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VITS—A Vision System for Autonomous Land
Vehicle Navigation
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AND MARTIN MARRA

Abstract—In order to adequately navigate through its environment,
a mobile robot must sense and perceive the structure of that environ-
ment, modeling world features relevant to navigation. The primary
vision (or perception) task is to provide a description of the world rich
enough to facilitate such behaviors as road-following, obstacle avoid-
ance, landmark recognition, and cross-country navigation. We de-
scribe VITS, the vision system for Alvin, the Autonomous Land Ve-
hicle, addressing in particular the task of road-following. The ALV has
performed public road-following demonstrations, traveling distances
up to 4.5 km at speeds up to 10 km /hr along a paved road, equipped
with an RGB video camera with pan/tilt control and a laser range scan-
ner. The ALV vision system builds symbolic descriptions of road and
obstacle boundaries using both video and range sensors. We describe
various road segmentation methods for video-based road-following,
along with approaches to boundary extraction and transformation of
boundaries in the image plane into a vehicle-centered three dimen-
sional scene model.

Index Terms—Autonomous navigation, computer vision, mobile ro-
bot vision, road-following.

I. INTRODUCTION

O achieve goal-directed autonomous behavior, the
vision system for a mobile robot must locate and
model the relevant aspects of the world so that an intel-
ligent navigation system can plan appropriate action. For
an outdoor autonomous vehicle, typical goal-directed be-
haviors include road-following, obstacle avoidance, cross-
country navigation, landmark detection, map building and
updating, and position estimation. The basic vision task
is to provide a description of the world rich enough to
facilitate such behaviors. The vision system must then in-
terpret raw sensor data, perhaps from a multiplicity of
sensor and sensor types, and produce consistent symbolic
descriptions of the pertinent world features.
In May of 1985, ‘“Alvin,”’ the Autonomous Land Ve-
hicle at Martin Marietta Denver Aerospace, performed its
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first public road-following demonstration. In the few
months leading up to that performance, a basic vision sys-
tem was developed to locate roads in video imagery and
send three-dimensional road centerpoints to Alvin’s nav-
igation system. Since that first demonstration, VITS (for
Vision Task Sequencer) has matured into a more general
framework for a mobile robot vision system, incorporat-
ing both video and range sensors and extending its road-
following capabilities. A second public demonstration in
June 1986 showed the improved road-following ability of
the system, allowing the ALV to travel a distance of 4.2
km at speeds up to 10 km/hr, handle variations in road
surface, and navigate a sharp, almost hairpin, curve. In
October 1986 the initial obstacle avoidance capabilities
were demonstrated, as Alvin steered around obstacles
while remaining on the road, and speeds up to 20 km/hr
were achieved on a straight, obstacle-free road. This pa-
per describes Alvin’s vision system and addresses the par-
ticular task of video road-following. Other tasks such as
obstacle detection and avoidance and range-based road-
following are discussed elsewhere [10], [11], [36].

A. A Brief Review of Mobile Robot Vision

SRI’s Shakey was the first mobile robot with a func-
tional, albeit very limited, vision system. Shakey was pri-
marily an experiment in problem solving methods, and its
blocks world vision system ran very slowly. The JPL ro-
bot [32] used visual input to form polygonal terrain models
for optimal path construction. Unfortunately, the project
halted before the complete system was finished.

The Stanford Cart [25], [26] used a single camera to
take nine pictures, spaced along a 50 cm track, and used
the Moravec interest operator to pick out distinctive fea-
tures in the images. These features were correlated be-
tween images and their three dimensional positions were
found using a stereo algorithm. Running with a remote,
time-shared computer as its “‘brain,’’ the Stanford Cart
took about five hours to navigate a 20 meter course, with
20 percent accuracy at best, lurching about one meter
every ten to fifteen minutes before stopping again to take
pictures, think, and plan a new path. The Cart’s *‘sliding
stereo’” system chose features generally good enough for
navigation in a cluttered environment, but it did not pro-
vide a meaningful model of the environment.

Tsugawa et al. [34] describe an autonomous car driven
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up to 30 km/hr using a vertical stereo pair of cameras to
detect expected obstacles, but its perception of the world
was very minimal, limiting its application to a highly con-
strained environment. The ‘‘intelligent car’’ identified
obstacles in an expected range very quickly by comparing
edges in vertically displaced images. A continuous ‘‘ob-
stacle avoidance’” mode was in effect, and a model of the
world was not needed.

A vision system for a mobile robot intended for the fac-
tory floor was presented by Inigo et al. [18]. This system
used edge detection, perspective inversion, and line fit-
ting (via a Hough transform) to find the path, an a priori
road model of straight lines, and another stereo technique
using vertical cameras, called motion driven scene cor-
relation, to detect obstacles. The Fido vision system [33]
uses stereo vision to locate obstacles by a hierarchical cor-
relation of points chosen by an interest operator. Its model
of the world consists of only the 3-D points it tracks, and
it has successfully navigated through a cluttered environ-
ment and along a sidewalk. Current work in multisensory
perception for the mobile robot Hilare is presented by de
Saint Vincent [7], describing a scene acquisition module,
using stereo cameras and a laser range finder, and a “‘dy-
namic vision’” module for robot position correction and
tracking world features. Another stereo vision system
based on matching vertical edges and inferring surfaces is
described by Tsuji ef al. [35].

The goal of a mobile robot project in West Germany is
to perform autonomous vehicle guidance on a German
Autobahn at high speeds [8], [22], [29]. The current em-
phasis is on control aspects of the problem, incorporating
a high-speed vision algorithm to track road border lines.
The system has performed both road-following and ve-
hicle-following in real-time.

Other mobile robots have been or are being developed
that use sensors particularly suited to an indoor environ-
ment (e.g., [4], [19]). The project headed by Brooks [2]
implements a novel approach to a mobile robot architec-
ture, emphasizing levels of behavior rather that functional
modules; much of the current vision work may be incor-
porated into such a framework.

B. ALV Background

The Autonomous Land Vehicle project, part of DAR-
PA’s Strategic Computing Program, is intended to ad-
vance and demonstrate the state of the art in image un-
derstanding, artificial intelligence, advanced
architectures, and autonomous navigation. A description
of the project and the initial system configuration is found
in [24]. Related vision research is proceeding concur-
rently by a number of industrial and academic groups, as
is work in route and path planning, as well as object mod-
eling and knowledge representation. The ALV project is
driven by a series of successively more ambitious dem-
onstrations. The ultimate success of the project depends
on coordination among the different groups involved to
enable rapid technology transfer from the research do-
main to the application domain. As the ALV is intended
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to be a national testbed for autonomous vehicle research,
various vision systems and algorithms will eventually be
implemented. Some of the current work is briefly de-
scribed in the remainder of this section.

Vision research areas currently being pursued in rela-
tion to the ALV program include object modeling, stereo,
texture, motion detection and analysis, and object recog-
nition. An architecture for terrain recognition which uses
model-driven schema instantiation for terrain recognition
is presented by Lawton er al. [23]. Such representations
for terrain models will be important for future cross-coun-
try navigation. Waxman er al. [40], [41] present a visual
navigation system that incorporates rule-based reasoning
with image processing and geometry modules. The sys-
tem, developed at the University of Maryland, finds dom-
inant linear features in the image and reasons about these
features to describe the road, using bootstrap and feed-
forward image processing phases. In the feed-forward
phase, previous results are used to predict the location of
the road in successive images. A subset of this system has
been used to autonomously drive the ALV for short dis-
tances. DeMenthon [6] describes an alternative geometry
module for the above visual navigation system.

Significant ALV-related work is proceeding at Carne-
gie-Mellon University (CMU). A review of recent results
from the CMU program is presented by Goto and Stentz
[13]. Outdoor scene analysis using range data from a laser
range scanner is presented by Hebert and Kanade [16],
describing methods for preprocessing range data, extract-
ing three dimensional features, scene interpretation, map
building, and object recognition. Fusion of video and
range data is also discussed. Range data processing has
been used on the CMU Navlab to demonstrate obstacle
avoidance capabilities. Vision algorithms used for suc-
cessful outdoor navigation of the CMU Terregator are de-
scribed by Wallace er al. [37]-[39]. The Terregator has
achieved continuous motion navigation using both edge-
based and color-based sidewalk finding algorithms.

Hughes Artificial Intelligence Center is developing
knowledge-based vision techniques for obstacle detection
and avoidance using the concept of a virtual sensor which
blends raw sensor data with specialized processing in re-
sponse to a request from the planning system [5], [30].
Work at SRI International is focused on object modeling
and recognition, and on modeling uncertainty in multiple
representations [1].

FMC Corporation and General Dynamics have dem-
onstrated successful transfer of ALV technology to mis-
sion-oriented scenarios of mixed teleoperation and auton-
omous navigation, performed at the Martin Marietta test
site in 1986. Kuan er al. [20], [21] describe FMC’s re-
search in vision-guided road-following. Other university
and industrial laboratories which are engaged in vision
research related to ALV include Advanced Decision Sys-
tems, Columbia University, General Electric, Honeywell
Research Center, MIT, University of Massachusetts at
Ambherst, University of Rochester, and USC. The Pro-
ceedings of the February 1987 Image Understanding
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Fig. 1. The ALV system configuration.

Workshop, sponsored by DARPA, contains descriptions
and status reports of many of these projects.

The vision system described in this paper (VITS) is the
system meeting the perception requirements for testing
and formal demonstrations of the ALV through 1986.
Section II gives a system overview, briefly describing the
various subsystems; it is important to understand the vi-
sion system in its context. Video-based road following is
discussed in Section III, describing sensor control, road
segmentation, road boundary extraction, and geometric
transformation to three dimensional world coordinates.

II. ALV SyYsTEM OVERVIEW

It is important to view Alvin’s vision subsystem as an
integral part of a larger system, which can affect and be
affected by the performance of the system as a whole. Fig.
1 illustrates the basic system configuration of the ALV,
including the interfaces to the major modules. In the par-
agraphs below, each of Alvin’s major components will be
discussed in the context of the interaction as a complete
system.

A. Hardware Components

The primary consideration behind selection of the hard-
ware components was that Alvin is intended to be a testbed
for research in autonomous mobility systems. Conse-
quently, it was necessary to provide Alvin with an under-
carriage and body capable of maneuvering both on-road
and off-road, while carrying on board all the power, sen-
sors, and computers needed for autonomous operation. In
addition, the requirements of autonomous operation di-
rected the selection of sensors and processing hardware.

1) Vehicle: Fig. 2 is a photograph of Alvin. The over-
all vehicle dimensions are 2.7 m wide by 4.2 m long; the
suspension system allows the height of the vehicle to be
varied, but it is nominally 3.1 m.

Alvin weighs approximately 16 000 pounds fully loaded
with equipment, yet is capable of traveling both on-road
and off-road. The undercarriage is an all-terrain built by
Standard Manufacturing, Inc. The basic vehicle is eight-
wheel drive, diesel-powered, and hydrostatically driven.
Alvin is steered like a tracked vehicle by providing dif-
ferential power to the two sets of wheels.

Alvin’s fiberglass shell protects the interior from dust
and inclement weather, and insulates the equipment in-
side. The shell provides space for six full-size equipment
racks, as well as room for service access. The electronics
within the ALV are powered by an auxiliary power unit.

Fig. 2. Alvin.

An environmental control unit cools the interior of the
shell.

2) Sensors: In order to function in a natural environ-
ment, an autonomous vehicle must be able to sense the
terrain around it, as well as keep track of heading and
distance traveled. The ALV hosts a number of sensors to
accomplish these tasks.

Alvin’s sense of direction and distance traveled is pro-
vided by odometers on the wheels coupled to a Bendix
Land Navigation System (LNS). These sensors enable Al-
vin to follow a trajectory derived from visual data or read
from a prestored map. The LNS provides direction as an
angle from true North, while distance traveled is provided
in terms of horizontal distance (Northings and Eastings),
and altitude.

Two imaging sensors are currently available on the
ALV for use by VITS. The primary vision sensor is an
RCA color video CCD camera, which provides 480 X
512 red, green, and blue images, with eight bits of inten-
sity per image. The field of view (38° vertical and 50°
horizontal) and focus of the camera are kept fixed. The
camera is mounted on a pan/tilt unit that is under direct
control of the vision subsystem.

The other vision sensor is a laser range scanner, devel-
oped by the Environmental Research Institute of Michi-
gan (ERIM). This sensor determines range by measuring
the phase shift of a reflected modulated laser beam. The
laser is continuously scanned over a field of view that is
30° vertical and 80° horizontal. The output of the scanner
is a digital image consisting of a 64 X 256 array of pixels
with 8 bits of range resolution.
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Fig. 3. The first-generation ALV processor configuration.

3) Computer Hardware: Alvin currently uses a variety
of computers, resulting from the range of processing re-
quirements of the different software subsystems. The di-
verse processing requirements were met by designing a
modular multiprocessor architecture. VITS is hosted on a
Vicom image processor, while the other software subsys-
tems are hosted on an Intel multiprocessor system. VITS
communicates with the other subsystems across a dedi-
cated communication channel, while the other subsystems
communicate across a common bus. Fig. 3 depicts the
processor configuration.

The special capabilities of the Vicom hardware were
important to the development of the ALV vision subsys-
tem (VITS). The Vicom contains video digitizers, and can
perform many standard image processing operations at
near video frame rate (1/30 second). For example, 3 X
3 convolution, point mapping operations (such as thresh-
olding, or addition and subtraction of constants), and im-
age algebra (such as addition or subtraction of two im-
ages) are all frame rate operations. The Vicom also
contains a general purpose microcomputer for additional,
user-defined operations.

As stated above, Alvin is intended to be a testbed for
autonomous systems. In fulfilling this charter, plans have
been made to integrate a number of advanced experimen-
tal computer architectures in future generations of the
ALV system. This will begin with a new architecture in
early 1987.

B. Vision

The vision subsystem is composed of three basic mod-
ules: VITS, the vision executive, which handles initial-
ization, sets up communication channels, and ‘‘oversees”’
the processing; VIVD, the video data processing unit; and
VIRD, the range data processing unit. Range data pro-
cessing has been implemented on the ALV, and results of

range-based road-following and obstacle avoidance are
presented in [10], [11].

The vision system software resides entirely on the Vi-
com image processor, which also houses a board dedi-
cated to camera pan/tilt control and a board to enable
communication with the Intel system. Nearly all of the
application code is written in Pascal and uses the Vicom-
supplied libraries for accessing high-speed image opera-
tions. Some low level control routines have been imple-
mented in Motorola 68000 assembly language.

The responsibility of the vision subsystem in road-fol-
lowing is to process data in the form of video or range
images to produce a description of the road in front of the
vehicle. This description is passed to the reasoning sub-
system, which uses additional data such as current posi-
tion, speed, and heading to generate a trajectory for Alvin
to follow. Communication between the vision subsystem
and Reasoning takes place in three different forms: the
scene model, the position update, and visual cues. A spe-
cial communication control processor, part of the utilities
subsystem, mediates communication between VITS and
the other subsystems. The control processor shares mem-
ory with VITS, and handles communication by examining
the content of key memory locations every 100 ms and
modifying them as appropriate.

1) Scene Model: The scene model, a description of the
observed road, is the output of the vision subsystem after
each frame of images is processed. The scene model con-
tains a record of Alvin’s position and heading at the time
of image acquisition, a description of the road found in
the imagery, consisting of lists of vehicle-centered 3-D
points denoting left and right road edges, and an optional
list of points surrounding an obstacle. The reasoning sub-
system must then transform the road description into a
fixed, world coordinate system for navigation. VITS may
optionally specify the scene model in world coordinates;
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this is more efficient when data acquired from muitiple
sensors or at different times is used to create the scene
model.

Since the time needed to compute a scene model is non-
deterministic, VITS sets a ‘‘scene model ready’’ flag in-
dicating that a new scene model is ready to be processed.
The communication controller examines this flag, and,
when set, transfers the scene model to the reasoning sub-
system and clears the flag.

Fig. 4 illustrates the format of a scene model. Fig. 5 is
an example of a hypothetical road scene and the corre-
sponding scene model.

2) Position Update: VITS must know the position and
heading of the vehicle at the time of image acquisition to
integrate sensor information acquired at different times,
and to transform vehicle-centered data into world coor-
dinates. In addition, VITS must be able to predict the lo-
cation of the road in an image, given its location in the
preceding image (see Section III-B-1-d).

Communication of vehicle motion and position infor-
mation is effected by means of a position update message
passed from Reasoning to the vision subsystem. The po-
sition update specifies the current vehicle speed, position,
and heading. Synchronization of position update and im-
age acquisition is mediated by a position update request.
At the time VITS digitized an image, the ‘‘position update
request’” flag is set. When the communication controller
finds the flag set, it sends a message to Reasoning which
immediately (within 100 ms) generates the required in-
formation, builds a position update message, and sends it
to VITS.

3) Visual Cues: The reasoning subsystem interfaces to
a knowledge base which contains information about the
test area. Some of this information can be used by VITS
to specify behavior (find road, locate obstacles, pause,
resume) or to optimize processing, much as the informa-
tion on a road map can guide a driver. When Reasoning
determines that a visually identifiable feature should be
within the field of view, a visual cue is sent to VITS en-
abling vision processing to be modified. In the future,
when Alvin’s domain becomes more complex, these cues
will be used to guide the transition from one road surface
to another, from on-road to off-road and vice versa, or to
guide the search for a landmark. In the current version of
the system, stored knowledge about the shape of the road
shoulder has been used to guide a transition between
range-based and video-based road-following. Apart from
this, the cue facility has been used to date only to notify
VITS that the vehicle is approaching a curve (which
causes the camera panning mechanism to be enabled) and
to send pause and resume commands to VITS.

C. Reasoning

The Reasoning subsystem is the executive controller of
the ALV; Vision is a resource of Reasoning. At the high-
est level, Reasoning is responsible for receiving a plan
script from a human test conductor and coordinating the

type scene_model = record
time: array{1..4] of word; {time stamp }
count: word; { # of road edge records }
x,y,psi: real; { vehicle position }
SM_rec: array[1..10} of record
tag: string[2); { left or right }
numpts: word; { # of points }
pts: array [1..10]
of array[1..3] of real;
end;
version: string[10]; {current SW version }
num: word; { scene model # }
end;

Fig. 4. The scene model format.
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Fig. 5. Road scene and corresponding scene model.

other subsystems on Alvin in order to accomplish the goals
specified in the script.

Because the processing involved in creating a visual de-
scription of the environment is beyond the real-time ca-
pability of present computers, the scene model is not used
directly in the vehicle’s control servo loop. Instead, the
Navigator (part of the reasoning subsystem) pieces to-
gether scene models from the vision system and builds a
reference trajectory that is sent to the Pilot for control.
The reasoning subsystem accepts a position update re-
quest from VITS, generates the appropriate data, and
sends back a position update. Upon receipt of a scene
model, Reasoning evaluates it and plots a smooth trajec-
tory if the data is acceptable. The new trajectory is com-
puted to smoothly fit the previous trajectory.

Evaluation of scene models is a powerful capability of
the reasoning subsystem. Small environmental changes,
such as dirt on the road, or the sudden appearance of a
cloud, can significantly affect the output of the vision sub-
system. Reasoning uses assumptions about the smooth-
ness and continuity of roads to verify data from VITS.
Every scene model is evaluated based on the smoothness
of the road edges, and on how well they agree with pre-
vious edges. A scene model evaluated as ‘‘bad’’ is dis-
carded.

Reasoning creates a new trajectory by minimizing a cost
function based on current heading, curvature of the scene
model, attraction to a goal, and road edge repulsion. The
final trajectory is a sequence of points that lie near the
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center of the road. Each point is tagged with a reference
speed. The reference speeds are computed so that, if no
new scene models are received, the vehicle will stop at
the end of the trajectory. The trajectory is then sent to the
Pilot.

The reasoning subsystem also interacts with the knowl-
edge base to locate features significant for vision process-
ing. As each new trajectory is generated, the knowledge
base is searched to determine if any features are within
the field of view of the vehicle. Features that are both
within a maximum distance and a maximum angle from
the current heading are incorporated into a Visual Cue
which is passed to VITS.

D. Knowledge Base

The knowledge base consists of a priori map data, and
a set of routines for accessing the data. Currently, the map
data contains information describing the road network
being used as the ALV test track. The map data contains
coordinates which specify the location of the roadway, as
well as various significant features along the road, such
as intersections, sharp curves, and several local road fea-
tures.

At present, the vision subsystem communicates with the
knowledge base through Reasoning.

E. Pilot

The Pilot performs the actual driving of the vehicle.
Given a trajectory from Reasoning, the Pilot computes the
error values of lateral position, heading and speed by
comparing LNS data with the target values specified in
the trajectory. The Pilot uses a table of experimentally
obtained control gains to determine commands needed to
drive the errors toward zero; these commands are output
to the vehicle controllers.

The vision subsystem has no direct communication with
the Pilot.

III. VipEO-BASED ROAD-FOLLOWING

The task of the vision system in a road following sce-
nario is to provide a description of the road for naviga-
tion. Roads may be described in a variety of ways, e.g.,
by sets of road edges, a centerline with associated road
width, or planar patches. We have chosen to represent a
road by its edges, or more precisely, points in three space
that, when connected, form a polygonal approximation of
the road edge. Road edges are intuitively the most natural
representation, since they are usually obvious (to humans,
at least) in road images. Often, however, the dominant
linear features in road images are the shoulder/vegetation
boundaries rather than the road/shoulder boundaries. The
difficulties in extracting the real road boundary from the
image led us to adopt a segmentation algorithm to first
extract the road in the image, track the road/nonroad
boundary, and then calculate three dimensional road edge
points.

The current video data processing unit (VIVD) uses a
clustering algorithm to segment the image into road and
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nonroad regions. A detailed description of image segmen-
tation by clustering can be found in [3]. After producing
a binary road image, the road boundaries are traced and
select image points are transformed into three dimen-
sional road boundary points. The complete cycle time,
from digitization to producing a symbolic description of
the road, is currently just over 2 seconds. The algorithm
is summarized in the following steps, which are discussed
in detail in the following sections: 1) digitize the video
images; 2) segment road/nonroad regions; 3) extract road
boundaries by tracing the binary road edges; and 4) trans-
form 2-D road edge points to 3-D coordinates and build
the scene model. Fig. 6 depicts the flow of control in a
complete scene model cycle.

A. Sensor Control and Image Acquisition

1) Camera Panning: The position of the road with re-
spect to the vehicle may change due to a curving road,
vehicle oscillation, or a sudden path correction. Conse-
quently, the position of the road within the field of view
of a fixed camera may change. Because the video seg-
mentation algorithm requires sampling a population of
road pixels, two methods were developed to maintain
knowledge of the road position from frame to frame: cam-
era panning and power windowing. Power windowing, a
‘‘software panning’’ technique, is described in Section III-
B-1-d.

Control of the pan/tilt mechanism is a function of ve-
hicle orientation and desired viewing direction. During
road-following, we would like the camera to point ‘‘down
the road,”’ regardless of the vehicle orientation, keeping
the road approximately centered in the image. This re-
quires the vision system to know global position infor-
mation and relate the vehicle-centered road description to
present vehicle location and orientation, and then to cal-
culate and command the desired pan angle. If only one
road boundary is detected, then VITS will attempt to pan
the camera to the right or left to bring both road edges
into view in the next image. The activation of planning is
also controlled by cues from the reasoning subsystem that
indicate when panning would be useful (e.g., going
around a sharp corner), and when it would not be helpful
(e.g., passing a parking lot).

In the initial implementation of camera panning, the
camera was allowed to assume only three positions, left,
mid, and right, with simple rules for switching from one
to another based on road location in the image. With this
technique we were able to successfully navigate a sharp
corner; however, this was not very repeatable. After
studying the failure symptoms we rejected this simplistic
approach to panning in favor of a technique allowing
‘‘continuous’’ pan positions based on the difference be-
tween vehicle orientation and the perceived road orienta-
tion, and constraints on minimum and maximum incre-
mental panning and on the maximum absolute pan angles.

We have not yet needed the camera tilting capability.
The tilt angle is fixed at approximately 17° below the ho-
rizon.
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Fig. 6. VITS flow of control.

2) Image Acquisition: The image processing computer
digitizes red, green, and blue images, directly into mem-
ory from the video camera. Typically, the images are
blurred to reduce noise; since convolution is distributive,
blurring is performed after the images are combined. Our
camera has an optional automatic iris which compensates
for global intensity changes. Calibration is performed on
the camera before a test run to calculate the exact tilt an-
gle and focal length, and the proper color response.

Along with the raw images, the position update is re-
quested and received from the communication control
processor. The position update includes a time stamp and
the two dimensional position and orientation of the vehi-
cle—this information allows conversion from a vehicle-
centered road description to world coordinates.

B. Road Segmentation

There are many techniques used in computer vision sys-
tems to segment images into regions of similarity. Seg-
mentation of natural outdoor scenes is a particularly com-
plex problem [15], but it is simplified when a predominant
feature in the scene (i.e., the road) is the main focus of
the segmentation. A priori information is available about
roads, as is information from previous frames and vehicle
movement.

Road segmentation is rather simple to accomplish on a
stored road image, given enough time to experiment and
modify parameters. In a real-time, outdoor environment
with a mobile robot, however, road segmentation is com-
plicated by the great variability of vehicle and environ-
mental conditions. Changing seasons, weather condi-
tions, time of day, and manmade changes complicate the
video segmentation, as do the variable color response of
the cameras, the vehicle suspension system, performance

of the navigation and control subsystems, and other
changes in the vehicle system. Because of these combined
effects robust segmentation is very demanding. Particular
conditions that have proven difficult to handle are the
presence of dirt on the road, spectral reflection when the
sun is at a low angle, shadows on the road, and tarmac
patches (used to repair road segments). These will be dis-
cussed further in Section IV.

The segmentation methods used by VITS are motivated
by the hardware supporting it, speed requirements, and
assumptions about road and nonroad image characteris-
tics. We have proposed and tested various segmentation
techniques, all based on knowledge of road characteristics
in color images. Section III-B-1 describes the specific
techniques developed for the segmentation algorithms.
The algorithms discussed in the following sections are
somewhat cryptically called red minus blue, color nor-
malization, and shadow boxing.

1) A Classification Problem: To understand the road
segmentation algorithms discussed below, it is best to
view road segmentation in the broader context of a gen-
eral classification problem with only two classes: road and
nonroad. A typical classification problem involves five
basic steps: feature extraction, feature decorrelation, fea-
ture reduction, clustering, and segmentation [3]. Feature
extraction is the process of computing the features used
to distinguish between classes. Feature decorrelation is
formally a multidimensional transformation that results in
a new, orthogonal set of features. Feature reduction dis-
cards those features that are unnecessary or yield little
information. Clustering partitions the feature space into K
mutually exclusive regions, and segmentation assigns each
pixel in the image to one of the regions.

a) VITS Clustering: The clustering algorithm used
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in VITS is a real-time (i.e., abbreviated) solution to the
classification problem. Step 1 is trivial. A color video im-
age consists of a 3-tuple of red, green, and blue intensity
values at every pixel; thus each pixel is a point (or vector)
in RGB space. By using color as the feature space, feature
extraction is equivalent to digitization. Other features,
such as texture, saturation, and reflectance data from the
laser scanner, have been considered but are not presently
used.

Feature decorrelation and feature reduction are accom-
plished in a single step in our algorithm. A single plane
in three-space does a very good job under most conditions
of partitioning the feature space into road and nonroad
regions. The original features are, in effect, combined into
a single linear feature whose axis is perpendicular to the
separating plane. The projection of image points onto this
perpendicular line is equivalent to a dot product of the
pixel vector and the normal of the plane. Feature decor-
relation and reduction then reduce to the problems of find-
ing the orientation of this plane and projecting image
points onto a line normal to the plane; these are discussed
in Section III-B-1-b.

Clustering (step 4) now involves determining the
threshold along the ‘‘feature line’’ that separates road
from nonroad clusters, discussed in Sections I1I-B-1-c and
II1-B-1-d. Segmentation (step 5) is just the creation of a
binary road/nonroad image (since K = 2 for simple road-
following ) from the clustering information, labeling each
pixel as road or nonroad according to whether it projects
above or below the feature threshold.

b) Color Parameter Selection: The projection of im-
age points in RGB space onto a line is equivalent to taking
the dot product of every pixel vector (R, G, B) with a
vector in the direction of the line (r, g, b). This is accom-
plished by a tricolor operation, a linear weighted combi-
nation of the red, green, and blue images:

I(i,j) = rR(i,j) + ¢G(i,j) + bB(i, j)
(r, 8 b) - (R, G, B).

The vector (r, g, b) represents the red, green, and blue
coefficients of the tricolor operation. When this vector is
normal to the plane that separates road and nonroad clus-
ters in the RGB space, the outcome I is the single band
‘“feature enhanced’”’ image. The orientation of the sepa-
rating plane is relatively consistent under given weather
and camera conditions. It can often be chosen by hand at
the beginning of a run and not modified thereafter. How-
ever, we have found that some segmentation failures have
occurred because of a change in the orientation of the sep-
arating plane, due to changing weather conditions, sea-
sonal changes, road surface variations, and the camera
color response. We have therefore developed a method to
dynamically compute the optimal plane orientation based
on data from the image currently being processed.
Experience has shown that a good segmentation is
achievable without using the green band, so we can re-
duce the problem conceptually to finding the slope of a
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(b)
Fig. 7. Road image. (a) Original. (b) Red/blue scatter diagram of image.
Line in (b) depicts road/nonroad boundry.

line in two dimensional Red/Blue space, rather than find-
ing the normal of a plane in RGB space. (The techniques
presented are easily generalized to include the green band,
however.) Fig. 7(b) shows a scatter diagram of the red
and blue components of Fig. 7(a); this can be thought of
as a projection of the RGB space onto the Red/Blue plane,
or as a two-dimensional histogram. Road pixels cluster
nicely, distinct from nonroad pixels, and it should be clear
that the line drawn in the figure will successfully separate
road and nonroad clusters and therefore segment the im-
age. This line is the linear discriminant function in Red/
Blue space.

The slope of the linear discriminant function deter-
mines the red and blue components of the tricolor opera-
tion, with the green component equal to zero. In the scat-
ter diagram, the road cluster is consistently an elliptical
shape whose principal axis is parallel to the linear dis-
criminant function. Hence the discriminant function can
be found by calculating the principal axis of the road clus-
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ter. The angle the principal axis makes with respect to the
red axis () is defined by the equation [17]

6 = 0.5 tan~"' <afc> (1)

a=.?(r-7~)2

where

b=22(r—7)(b-5b)
c=2(b-b)

and (7, b) is the mean of the cluster. From 6 the red,
green, and blue color parameters are calculated as

(r, 8 b) = (cos 0, 0, sin 9). (2)

The method to dynamically choose color parameters,
then, proceeds as follows: sample road points in the im-
age, calculating the red and blue means (7, b) and a, b,
and ¢ which lead to the calculation of § and then 7, g, and
b. This provides the normal of the plane in RGB space,
or equivalently the line in Red/Blue space, that separates
the road and nonroad clusters. This automatic color pa-
rameter selection technique is yet to be fully integrated
into VITS—the current version still uses preset constant
color parameters.

¢) Threshold Selection: Once the color parameters
are known (either calculated or preset), the tricolor op-
eration is performed, creating an image for which each
pixel represents the distance (which may be positive or
negative) from the original RGB pixel to the plane
TR + gG + bB = 0. At this point, the image is blurred
to reduce noise. Choosing a value with which to threshold
the new image, then, is equivalent to translating the plane
in RGB space. The segmentation is described by the fol-
lowing equation which makes explicit the use of both color
parameters (7, g, b) and the threshold ( \):

1 if rR(i,j) + gG(i,j)
+bB(i,j) + A <0

0 otherwise.

r(i,j)= (3)

The resulting binary image I’ is a function of the thresh-
old A, which is selected by sampling a population of road
pixels from the current image. In the original version of
VITS, we did a histogram equalization of the feature im-
age (the tricolor result) and used a constant threshold to
segment. This assumed that the road occupied a constant
percentage of the image pixels from image to image. This
worked well over most of the initial test track, but is not
generally true. As an alternative, we opted for a more ro-
bust and faster method of calculating the threshold by
sampling road pixels in each image. The road sampling
technique is described in the next section.

Our original threshold calculation involved finding the
mean and standard deviation of the road samples; the
threshold was calculated as the mean of the road cluster
plus a constant number of standard deviations. This

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 3. MAY 1988

proved to be very sensitive to the presence of shadows,
dirt on the road, potholes, and patches of new tarmac used
in road repair; these often caused the calculated road mean
to be unreliable. (See Section III-B-4 for a proposed so-
lution to this problem.) To overcome some of these prob-
lems, we chose the median of the top M sampled values
(typically M = 15) rather than the mean of the whole
sample population as the nominal threshold value. This
takes advantage of the knowledge that true road pixels are
brighter in the feature image than most of these problem
areas (with the nagging exception of dirt). This normally
prevents small shadows, cracks and potholes, and patches
on the road from causing erroneous road sampling. The
most positive sampled road points define the approximate
boundary of the road cluster along the feature line. The
median of the top values is used in case spurious nonroad
values are sampled, and a constant offset is added to the
nominal value to move the threshold just above the cluster
boundary. The threshold calculation is critical to a good
segmentation; Fig. 8 shows the results of thresholding at
different values.

d) Road Sampling and Power Windows: Sampling
road pixels in a dynamic environment is not straightfor-
ward. Our original implementation sampled at 125 fixed
image locations, as shown in Fig. 9(a), assuming that the
road covered these points. Because the road can drasti-
cally change position within the field of view from frame
to frame, the sampling ‘‘windows’’ sometimes fell par-
tially off the road, sampling dirt or grass. Since dirt and
grass tend to fall above the road cluster boundary, this
upset the calculation of the threshold.

To prevent sampling portions of the scene outside of
the road boundary, then, power windowing was devel-
oped for road sampling. Instead of sampling at fixed im-
age locations, the sampling window is projected onto the
predicted road position in the image. Because of vehicle
movement, this involves projecting a trapezoid represent-
ing the boundary of the road found in the previous scene
model into world coordinates and then back into the new
image plane location. This trapezoid, the prediction of the
location of the road in the new image, is now the bound-
ing window for image sampling, given the new position
and orientation of the, vehicle. This relies on the position
update information (described in Section II) to do the geo-
metric calculations between the previous and the present
vehicle positions. Fig. 9(b) shows the sampling window
computed as Alvin travels around a curve.

Power windowing is used along with or independent of
pan/tilt control. Without the pan/tilt mechanism, it gives
the ALV a software panning ability; with it, power win-
dowing provides fine adjustment for road sampling. In
relatively straight portions of road terrain, power win-
dowing alone is preferred, because of the time involved
in panning the camera. Even small angular panning is sig-
nificant because of the acceleration and deceleration times
of the pan/tilt mechanism. On a straight road the vehicle
will often oscillate slightly as it traverses its path, so rather
than allowing many small panning motions the pan mech-
anism is disabled and power windowing takes care of
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Fig. 8. (a) Scattergram. (b)-(d) Result of thresholding at different values.

“‘panning’’ the sample window. In extreme conditions
such as a bad segmentation suggesting a window that is
unreasonably small or large, a default window is used,
similar to the old fixed image sampling points.

Because Alvin may travel as much as 10 m between
successive scene acquisitions at top speeds, the projection
of the old road model into the new road image may be
small and fill only the lower portion of the image. To
compensate for this, we use the speed from the previous
position update to extend the top of the window forward
so that it reaches a fixed distance in front of the vehicle.
A larger sample area reduces the danger of sampling solely
on a patch of dirt, shadow or stained road. The extension
of the window also allows us to sample on shadowed
pavement, which is helpful in the shadow boxing algo-
rithm (Section III-B-4).

2) Red Minus Blue Segmentation: The segmentation
algorithms are implemented on the Vicom image process-
ing computer and take advantage of its frame rate con-
volution and lookup table operations. The feature reduc-
tion is accomplished by a tricolor operation, a weighted

sum of the red, green, and blue images. These weights
are chosen by hand or more recently calculated based on
road image statistics (Section III-B-1-b). Typical values
for (r, g, b) are (0.5, 0.0, —0.5); hence the name *‘Red
minus Blue.”” In practice, for the Martin Marietta test site
these values are nearly constant. The dynamic parameter
selection described above makes it possible to handle
changes in road surface type, for example, during a run.

This segmentation method was originally motivated by
noticing that the road appears darker than the dirt on the
road shoulder in the red image and brighter than the dirt
in the blue image. Since the spectral content of the pave-
ment is ‘‘mostly blue’” and the dirt bounding the road is
“‘mostly red,”” subtracting the images became an obvious
way to enhance the road/nonroad boundary. (Actually,
“‘Blue minus Red’’ enhances the pavement, while ‘‘Red
minus Blue’’ enhances the dirt!) An edge-based road-fol-
lowing algorithm would best work on the enhanced image
rather than a normal intensity or single-band image.

A threshold value is chosen from the road statistics to
differentiate road and nonroad clusters, as discussed in
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(b)

Fig. 9. (a) Original fixed sampling points. (b) Sampling window around
sharp curve, calculated by power windowing module.

Section III-B-1-c. The resulting image is then thresholded
to produce the binary road/nonroad image; this is simply
one pass of the image through a lookup table. The steps
of the algorithm are depicted in Fig. 10 for two different
road scenes.

3) Color Normalization: Another clustering algorithm
involves segmenting a color normalized image, rather than
the ‘‘Red minus Blue’’ feature image. Color intensities
vary quite a bit within the road surface in a road image
with shadows; intensities from the shaded regions are
much smaller than those from the sunny region of the
road. Intuitively, normalizing the color components will
allow both shaded and sunny regions to cluster together.
This assumes that the ambient illumination is identical or
similar in spectral content to the incident illumination of
the scene. Gershon ef al. [12] discuss this assumption and
propose a tool that can be used to classify whether dis-
continuities in an image are due to material changes or
shadows.

We have found that using a normalized blue feature im-

age enhances the pavement/dirt boundary and therefore
gives a good road/nonroad segmentation. The calculation
of this feature and the resulting segmentation is described
by

B
ff——o— —A>0
"R+G+B

0 otherwise.

I'(i.j) = (4)
The threshold equation of (4) can be rewritten as
B—-XR+G+B)>0
or
AR+ NG+ (N—-1)B<O.

This can also be implemented as a tricolor operation fol-
lowed by a threshold, as described by the equation:

1 if AR(i,j) + NG (4, /)
+(1 =N)B(i,j) <0

0 otherwise.

re.j) = (5)

Equation (5) is equivalent to a plane segmentation of the
RGB color space, where the dynamically chosen thresh-
old actually varies the orientation of the plane, rather than
its translation as in the ‘‘Red minus Blue’’ algorithm.
Calculation of the threshold N proceeds as described in
Section III-B-1-c.

4) Shadow Boxing: Segmenting the road using a single
threshold on a combined RGB image supposes that the
road cluster is the only significant cluster in an RGB half-
space. If there are significant nonroad regions inside of
the half-space defined by the plane normal (r, g, b) and
the threshold A, they will also be labeled as ‘‘road’’ and
perhaps cause faulty scene models to be output. Fig. 11
shows a scatter diagram of such a case: a large region
labeled ‘‘shaded nonroad,’’ caused primarily by ditches
and shadows of bushes off the road, falls in the road half-
space. Shadows that fall on the road are close to this re-
gion in the scatter diagram; the cluster labeled ‘‘shaded
road’’ must be distinguished from the ‘‘shaded nonroad.”’

This could perhaps be solved by segmenting twice, cor-
responding to the two threshold lines in Fig. 11(b), and
performing a logical AND of the resulting binary images.
The dynamic threshold calculation for the boundary be-
tween the sunny and shaded road regions is very sensitive
to noise, however, because there is very little information
in the shaded regions, even when digitized from a camera
with a reasonably good dynamic range. Another tech-
nique that we have considered is to use a nonlinear dis-
criminant function for segmentation. The problem is to
find an adequate nonlinear function that reliably corre-
sponds to the bends observed in the boundaries of road
features in Red/Blue color space. On inspection of a wide
variety of road scenes, no general pattern could be ob-
served.

Rather than segmenting complete half-spaces, then, the
road regions may be bounded by rectangles in the scatter
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Fig. 10. Incremental results from video segmentation algorithm.

(a)

Fig. 11. (a) Original image. (b) Scatter diagram of road scene with shadows.

diagram, and only the boxed regions are segmented and
labeled as road. This is particularly helpful in conditions
with significant shadows; hence the name *‘Shadow Box-
ing.

The bounding boxes are again motivated by the current
hardware, as the segmentation can be implemented
quickly by two global lookup table operations per boxed
region. The boxes must be oriented with the axes of the
two dimensional feature space, however, so the first step
is to perform a rotation of the Red/Blue axes so that the

(b)

red axis is aligned with the road cluster in the scatter dia-
gram. A rotation of # about the origin is desired, where 8
is defined in (1) as the angle between the red axis and the
principal axis of the road cluster in the scatter diagram.
As shown in the Appendix, this rotation is performed by
replacing the red image with the result of a tricolor op-
eration using (7, 0, b) and replacing the blue image with
a tricolor result using ( —b, 0, r), where r and b are de-
fined in (2). Fig. 12(a) shows the new scatter diagram
with the bounding boxes, from the original in Fig. 11.
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Fig. 12. Scatter diagram from Fig. 11, (a) rotated to align with the road
cluster. (b) Sunny road result. (¢) Shaded road result. (d) Final road

image.

The extents of the bounding boxes in the rotated space
are calculated as the road image points are sampled by
keeping track of the maximum and minimum sampled val-
ues within expected ranges for both shaded road and sunny
road regions. The threshold calculation uses only values
in the expected range for sampling the road, making that
stage less sensitive to noise. Lookup tables are built to
perform the segmentation; two binary images are pro-
duced from each bounding box, one per axis. For each
box, a logical AND of its resulting binary images is per-
formed, giving the road region corresponding to the box.
Figs. 12(b) and (c) show the image regions corresponding
to the sunny road and shaded road boxes, respectively.
The results from each box are then combined with a log-
ical OR operation, resulting in a binary road/nonroad im-
age, as in Fig. 12(d).

Shadow boxing is similar to a dynamic Bayesian clas-
sifier [9] with three decision regions and rectangular de-
cision boundaries. In summary, the steps involved in the

algorithm are: 1) calculate the color parameters (7, g, b);
2) rotate the Red/Blue space by performing two tricolor
operations; 3) sample the road points, keeping track of
the extents of the bounding boxes; 4) build the lookup
tables; and 5) perform the segmentation for each box by
passing the rotated images through the corresponding
lookup tables and combining the images with the proper
sequence of logical operations.

C. Boundary Extraction

The segmentation algorithms produce a binary road/
nonroad image. From this image, the road edges are ex-
tracted and transformed into three dimensional coordi-
nates to fill in the scene model. The boundary extraction
is an edge-tracking process in which the road boundary is
found and then traced while keeping track of the pixel
locations.

The initial task is to find the road/nonroad boundary in
the image. To facilitate easier boundary tracing and to
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Fig. 13. (a) Binary road image. (b) Falsc boundary added. (¢) Road edges.
(d) Road edges overlaid on original image.

avoid looking for the road on or above the horizon, a false
road boundary is added around the image, creating an ar-
tificial horizon and borders, as in Fig. 13(b)—this pre-
vents following the road edges up into the sky or over into
the next segment of image memory. In order to find an
initial boundary, we start in the bottom quarter of the im-
age and step upwards until a boundary is detected. The
border is then traced in both directions, using an 8-neigh-
bor nonroad, 4-neighbor road connectivity rule, and im-
age coordinates of boundary points are saved. The bound-
ary detection and tracing uses preset ‘‘skip factors’ in
both row and column directions to speed processing. This
effectively reduces the image size by the row and column
skip factors. The boundary tracking method allows for
reasoning on the fly—'‘bubbles’’ are properly ignored,
and globally nonlinear segments, such as corners of in-
tersections, can be detected and noted. When the right or
left false boundary is detected, the corresponding road
edge is known to be out of the camera’s field of view.

Fig. 13(c) and (d) show the boundary traced for the seg-
mentation of Fig. 7(a).

A completely general approach to boundary extraction
is prohibitively expensive with the current hardware. Such
an approach, however, would allow more extrensive rea-
soning about road shape, obstacles in the road, and choos-
ing road sampling regions. Kuan and Sharma [21] have
demonstrated model-based reasoning about road bounda-
ries. Future hardware improvements should allow more
sophisticated reasoning capability in road boundary ex-
traction.

Once the image coordinates of both right and left road
edge points are found, we choose a small number of points
(up to ten) on each edge to form a polygonal representa-
tion of the road edge. Image coordinates of a small neigh-
borhood of edge points are averaged to avoid sending
“‘stray’” points. The row locations of these points are
spaced by a quadratic function so that the three dimen-
sional locations of the road edge points will be approxi-
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mately equal distances apart. These points are then sent
to the geometry module for conversion to three dimen-
sional road edge point.

D. Three Dimensional Geometry Transformations

Once road edge points are selected in the image, a three-
dimensional description, called the scene model, must be
sent to Reasoning for trajectory calculation. This process
of recovering the three dimensional information projected
onto the two dimensional image plane is the ‘‘inverse op-
tics””> problem of vision. As Poggio [31] and others have
pointed out, this is an under-constrained (formally “‘ill-
posed’’) problem that requires the introduction of generic
constraints to arrive at a unique solution. In our case, such
constraints are assumptions about the structure of the road
environment. This is the forward-geometry problem.

VITS also uses the solution to the inverse-geometry
problem, determining the location within the image plane
of a point whose three-dimensional location is known.
Unlike the forward-geometry problem, the inverse-ge-
ometry problem has an exact solution; no assumptions
need to be made in order to constrain the problem and
make it well-posed. The combination of the forward-ge-
ometry and inverse-geometry processes allow for frame-
to-frame registration of features as well as predictions
about, for example, the continuation of the road.

The original forward-geometry module used in VITS
was essentially a model driven ‘‘shape from contour™
method developed at the University of Maryland [40],
based on calculating the vanishing point of parallel lines
projected onto the image plane. Experiments soon showed
that assuming a flat-earth road model allows for a much
faster forward-geometry module and performs better for
the roads Alvin encounters and the speeds attained during
the demonstrations through 1986. While flat-earth geom-
etry is clearly an assumption that is very useful in certain
circumstances, it is not accurate enough for all road-fol-
lowing applications. Work is proceeding to incorporate a
hill-and-dale geometry module [28] that uses a fast
**shape from contour’’ method to solve the forward-ge-
ometry problem.

These various techniques for recovering the three di-
mensional descriptions are discussed in the remainder of
this Section. The flat-earth model is presented first be-
cause it is used by the other techniques. Next, the hill-
and-dale technique, a slight modification of the flat-earth
model, is presented. The vanishing point method and a
zero-bank method, both developed at the University of
Maryland, are mentioned for comparison.

1) Flat-Earth Geometry Model: In the flat-earth ge-
ometry model we assume that the road is planar, and that
the plane containing the visible portion of the road is the
same plane which is giving support to the vehicle. Thus,
the three dimensional location of an edge point found in
the image at (col, row) can be determined by finding the
point of intersection of the vector from the focal point of
the camera through this point with the ground plane.

The flat-earth geometry model has several advantages
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over the other forward-geometry models. The first of these
is its speed: a straightforward calculation gives the three
dimensional location for a given image point. Second, this
model can be applied to any single image point, even those
which are not edges of the road; there is no need for mul-
tiple image points as in the vanishing point geometry
model. This property also implies that this algorithm is
the only one of the four discussed here which is presently
capable of handling intersections. Third, the error in the
output three dimensional locations is only a function of
the extent to which the flat-earth assumption is violated,
and not additionally a function of the goodness of the seg-
mentation.

In practice there are a number of problems which limit
the applicability of this technique. First is its sensitivity
to inaccuracies in the assumed tilt angle formed by the
camera to the road plane. The camera is in a fixed position
relative to the body of the ALV, but the body of the ve-
hicle is able to rock forward and backward on the under-
carriage. When traveling uphill the vehicle body rocks
backwards, decreasing the effective tilt angle of the cam-
era. When traveling downhill the vehicle body rocks for-
wards, increasing the effective tilt angle of the camera.
These changes in the effective tilt angle cause parallel road
edges to be output as converging or diverging three di-
mensional edge segments. If the convergence or diver-
gence is too severe it is difficult to connect road edges
from one scene model with those of the next scene model.
Because of the problems caused by this rocking motion of
the vehicle, we are adding sensors which will measure the
angle formed between the vehicle body and the vehicle
undercarriage. Knowledge of this angle will enable a more
accurate forward-geometry transformation.

A second problem with the flat-earth model occurs at
inflection points, such as at crests of hills and at bottoms
of valleys. These situations cause the description of the
road to both converge and diverge within the same scene
model. This problem is addressed by each of the geometry
models described below.

Examples of both of these problems can be seen in Fig.
14; plots of successive scene models reveal herringbone
patterns caused by a combination of a nonplanar road and
inaccuracy of the camera tilt angle.

2) Hill-and-Dale Geometry Model: The ‘‘hill-and-
dale’’ geometry model was developed to address the prob-
lems of converging and diverging scene model edges, as
illustrated in Fig. 14. The essence of this technique is to
use the flat-earth geometry model for the two roadway
points nearest the vehicle in the image, and then to force
the road model to move up or down from the flat-earth
plane so as to retain a constant road width.

Let p(i,j) be the world coordinates of the points which
appear in the image as indicated in Fig. 15. The first step
of the algorithm is to use flat-earth geometry to solve for
p(0, 1) and p(0, 2). From this it is possible to compute
the Iwidth of the road W, where W = || p(0, 1) — p(0,
).

One way to maintain a constant road width in the scene
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Fig. 14, Scene model plots from a test run/(em road edges viewed trom
above). Herringbone patterns are seen in the overlap of scene models.
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p(0.1) @ ® p(02)
Fig. 15. Road edge points to be converted into the vehicle coordinate sys-

tem.

model is 1o intersect the successive pair of edge points (i.
1) and (/. 2) with a different plane than the ground plane.
To see this. note that the rays from the camera origin
through the image locations for these points are diverg-
ing: thus using a planc above the ground plane will pro-
duce a narrower road than using a plane below the ground
planc. For each successive pair of edge points (i, 1) and
(i.2) we can compute the elevation of a plane containing
these points. perhaps above or below the assumed ground
planc. such that the road maintains the same width. The
elevation is then used in a flat-earth geometry calculation
to produce scene models for which the road is of constant
width when measured at paired scene model points.

Testing has shown that this algorithm produces more
accurate scene models than the flat-earth algorithm on
straight or slightly curved roads which go up and down
hill. and when the segmentation is good. The algorithm
is. however. very dependent upon good segmentation, as
a slightly wider road segmentation will cause the road to
appear to travel uphill. and a slightly narrower road seg-
mentation will cause the road to travel downhill. While
this is not particularly important to vehicle behavior when
the road is straight. it can cause the distance to a curve to
be in error by a significant amount.

A potentially larger drawback to this algorithm is its
performance ncar and in curves and intersections. Many
curves exhibit banking which this algorithm is unable to
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reproduce: the apparent location of the lower edge of the
banked road will always be too high, and that of the outer
edge will always be too low. This problem is potentially
addressed by the vanishing-point algorithm described be-
low. Also. the selection of opposing pairs of edge points
is critical, since the width of the road is measured be-
tween these pairs of points. Thus, if the road is curving
it is necessary to select pairs of edge points such that the
resulting tiles of the road are pie shaped. Finally, it should
be noted that the constant width assumption of this algo-
rithm is violated at intersections, and may be violated at
other roadway areas as well.

We are currently investigating heuristics for selecting
matched edge points. This is the *‘tiling problem"" of road
geometry.

3) Other Geomerry Models: The vanishing point ge-
ometry model [40] uses flat-earth geometry to determine
the location of the nearest visible right and left edge points
within the image, and allows for the road to slope uphill
or downhill relative to the vehicle ground plane. This al-
gorithm uses constraints based on assumptions of parallel
road edge segments, continuity, and local flatness of the
road. These assumptions allow the computation of a set
of tiles that approximate the road in a viewer-centered co-
ordinate frame. The technique involves solving for the
image coordinates of the vanishing point of each pair of
matched left and right road edge segments within each
tile. This geometry model was used in the initial May 1985
ALV demonstration.

The zero-bank algorithm [6] models the road as a cen-
terline spine and horizontal line segments cutting the spine
at their midpoint at a normal to the spine. Modeling the
road in this way constrains tiles of the road to be **warped
isosceles trapezoids.”” As in the other algorithms, the
three-dimensional locations of the ciosest point on each
edge are found using the flat earth algorithm. In each suc-
cessive step the three-dimensional location of the next
point on one side of the road is parameterized by its dis-
tance from the camera. The image location of the paired
point on the other side of the road is constrained by the
warped isosceles trapezoid as well as the edge curve
within the image plane. This leads to a cubic equation in
the parameter: when the roots of this equation (if any) are
found. the root which yields minimum reasonable slope
difference with respect to the previous road direction is
kept.

While the zero-bank algorithm is computationally the
most costly. it addresses both the tiling problem and the
problem of hills and dales. None of the algorithms can
reproduce banking in curves, and all but the flat-earth al-
gorithm rely heavily on good segmentation and cannot
handle intersections.

IV. Discussion

The ALV public demonstrations in 1985 and 1986 have
displayed Alvin's road-following capabilities. Fig. 16
shows a schematic map of the current Martin Marietta test
track. In May of 1985, Alvin traversed from points 2 to
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ALV TEST TRACK

Fig. 16. Martin Marietta ALV Test Track (Denver, CO).

65 (a distance of approximately 1 km) at a speed of 3
km/hr. In June of 1986, Alvin traversed the entire test
track (4.2 km) at speeds up to 10 km/hr. Additional ca-
pabilities demonstrated in 1986 include:

1) switching back and forth between video-based and
range-based road-following

2) obstacle avoidance based on a fusion of video and
range data

3) high-speed runs of up to 20 km/hr

4) varying vehicle speed as a function of scene model
length

5) slowing to a stop and turning completely around,
then traveling back in the opposite direction

6) negotiating a hairpin curve

7) traveling over two different types (and colors) of
pavement.

Fig. 17 illustrates some of the various conditions en-
countered on various portions of the test track. A typical
test run over the entire track will involve the acquisition
and processing of hundreds of images. These images vary
from day to day, since weather, sun angle, shadows, and
tire tracks all alter the appearance of the road and its sur-
roundings. To compensate for occasional failures in VITS,
the reasoning subsystem builds trajectories so that the ve-
hicle will halt at the end of the most recent scene model
if no additional data is received. This convention makes
Alvin very forgiving of occasional vision failures, usually
causing a slight slowing of the vehicle when the process-

Fig. 17. Representative image of the test track.

ing of a single image frame fails. During one test run, a
cloud passed overhead and changed the road appearance
enough so that no road was found in the images. The ve-
hicle ramped down to a stop and waited until the cloud
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passed by and VITS was able to segment the road; Alvin
then resumed safe travel.

Current vision efforts are concentrated on speed and ro-
bustness of road-following, obstacle detection and loca-
tion, and vision for off-road navigation. Long term re-
search areas include object modeling, landmark
recognition, terrain typing, stereo, and motion analysis.
Researchers at many groups are currently working on
these problems for future ALV application. Their efforts
are critical to meeting future demonstration requirements,
and to the success of the program in general. Interaction
with these groups has influenced our present system to a
large degree.

To travel at higher vehicle speeds, the vision system
must not only produce scene models more rapidly but also
provide longer scene models to allow for the distance
needed to slow down for a detected obstacle or to stop in
case of an emergency. We are presently investigating
methods to more accurately model the road at far dis-
tances (25 meters and beyond) and to extend calculated
road edges based on road history and assumptions about
road curvature. Because of limited field of view and ac-
curacy in the range of the current range scanner, we are
working on fast methods to detect obstacles at a distance
using video data [36].

To meet the demands of future demonstrations, imple-
mentation of a new architecture begin in early 1987. Each
subsystem of the ALV will have significantly more pro-
cessing power available. For the vision subsystem, the
second generation hardware consists of two Vicom image
processors, a Sun 3 /180, and a Warp machine [14]. We
are also investigating the use of a FLIR sensor and special
sensors for obstacle detection, and other advanced com-
puter architectures (such as the Butterfly and the Connec-
tion Machine).

Of the video road-following algorithms described, the
‘‘Red minus Blue’’ algorithm has proved to be the most
dependable so far, and it has been used (at different stages
of development) in the formal demonstrations to date. The
color normalization algorithm performs well in very sunny
conditions when shadows present a problem to ‘‘Red mi-
nus Blue.”” ‘‘Shadow boxing’’ is designed to deal with
shadows and obstacles. It has been tested but not yet used
to drive the ALV in a formal demonstration.

The evolution of the vision system has been largely mo-
tivated by failures, caused by deviations from ‘‘ideal’’
road-following conditions. Dirt and tire tracks on the road,
unexpected tarmac patches, changing weather conditions
(from a momentary cloud overhead to the presence of
snow for weeks) and seasonal variations (such as in-
creased shadows and spectral reflection caused by a lower
sun angle in the winter months) have all caused failures
of the vision system. In analyzing these failures, we have
learned much about the vision/navigation interplay, sen-
sor control needs, and the dynamic nature of video param-
eters.

The Autonomous Land Vehicle is intended not only as
a development project to meet specified demonstration re-
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quirements, but also as a national testbed for research in
image understanding, AI planning, and advanced archi-
tectures. As different parts of the system change, we an-
ticipate learning more about how system interaction af-
fects the individual components. A vision system for a
mobile robot does not stand alone; we have spent much
effort analyzing the vision/navigation interaction to dis-
cover the causes of certain vehicle behaviors or failures.
Likewise, the algorithm level is not totally independent
of the implementation or hardware level. Much of the cur-
rent vision system has been motivated by the chosen hard-
ware—as the hardware changes, the algorithms may
change substantially.

V. SuMMARY AND CONCLUSION

The time is ripe for fruitful research and experimenta-
tion in mobile robotics. Early work suffered from a lack
of processing power, but with the availability of relatively
cheap, fast machines, particularly special-purpose image
processing hardware and lots of memory, an important
step in mobile robot research is now realizable: experi-
mentation with fully autonomous, continuous motion,
self-contained systems. The dynamics of system interac-
tion provides important insight into the development of
sophisticated autonomous systems.

Experiments in mobile robot road-following prove the
importance of an evolving, robust vision system to model
the environment for navigation. Such a system must ex-
hibit intelligent behavior under varying vehicle and en-
vironmental conditions: seasonal variation in scene char-
acteristics, diverse and changing weather conditions,
unexpected visual information (e.g., obstacles, shadows,
potholes), changes in navigation and control systems, and
changing sensor characteristics. Our experiments with Al-
vin have driven the development of such a vision frame-
work. As mobility may be a key to the development of
intelligence [27], real-time interaction with the environ-
ment is a significant step in the development of intelligent
machines. For this reason, research in mobile robot vision
is largely an incremental process of hypothesis and test.
Analyzing the failure of a particular test is often much
more informative than a success.

We have presented the vision system for Alvin, the Au-
tonomous Land Vehicle, discussing in particular the task
of video road-following. The system provides an effective
level of behavior in both speed and performance. As the
processing power of the ALV increases and the perfor-
mance requirements become more ambitious, the system
must become more robust, faster, and more ‘‘intelli-
gent.”’” Work is progressing at a number of institutions to
meet these goals.

APPENDIX
ReED/BLUE AXES ROTATION

We want to show that the rotated coordinate system used
for shadow boxing is accomplished by replacing the Red
image with the tricolor image with parameters (r, 0, b)
and replacing the Blue image with the tricolor image with
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v B'
8
Fig. 18. (R, B) to (R’, B’ ) rotation for shadow boxing.

parameters ( —b, 0, r). The coordinate systems are shown
in Fig. 18, where (R', B') is rotated to align with the
major axis of the blob. The transformation is described
by:

R = Rsin® — Bcos 0
= (R, G, B) - (sin6, 0, —cos 0)
B' = Rcos 6 + Bsin @

I

(R, G, B) - (cos 6, 0, sin 0)
From (2) in Section III-B-1-b, this is equivalent to
R =(R,G,B) - (r,0,b)
B =(R,G,B) - (-b,0,r)

1l

which describes a pair of tricolor operations. In practice, -

a translation of the coordinate system may also be nec-
essary to avoid negative values.
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