpath samples
3 def init(subpaths):
4 return ...
5

6 # Sample the length of the chain
7 def sample_n() -> int:
8 return ...
9

10 # Query the PMF for the given length
11 def pmf_n(n) -> float:
12 return ...
13

14 # Sample the chain type for a given length
15 def sample_tau(n) -> int:
16 return ...
17

18 # Sample the direction omega_D for a given type
19 def sample_dir(tau) -> vec3:
20 return ...
21

22 class SpatialHierarchy:
23 # Build a spatial hierarchy from a set of subpath samples
24 def init(subpaths):
25 return ...
26

27 # Query the corresponding ChainDistribution object for a

given configuration (xD, xL).↩→

28 def query(xD, xL) -> ChainDistribution:
29 return ...
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3.2 Main algorithm
We present our main algorithmic framework in this subsection,
which is a class instantiated for each pair of separators generated
in a regular path tracing loop with standard emitter sampling.

1 spatial_hierarchy = make_spatial_hierachy(None)
2

3 class ManifoldPathGuiding:
4 # Object of this class is created for each pair of

separators↩→

5 def init(xD, xL, num_external_vertices):
6 self.xD = xD
7 self.xL = xL
8 # Query the spatial hierarchy only once
9 self.guiding_distr = spatial_hierarchy.query(xD, xL)
10 # Reuse the depth and Russian Roulette setting in the

underlying path tracer↩→

11 self.ctx = (MAX_DEPTH - num_external_vertices, RR_DEPTH -

num_external_vertices, RR_PROB)↩→

12 # Only perform guiding if spatial hierarchy is already

built↩→

13 self.fraction = GUIDE_FRAC if spatial_hierarchy.valid()

else 0↩→

14

15

16 # Sample the number of bounce
17 def sample_length():
18 # One-sample MIS (Eq. 12)
19 if rand() < self.fraction:
20 return self.guiding_distr.sample_n()
21 else:
22 return self.uniform_sample_length(n, self.ctx)
23

24

25 # Evaluate the PMF of specified number of bounce
26 def pmf_length(n):
27 # Mixture density (Eq. 12)
28 return lerp(self.uniform_pmf_length(n, ctx),
29 self.guiding_distr.pmf_n(), self.fraction)
30

31

32 # Sample a seed chain without historical information
33 def uniform_sample_seed(n):
34 # Initialization strategy (Sec. 5.4, Fig. 17)
35 if INIT_STRATEGY == "surface":
36 # Uniformly select a specular surface point
37 x1 = self.sample_surface()
38 elif INIT_STRATEGY == "direction":
39 # Uniformly pick a direction.
40 dir =

warp.square_to_uniform_hemisphere(sampler.next_2d())↩→

41 x1 = scene.intersect(xD, dir)
42 elif INIT_STRATEGY == "photon":
43 # Supplemental Sec. 2
44 dir = sample_photon_distribution()
45

46 # xD is needed for the Fresnel term querying
47 seed_chain = [self.xD, x1]
48 # Ray tracing loop (Eq. 5)
49 for i in range(n - 1):

50 # Sample scattering type proportional to the Fresnel term
51 scatter_type = sample_scatter_type(seed_chain[-2:])
52 # Collect vertices
53 new_vertex = scene.intersect(seed_chain[-2:],

scatter_type)↩→

54 seed_chain.append(new_vertex)
55 return seed_chain
56

57

58 # Sample a seed chain using our distribution
59 def guided_sample_seed(n):
60 tau = self.guiding_distr.sample_tau(n)
61 dir = self.guiding_distr.sample_dir(tau)
62 # Eq. 5
63 return collect_vertices(tau, dir)
64

65

66 # Sample a seed chain
67 def sample_seed(n):
68 # One-sample MIS (Eq. 12)
69 if rand() < self.fraction:
70 return self.guided_sample_seed(n)
71 else:
72 return self.uniform_sample_seed(n)
73

74

75 # Sample an admissible chain (may be diverged)
76 def sample_solution(n):
77 seed_chain = self.sample_seed(n)
78 return self.manifold_walk(seed_chain)
79

80

81 # Reciprocal probability estimation (Eq. 14)
82 def bernoulli(n, x):
83 ans = 1
84 # Prevent infinite loop due to numerical issues
85 MAX_ITER = 1e6
86 # Repeat trials until the same solution is founded
87 # Compare both the type and the direction here
88 while self.sample_solution(n) != x and ans <= MAX_ITER:
89 ans += 1
90 if ans > MAX_ITER:
91 # Failed, discard this solution
92 return None
93 return ans
94

95

96 # Entry point
97 def specular_chain_sampling():
98 # Sample the length first
99 n = sample_length()
100 # PMF is factored out and evaluate analytically (Eq. 14)
101 pmf_n = pmf_length(n)
102 # Sample an admissible chain
103 ans = sample_solution(n)
104 if ans.valid() == False:
105 # Diverged, return zero throughput
106 return 0
107 # Estimate the reciprocal_probability p(xS* | xD, xL, n)
108 inv_pdf = bernoulli(n, ans)
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109 return ans * inv_pdf / pmf_n # (Eq. 14)
110

111

112 def render_one_iteration(spp, is_training):
113 img, subpath_samples = render_blocks(spp)
114 # Fitting distribution
115 if is_training:
116 spatial_hierarchy =

make_spatial_hierarchy(subpath_samples)↩→

3.3 Spatial Neighboring
When comparing KNN and STree, it’s important to note that KNN
generates chain distribution objects on-the-fly, whereas STree pre-
computes them when building the hierarchy.

KNN. We use KDTree in ANN library [Mount and Arya 2010]
for the implementation of the KNN. The approximated searching in
their library does not offer significant improvements in our test, so
we use accurate searching instead.

1 class SpatialHierarchyKNN: SpatialHierarchy
2 def init(subpaths):
3 # Building 6D kdtree according to (xD, xL)
4 self.kdtree = build_kdtree(subpaths)
5

6 def query(xD, xL) -> ChainDistribution:
7 # Query kdtree to get the nearest samples
8 samples = self.kdtree.query(xD, xL)
9 # Build a chain distribution on-the-fly
10 return make_chain_distribution(samples)

STree. Our implementation of the 6D spatial adaptive binary tree
generally follows [Müller 2019]. The major difference is that we
build the spatial structure and splat the samples simultaneously.
We refine the structure while keeping track of the set of sub-path
samples attached to each (current) leaf node. When a leaf node
is split, we realize spatial filtering by copying the leftmost ⌊𝜀𝑘⌋
samples of the right node to the left child and the rightmost ⌊𝜀𝑘⌋
samples of the left node to the right child, with 𝜀 = 10% being the
spatial filtering threshold and 𝑘 being the number of samples in the
current node. In each node, when a sample after filtering is outside
the bounding box of the node, and the distance to the bounding box
is larger than 2𝜀 times the length of the current extent, we discard it.
After subdivision, the left and right subtrees are handled recursively
using thread-level parallel for acceleration. In our implementation,
the spatial structure is completely rebuilt in each iteration and does
not adopt an incremental updating process.

3.4 Chain Distribution
Bounce and type sampling. It’s a standard binning and normalizing

process.

1 class ChainDistributionImpl: ChainDistrbution
2 def init(subpaths):
3 super.init(subpaths)
4 self.distr_n = {}

5 self.distr_tau = {}
6 # Summation for each n and tau (Eq. 9 and Eq. 10)
7 for sp in subpaths:
8 # sp.weight is defined in Eq. 8
9 self.distr_n[sp.n] += sp.weight
10 self.distr_tau[sp.n][sp.tau] += sp.weight
11 # Normalization
12 self.distr_n = Distribution1D(self.distr_n)
13 for key in self.distr_tau:
14 self.distr_tau[key] =

Distribution1D(self.distr_tau[key])↩→

15

16

17 def sample_n() -> int:
18 return self.distr_n.sample()
19

20

21 def pmf_n(n) -> float:
22 return self.distr_n.pdf(n)
23

24

25 def sample_tau(n) -> int:
26 return self.distr_tau[n].sample()

KNN-based particle footprint. We choose to use particle footprints
[Hey and Purgathofer 2002] with directional density estimation
for their accuracy, as discussed in our validation of building blocks.
Note that we cache a mapping from sub-path samples to their kernel
radius, which leads to much faster evaluation in our test.

1 class ChainDistributionKNN: ChainDistributionImpl
2 def init(subpaths):
3 super().init(subpaths)
4 self.distr_omega = {[] for tau in self.distr_tau}
5 # Build a discrete distribution of samples for each

chain type↩→

6 for sp in subpaths:
7 self.distr_omega[sp.tau].append((sp.omega, sp.weight))
8 self.distr_omega = Distribution1D(self.distr_omega)
9 # Cache the kernel radius leads to about 10x faster in

practice↩→

10 self.radius_cache = {}
11

12

13 def sample_dir(tau) -> vec3:
14 # Sample the kernel direction first
15 omega = self.distr_omega.sample()
16 if omega not in self.radius_cache:
17 # Cache miss
18 min_dis = inf
19 # Estimating the kernel radius using nearest neighbor

distance↩→

20 for omega_ in self.distr_omega:
21 min_dis = min(min_dis, l2norm(omega - omega_))
22 # Write to the cache
23 self.radius_cache[omega] = min_dis
24 radius = self.radius_cache[omega]
25 # Sample the kernel (Eq. 11)
26 return sample_vmf(omega, radius)
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Directional quad-tree. Recall that we also compare our directional
density estimation method with SDTree. This part follows PPG, and
please refer to [Müller et al. 2017] for more algorithmic details.

4 DETAILED RESULTS
We provide full results comparing different building blocks, spatial
filtering strategies, and choice of spatial neighboring size in Fig.
1 and Fig. 2. We also validate the effect of bounce sampling, type
sampling, and directional sampling in Fig. 3.

5 DISCUSSIONS
Extension to paths with multiple chains. Our sampling strategy for

specular chains can be generalized to multiple separators. In general,
the separators and specular chains are sampled incrementally: we
first importance sample specular chains between the first and second
separator. Then, after the third separator is determined, we sample
specular chains between the second and third separator, and so on.
Note that our method only focuses on sampling specular chains,
and for the importance sampling of a complete path in path space, it
is necessary to also consider the importance sampling of separators.
We leave this for future work.

Exploration of chains with large roughness. Note that we still use
the direction from one separator to the first specular vertex to
represent a chain of a particular type. This way, we actually model
the marginal of chains in glossy cases, which slightly increases
variance. However, conventional path guiding [Ruppert et al. 2020;
Vorba et al. 2019] or those designed for glossy cases [Li et al. 2022;
Loubet et al. 2020] would be more suitable for this case.

Temporal stability. The video demonstrates the strong temporal
stability of our method, which is achieved due to its regular Monte
Carlo nature. Unlike MCMC approaches, our method effectively
avoids the occurrence of blotchy artifacts and temporal instability.
However, it is important to acknowledge that there are still in-

herent limitations of temporal stability in our method. The training
process may not encompass all possible solutions for every config-
uration. In such cases, a small region of space may exhibit higher
variance compared to its surroundings. This arises from the inherent
limitations of path guiding. To address this issue, when rendering
animations, employing the temporal distribution reuse would be
beneficial.

Box spatial filtering. Here, we explain why we do not adopt the
box filtering [Müller 2019] for the spatial hierarchy. For box filtering,
theoretically, a single sample will contribute to at least 2𝑑 leaf nodes,
where 𝑑 represents the dimension (6 in our method). As a result, if
we start with𝐾 sub-path samples, we could end up with at least 64𝐾
samples after applying box filtering, which is relatively unbearable.
In contrast, our method increases the total number of samples by at
most 2𝜀 per layer. Thus, if there are ℎ layers in the spatial structure
and 𝐾 original samples, the total number of samples after filtering
will never exceed (1 + 2𝜀)ℎ𝐾 . Actually, in all our test scenes, the
total number of samples after filtering is generally around twice the
size of the unfiltered sample set.

Continuous admissible chain spaces. In the context of general sur-
face representations, scenarios involving a continuous 1D subspace
of admissible chains can be constructed. For instance, consider a
cylinder that has reflective properties on the inside, where a light
source and a camera are positioned at the centers of the cylinder’s
two caps [Wang et al. 2020]. However, as Zeltner et al. [2020] dis-
cussed in their paper, it is important to note that such cases have
limited relevance when it comes to rendering natural scenes. This
is because even a slight perturbation in the surface geometry would
disrupt the symmetries required to create a 1D solution subspace.
Following prior works [Walter et al. 2009; Wang et al. 2020; Zeltner
et al. 2020], we disregard this particular corner case.
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Fig. 1. Choices of building blocks.We perform equal-time comparisons of various neighbor searching methods and distribution representations.

ACM Trans. Graph., Vol. 42, No. 6, Article 257. Publication date: December 2023.



257:6 • Zhimin Fan, Pengpei Hong, Jie Guo, Changqing Zou, Yanwen Guo, and Ling-Qi Yan

Lamp  3 min SMS*

0.0193

0+138, 0.0%

Müller17

0.0016

31+66, 5.5%

Müller19

0.0026

30+65, 5.8%

Fixed (k=32)

0.0444

27+69, 2.7%

Fixed (k=512)

0.0396

26+64, 2.7%

Ours (c=0.1)

0.1633

27+66, 2.6%

Ours (c=10)

0.0006

29+69, 2.9%

Ours

0.0004

27+65, 3.0%

Reference

MSE

SPP, Overhead
Slabs  5 min SMS*

0.4755

0+119, 0.0%

Müller17

0.2647

23+17, 52.0%

Müller19

0.4038

23+9, 58.4%

Fixed (k=32)

0.0182

24+60, 1.8%

Fixed (k=512)

0.0116

25+59, 1.8%

Ours (c=0.1)

0.0206

24+59, 1.8%

Ours (c=10)

0.0715

23+53, 2.9%

Ours

0.0151

23+56, 1.9%

Reference

MSE

SPP, Overhead
Sphere  5 min SMS*

1.0229

0+97, 0.0%

Müller17

0.3615

16+30, 20.0%

Müller19

0.4266

17+26, 26.5%

Fixed (k=32)

0.1807

18+39, 2.2%

Fixed (k=512)

0.3228

19+44, 2.4%

Ours (c=0.1)

0.1478

18+40, 2.2%

Ours (c=10)

0.3692

18+41, 2.7%

Ours

0.1259

15+49, 2.4%

Reference

MSE

SPP, Overhead
Plane  20 min SMS*

0.2915

0+317, 0.0%

Müller17

0.0696

22+34, 30.3%

Müller19

0.1568

26+19, 49.9%

Fixed (k=32)

0.6279

29+69, 1.8%

Fixed (k=512)

0.0353

29+68, 1.9%

Ours (c=0.1)

0.1076

27+69, 1.8%

Ours (c=10)

0.1508

25+59, 2.6%

Ours

0.0872

27+69, 2.1%

Reference

MSE

SPP, Overhead
Stone  5 min SMS*

0.1561

0+126, 0.0%

Müller17

0.1066

29+65, 7.8%

Müller19

0.1000

30+68, 5.9%

Fixed (k=32)

0.1581

28+67, 2.5%

Fixed (k=512)

0.0475

28+66, 2.2%

Ours (c=0.1)

0.2553

27+66, 2.2%

Ours (c=10)

0.0487

34+79, 2.9%

Ours

0.0154

31+74, 2.6%

Reference

MSE

SPP, Overhead

Fig. 2. Equal-time comparison on various strategies for deciding spatial neighboring size. Here, Müller17 and Müller19 stand for the formula proposed
by [Müller et al. 2017] and [Müller 2019], respectively. Fixed means using a constant spatial neighboring size. We also include two variants of our automatic
threshold

√︁
|S | by adding an extra coefficient 𝑐 .
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Fig. 3. Ablation study.We perform equal-time comparison (rendering time is the same as Fig. 2) to validate the effect of bounce sampling, type sampling,
and directional sampling. All these parts are essential for efficient importance sampling of specular chains. Quantitative error in terms of MSE is reported.
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