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ABSTRACT

We describe a simple imaging range sensor based on
the measurement of focal error, as described in [Pent-
land 1982,1987]. The current implementation can produce
range over a 1 cubic meter workspace with a measured
standard error of 2.5% (4.5 significant bits of data). The
system is implemented using relatively inexpensive com-
mercial image processing equipment.

1 Introduction

It is often said that range information is lost during the
process of image formation, so that vision is undercon-
strained. However this is not precisely true: it is only when
using a pinhole camera that we lose all depth information.
With real lenses (and in the human eye) the situation is
as shown in Figure 1(a). We see that inside the camera,
between the lens and the image plane, the 3-D shape of
the world is copied along the surface where the image is
exactly focused. Along each geometric ray between the
image plane and the lens the image moves from being in
relatively poor focus, to a point of best focus, and then
back to being out of focus, as is illustrated by Figure 1(b).
Thus if we could trace along the path of each incoming ray
to find the point of exact focus then we could recover the
shape of the 3-D world.

Autofocus methods actually function in this manner,
by searching along the central ray to find the point of best
focus for that particular point [1]. More recently several
authors [2,3] have collected a series of images with different
focal lengths in order to estimate the point of best focus
for each image position. By collecting between eight and
thirty images they have been able to reconstruct the scenes
3-D geometry with relatively good accuracy. However the
need for many images, and to move the lens between each
image, means that a second or more is required to compute
range. During this time there must be no scene motion.

Further, changing the focal length (or any camera pa-
rameter other than aperture) introduces geometric distor-
tion between the images, so that each image must be geo-
metrically warped back to some standard geometry. Thus
this approach also requires hardware capable of relatively
sophisticated geometric warping.
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Figure 1: For most real lens systems range information is
not lost during image formation.

In contrast, the method described here requires only
one view: rather than search for the best focus, we simply
measure the error in focus by comparing two geometrically
identical images, one with a wide aperture, so that objects
off the focal plane are blurred, with a small-aperture im-
age where everything is sharply focused. The images are
collected at the same time, so that scene motion is not
a problem, and are collected along the same optical axis
with the same focal length, so that there is no geometrical
distortion.

Once the focal error has been measured we can ex-
tract depth immediately. The difference between autofo-
cus techniques and this method, therefore, is analogous to
the difference between convergence and stereopsis: both
autofocus and depth-from-convergence change the camera
parameters to measure depth at a single point, whereas
both this method and stereopsis utilize the error signal
(blur and disparity, respectively) to estimate depth.

Subbarao (8] has recently pointed out that there are
many similar range techniques based on the idea of com-
paring two views that vary only by one camera parame-
ter. These other methods, however, have the drawback
that variation of any camera parameter other than aper-
ture size will also introduce geometric distortion, and thus
geometric warping will be required in order to estimate
depth.



2 Measuring Range

Most real lens systems are exactly focused ! at only one dis-
tance along each radius from the lens into the scene. The
locus of exactly focused points forms a doubly curved, ap-
proximately spherical surface in three-dimensional space.
Only when objects in the scene intersect this surface is
their image exactly in focus; objects distant from this sur-
face of exact focus are blurred, an effect familiar to pho-
tographers as depth of field.

The distance D to an imaged point is related to the
parameters of the lens system and the amount of defocus
by the following equation [7]:

F Yo

b= vw-F-of (1)
where vy is the distance between the lens and the image
plane (e’g., the film location in a camera), f the f-number
of the lens system, F the focal length of the lens system,
and ¢ the spatial constant of the point spread function
(i.e., the radius of the imaged point’s “blur circle”) which
describes how an image point is blurred by the imaging
optics. The point spread function may be usefully ap-
proximated by a two-dimensional Gaussian G(r, o) with a
spatial constant ¢ and radial distance r. The validity of
using a Gaussian to describe the point spread function is
discussed in reference [7].

In most situations, the only unknown on the right-hand
side of Equation (1) is o, the point spread function’s spa-
tial parameter. Thus, we can use Equation 1 to solve for
absolute distance given only that we can measure o, the
amount of blur at a particular image point. Measurement
of o presents a problem, however, for the image data is the
result of both the characteristics of the scene and those of
the lens system. To disentangle these factors, we can ei-
ther look for places in the image with known characteristics
(see [4-7,9,10]), or we can observe what happens when we
change some aspect of the lens system. It is this second
approach we have taken here.

2.1 Comparison Across Differing Apertures

Given two images of exactly the same scene, but with dif-
ferent depth of field, we can factor out the contribution
of the scene to the two images (as the contribution is the
same), and measure the focus directly. Figure 2(a) shows
an optical system design for taking a single view of the
scene and producing two images that are identical except
for aperture size and therefore depth of field. This lens
system uses a beam splitter to separate the original image
into two identical images, which are then directed through
lens systems with different aperture size. Because change

!«“Exact focus” is taken here to mean “has the minimum variance
point spread function,” the phrase “measurement of focus” is taken
to mean “characterize the point spread function.”
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Figure 2: (a) A lens geometry for acquiring two images
that are identical except for depth of field, (b) a picture of
the device.

in aperture does not affect the position of image features,
the result is two images that are identical® except for focal
error so there is no difficulty in matching points in one im-
age to points in the other. Figure 2 (b) shows the device
we have built to implement this optical design.

Because differing aperture size causes differing focal er-
rors, the same point will be focused differently in the two
images. The critical fact is that the magnitude of this
difference is a simple function of only one variable: the
distance between the viewer and the imaged point. To ob-
tain an estimate of depth, therefore, we need only compare
corresponding points in the two images and measure this
change in focus.

2.1.1 Mathematical Background

We start by taking a patch fi(r,8) centered at (zo,yp)
within the first image I;(z, y):

f1(r,0) = Ii(zo + rcosf,yo + rsinb) (2)

and calculate its two-dimensional Fourier transform 7 (t, ).
The same is done for a patch f3(r,8) at the correspond-
ing point in the second image, giving us %(t,0). Again,

?Their overall brightness also differs, requiring the use of neutral
density filters.



note that there is no matching problem, as the images are
identical except for depth of field.

Now consider the relation of f; to f;. Both cover the
same region in the image, so that if there were no blurring
both would be equal to the same intensity function fo(r,6).
However, because there is blurring (with spatial constants
o) and 03), we have?

Nn8) _ fo
f2(r,0)  fo

where G(r,0) is a two-dimensional Gaussian *

ance Uz.

Noting that f(r,8) = e=™" and F(},8) = =" are a
Fourier pair and that if f(r,8) and 7(,0) are a Fourier
pair then so are f(ar,8) and 1/|a|F()\/a,8) we see that
we may use Equation 3 to derive the following relationship
between 7, %; and %

(r,0) ® G(r,01)
(r,0) @ G(r,02)

3

with vari-

¥

Fo(\,0)G (A, -
A(A,0) = ‘0(*)72‘(;;-_ Vire,) @
Fo(X, 0)G (A, -
#(A,0) = L(“)J%M_#L Virz;) (5)
Thus
A(A) _ G(Aa1)02 _ a2 o122 (o2 — o
BN T G(A0z)01 % p(\2r*(0] - af))  (6)

where F(A) = [7_F(XA,0)df. Thus, given #, and # we
can find o; and o3, as follows. Taking the natural log of
Equation 6 we obtain

In + A2x%(o} — o?) =

AN -l RH(2)  (7)

If make the first camera be a pinhole camera (so that
g1 = € for some small value ¢), then we can derive the
following relation:

k10} + kalnog + ks = In 7;(A) — In H()) (8)
where the k; are constants. Thus the difference in local-
ized Fourier power is a monotonic increasing function of
the blur in the second image. Or, more importantly, by
Equation 1, the distance to the imaged point is a mono-
tonic decreasing function of the difference in the localized
Fourier power.

*Equation 3 may be substantially in error in cases with a large
amount of defocus, as points neighboring the patches fi, f, will
be “spread out” into the patches by differing amounts. This prob-
lem can be avoided by using patches whose edges trail off smoothly,
e.g.,fi(r,8) = I(zo+rcosb, ys+rsin8)G(r, w) for appropriate spatial
parameter w.

“The use of a Gaussian to model blur is discussed in reference [7)
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Figure 3: (a) Computation of range at one scale (b) Mul-
tiscale computation.

3 Practical Implementation

The calculation of Fourier transforms at each image point
i8 too expensive to make for a practical technique. Be-
cause we need only the Fourier power, however, we may
make use of Parseval’s Theorem, which states that the in-
tegral of squared values over the spatial domain is equal
to the integral of the squared Fourier components over the
frequency domain (the Fourier power):
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(10)
where 7 (r, 6) is the Fourier transform of f(z, y) and P(fs, f,)
is the power spectrum. Convolution with a band-pass fil-
ter — such as a Laplacian — results in a signal which
is restricted to a limited range of frequencies. Therefore,
the integral of the square of the convolved signal is pro-
portional to the integral of the power within the original
signal over this range of frequencies.

This leads to the simple, single-scale implementation
shown in Figure 3(a). Image data from each image is con-
volved with a 8 x 8 Laplacian filter, and the values squared.
These values are then averaged using an 8 x 8 Gaussian
filter, resulting in a “power image” for each camera; an es-
timate of the Fourier power at the center spatial frequency
of the Laplacian filter for each image location. These two
power images are then compared using a lookup table to
produce an estimate of range. With our current setup we
can obtain range data with a measured standard error of
6% at up to eight frames per second.

This single-scale processing scheme has been imple-
mented using Datacube image processing equipment. Dig-
itization requires two Digmax boards, convolution is ac-
complished by one VFir Il board, temporary image storage
is provided by a RoiStore board, and table lookup func-



Figure 4: (a) A flat, textured plane, (b) its intensity image,
(c) the range image, (d) a pile of pillows, (e) their intensity

image, (f) the range image.
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tions are provided by a MaxMux board. The total list
price of this equipment (including power supplies, card
cage, etc.) is approximately $23,500. The processing is
controlled by a Sun 3/260. Cost of the optical elements
was approximately $400.

3.1 Integrating Information over Scale

If we perform these calculations using a Laplacian pyra-
mid rather than using'the Laplacian of a single image (as
shown in Figure 3(b)) then we will have measurements of
Fourier power at several frequencies A and can produce a
more accurate and reliable estimate of range. The extra
information can be utilized by reformulating Equation 7 as
a regression equation in A%, e.g., as AA? + B = C; where

2
A=2r%0o2-0) B=In Z—g Ci =In 7 (A) - In R(\)

1

(11)
The solution to this quadratic regression equation is straight-
forward, ~
_ L= )G
O

where X is the mean of the \;, giving a maximum-likelihood
estimate of A. As o ~ 0, we have that

A (12)

(13)

and thus, using Equation 1, absolute distance to the im-
aged surface patch:
F Yo
b vo—F —o03fs (4)
where f; is the f-number of the second camera.

Our experience shows that this multiscale approach can
more than double the range camera’s accuracy, resulting
in a measured standard error of 2.5%. Because processing
in the Datacube is not tied to the frame rate, this mul-
tiscale approach to estimating range requires only about
twice the processing time of the single scale implementa-
tion. No additional nardware is required to generalize the
range camera to use multiscale processing.

3.1.1 Error Conditions

When there is insufficient high-frequency information in
the image patch to enable the change in focus to be cal-
culated this technique can produce errors. We currently
solve this problem by introducing a threshold to remove all
low-energy points, at the cost of missing some valid points.

3.2 Examples

Figures 4(a) and (b) show our calibration target (a flat,
evenly textured plane), and Figure 4(c) shows the resulting
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Figure 5: (a) A slice through a range image produced us-
ing the single scale technique, (b) A slice through a range
image produced using the multiple scale technique.

range image. Figures 4(d) and (e) show a spatially-varying
scene (an arrangement of pillows), and Figure 4(f) shows
the resulting range image. It can be seen that reasonable
accuracy achieved in both cases.

Using the single-scale technique such range images can
be produced up to eight times per second using our current
equipment; with an additional VFir II convolution board
range could be obtained thirty times per second. Using the
multiscale technique processing time is almost doubled on
our current hardware, but again with additional hardware
range could be obtained thirty times per second.

Using the single scale technique we are currently achiev-
ing a standard error of 6% over a one cubic meter workspace,
as measured using the calibration target shown in Figure
4(a). Because the single scale convolution kernel is 8 x 8,
with most of the support in the central 4 x 4 region, there
are roughly 128 x 128 completely independent measure-
ments per image. An example of a vertical slice through a
single-scale range image of the calibration target is shown
in Figure 5(a); ideally the curve would be a straight line.

Using the multiscale technique we are currently achiev-
ing a standard error of 2.5 percent over a one cubic me-
ter workspace, again measured using the calibration target
shown in Figure 4(a). In the multiscale technique the con-
volution kernels become fairly large, so that there there
are only roughly 32 x 32 completely independent range
measurements per image. An example of a vertical slice
through a multiple-scale range image of the calibration tar-
get is shown in Figure 5(b); ideally the curve would be a
straight line.

4 Discussion

We have described an inexpensive implementation of the
imaging range technique proposed in [7]. The major prob-
lems we have experienced in implementing the system were



mainly mechanical: aligning the cameras, setting the cam-
era iris to equalize image brightness, and so forth. The
major source of error was non-linearities in the cameras,
primarily blooming due to specular reflections. Despite
these problems, our experience shows that this ranging
technique can be both economical and practical for tasks
which require quick and reliable but coarse estimates of
range. Examples of such tasks are initial target acquisition
or obtaining the initial coarse estimate of stereo disparity
in a coarse-to-fine stereo algorithm.

REFERENCES

[1) Jarvis, R. A., (1983) A perspective on range-finding
techniques for computer vision, IEEE Trans. on Pattern
Analysis and Machine Intelligence, March 1983, pp. 122-
139.

[2] Krotkov, E., (1986) Focusing, MS-CIS-86-22, Grasp
Lab Technical Report No. 63, Dept. Computer and
Information Science, University of Pennsylvania.

[3] Darrell, T. (1988) Pyramid based depth from focus,
IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 504-509, June 5-9, Ann Arbor, MIL.

[4] Pentland, A., (1982) Depth of scene from depth of
field, Proceedings, Image Understanding Workshop, Septem-
ber, 1982, Palo Alto, CA.

[5] Pentland, A., (1985) The Focal Gradient: Optics Eco-
logically Salient, Investigative Opthomology and Visual
Science, Vol 26, No. 3, pp. 243, March 1985.

[6] Pentland, A., (1985) A new sense for depth of field,
Internaltional Joint Conference on Artificial Intelligence,
pp. 988-994, August, 1985, Los Angeles, CA.

[7] Pentland, A., (1987) A New Sense for Depth of Field,
IEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol. 9, No. 4, July 1987, pp. 523-531.

[8] Subbarao, M. (1987) Direct recovery of depth-map,
IEEE Workshop on Computer Vision, pp. 58-65, Miami
Beach, FL.

[9] Grossman, P. (1987) Depth from focus, Pattern Recog-
nition Letters, Vol. 5, No. 1, pp. 63-69.

[10] Subbarao, M. (1988) Depth recovery from blurred
edges, IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 498-503, June 5-9, Ann Arbor,
ML

261



