1. Undecidable problems:
 (a) Given a TM M, does M halt on the empty tape?
 (b) Given a TM M, is there any string at all on which M halts?
 (c) Given a TM M, does it enter a particular state q on input w?
 (d) Given a grammar $CFG G$, is it ambiguous?

2. Decidable problems:
 (a) Given a pushdown automaton M with one state, whether $L(M) = \Sigma^*$?
 (b) Given a DFA M, does it accept ϕ?

3. Consider two problems A and B such that A “reduces” to B. If A is
 undecidable, what can you say about the decidability of the following
 (a) B (b) \bar{B} (c) A (take home!)

4. Useful definitions:
 (a) L is said to recursive if there exists a TM M such that $L = L(M)$
 and M halts on every input.
 (b) L is said to be recursively enumerable if there exists a TM M such
 that $L = L(M)$.
 (c) A problem is said to decidable if the associated language is recursive.
 (d) $L_{halt} = \{(enc(M), w) \text{ such that } M \text{ halts on } w\}$.
 (e) $L_{accept} = \{(enc(M), w) \text{ such that } M \text{ accepts } w\}$.
 (f) Let Σ be an alphabet with $|\Sigma| \geq 2$. Given $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^*$,
 decide whether there exist i_1, \ldots, i_K (with possible repetitions!) such
 that $u_{i_1} \ldots u_{i_K} = v_{i_1} \ldots v_{i_K}$.
 (g) A reduces to B if there is a turing computable function f such that
 $w \in A \iff f(w) \in B$.