CS 138: Section-1

Pratik Soni

November 9, 2015

1. Convert to CNF.
 \[E \rightarrow E + T \]
 \[E \rightarrow T \]
 \[T \rightarrow T \ast F \]
 \[T \rightarrow F \]
 \[F \rightarrow (E) \]
 \[F \rightarrow id \]

2. CYK algorithm: For the given grammar \(G \), decide if \(w = aabba \in L(G) \).
 \[S \rightarrow AB \]
 \[S \rightarrow BB | a \]
 \[S \rightarrow AB | b \]

3. PDA: definition and few basic operations:
 \[M = (Q, \Sigma, T, \delta, q_0, z, F) \] be a non-deterministic PDA where
 \(T \) is the stack alphabet
 \(z \) is the initial stack symbol
 \[\delta : Q \times (\Sigma \cup \{\lambda\}) \times T \rightarrow 2^{Q \times T^*} \]

 Pushing \(a \) onto the stack: \((p, u, \lambda) \rightarrow (q, a) \)

 Popping \(a \) from the stack: \((p, u, a) \rightarrow (q, \lambda) \)

 Replacing TOS with \(a \): \((p, u, v) \rightarrow (q, a) \)

4. Construct PDAs for the following languages
 (a) \(L = \{wcw^R \text{ such that } w \in \{a,b\}^* \} \)
 (b) \(L = \{ww^R \text{ such that } w \in \{a,b\}^* \} \)
 (c) \(L = \{w \text{ such that } w \in \{a,b\}^* \text{ and } n_a w = n_b (w) \} \)

5. Is PDA with a queue strictly stronger than PDA with a stack?
 (a) Does there exist a language that can be accepted by a PDA with a queue but not by PDAs with a stack?
 (b) What about \(L = \{ww \text{ such that } w \in \{a,b\}^* \} \)?
 (c) Is the converse true?