1. Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite acceptor or dfa, where
the symbols express the usual notation (refer page 38 of the text). We
define the generalized transition function \(\delta^* : Q \times \Sigma^* \rightarrow Q \) as

(a) \(\delta^*(q, \lambda) = q \)
(b) \(\delta^*(q, wa) = \delta(\delta^*(q, w), a) \)

for all \(q \in Q, w \in \Sigma^* \) and \(a \in \Sigma \).

What is the language \(L(M) \) accepted by the above dfa in terms of the
generalised transition function? Can you express \(\overline{L(M)} \)?

\[\text{Figure 1: example DFA} \]

2. What is the language \(L \) accepted by the DFA in Figure 1.

3. Show that if we change Figure 1, making \(q_3 \) as the non final state and
making \(q_0, q_1, q_2 \) as the final states, the resulting dfa accepts \(L \). Can you
generalise (Page 47, #4)?

4. For \(\Sigma = \{a, b\} \), construct dfa’s that accept the sets consisting of
(a) all strings with exactly one \(a \).
(b) all strings with at least one \(a \).
(c) all strings with at least one \(a \) and exactly two \(b \)'s.

5. Find dfa’s for the following languages on \(\Sigma = \{a, b\} \).
(a) \(L_{a,k} = \{a^n : n \geq k\} \); for \(k = 4 \).
(b) \(L = \{ab^5wb^2 : w \in \{a, b\}^*\} \).
(c) \(L_{a,2} \cup L_{b,2} \).

Hint: Think about running DFAs for each language concurrently.