1. PDA: definition and few basic operations:
\[M = (Q, \Sigma, T, \delta, q_0, z, F) \] be a non-deterministic PDA where
\(T \) is the stack alphabet
\(z \) is the initial stack symbol
\(\delta : Q \times (\Sigma \cup \{\lambda\}) \times T \to 2^{Q \times T^*} \)

Replacing TOS with \(a \): \((p, u, v) \to (q, a)\)
Stack always starts with the symbol \(z \).

2. Construct PDAs for the following languages
 (a) \(L = \{w \text{ such that } w \in \{a,b\}^* \text{ and } n_a(w) = n_b(w)\} \)
 (b) \(L = \{w \text{ such that } n_a(w) + n_b(w) = n_c(w)\} \)

3. Pumping Lemma for CFL:
 (a) Adversary chooses \(m \). (\forall)
 (b) You choose a string \(w \in L \) such that \(|w| \geq m\). (\exists)
 (c) Adversary provides an arbitrary decomposition \((uvxyz)\) such that
 \(|vxy| \leq m\) and \(|vy| \geq 1\). (\forall)
 (d) Find \(i \) such that \(uv^i xy^i z \notin L \). (\exists)

4. Prove that \(L = \{ww \text{ such that } w \in 0^*, 1^*\} \) is not context free.

5. Is PDA with a queue strictly stronger than PDA with a stack?
 (a) Does there exist a language that can be accepted by a PDA with a queue but not by PDAs with a stack?
 (b) What about \(L = \{ww \text{ such that } w \in \{a,b\}^*\} \)?
 (c) Is the converse true?

6. What is a turing machine?
\[M = (Q, \Sigma, \Gamma, \delta, q_0, \epsilon, F) \]
\(Q \) is the set of internal states
\(\Sigma \) is the input alphabet
\(\Gamma \) is the stack alphabet
\(\delta \) is the transition function
\(\in \Gamma \) is a blank
\(q_0 \in Q \) is the initial state
\(F \subseteq Q \) is the set of final states
where \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L \times R\} \)
\(\delta(q, a) \) is undefined for all \(q \in F \)

7. Turing Machine for the following language for \(L = \{a^n b^n c^n \text{ such that } n \geq 0\} \)