1. What is a turing machine?
 \[M = (Q, \Sigma, \Gamma, \delta, q_0, F) \]
 - \(Q \) is the set of internal states
 - \(\Sigma \) is the input alphabet
 - \(\Gamma \) is the stack alphabet
 - \(\delta \) is the transition function
 - \(\epsilon \in \Gamma \) is a blank
 - \(q_0 \in Q \) is the initial state
 - \(F \subseteq Q \) is the set of final states
 where \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\} \)
 - \(\delta(q, a) \) is undefined for all \(q \in F \)

2. Describe a TM that transforms an input string from \(\{0, 1 \}^* \) to a string where all \(a \)'s come before \(b \)'s. (strings are of finite length).

3. Describe a TM that computes the \(n^{th} \) Fibonacci number on \(\Sigma = \{1\} \).

4. Describe a TM that computes \(\text{double}(w) \) for \(w \in \{a, b\}^* \).

5. Review: Halting problem is undecidable.

6. Reductions:
 - (a) Multiplication \(\leq \) Addition
 - (b) Squaring \(\leq \) Multiplication
 - (c) Multiplication \(\leq \) Squaring
 - (d) GCD \(\leq \) factoring

7. Fill up the TA evaluations! :D