1 Optimal Binary Search Trees

• Binary search trees are used to organize a set of keys for fast access: the tree maintains the keys in-order so that comparison with the query at any node either results in a match, or directs us to continue the search in left or right subtree.

• A balanced search tree achieves a worst-case time $O(\log n)$ for each key search, but fails to take advantage of the structure in data.

• For instance, in a search tree for English words, a frequently appearing word such as “the” may be placed deep in the tree while a rare word such as “machiocolation” may appear at the root because it is a median word.

• In practice, key searches occur with different frequencies, and an Optimal Binary Search Tree tries to exploit this non-uniformity of access patterns, and has the following formalization.

• The input is a list of keys (words) w_1, w_2, \ldots, w_n, along with their access probabilities p_1, p_2, \ldots, p_n. The prob. are known at the start and do not change.

• The interpretation is that word w_i will be accessed with relative frequency (fraction of all searches) p_i. The problem is to arrange the keys in a binary search tree that minimizes the (expected) total access cost.

• In a binary search tree, accessing a key at depth d incurs search cost $d + 1$. Therefore, if the word w_i is placed at depth d_i in the tree, the total search cost (the quantity we want to minimize) is:

$$
\sum_{i=1}^{n} p_i \times (d_i + 1)
$$
• An example:

<table>
<thead>
<tr>
<th>Word</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.22</td>
</tr>
<tr>
<td>am</td>
<td>0.18</td>
</tr>
<tr>
<td>and</td>
<td>0.20</td>
</tr>
<tr>
<td>egg</td>
<td>0.05</td>
</tr>
<tr>
<td>if</td>
<td>0.25</td>
</tr>
<tr>
<td>the</td>
<td>0.02</td>
</tr>
<tr>
<td>two</td>
<td>0.08</td>
</tr>
</tbody>
</table>

• Notice that the access probabilities of these 7 words sum to 1.

• Now look at the following 3 search trees:

![Search Trees](image)

Figure 1: Greedy, Balanced, and Optimal search trees.

• The three trees are constructed by a Greedy method, balanced tree, and optimal tree.

 – The greedy puts the most frequent word at the root, and then recursively builds the left and right subtrees.

 – The balanced makes the height the smallest.

 – The third is created by the optimal algorithm, about to be discussed.

• The costs of these trees are: 2.43 (Greedy), 2.70 (Balanced), and 2.15 (Optimal).

For instance, the Greedy tree’s search cost is calculated as

\[0.22 \times 2 + 0.18 \times 4 + 0.20 \times 3 + 0.05 \times 4 + 0.25 \times 1 + 0.02 \times 3 + 0.08 \times 2 = 2.43. \]

• Neither greedy nor balanced is optimal.

• The problem is also different in two crucial ways from the Huffman coding problem. First, the keys are not restricted to be in leaves only (no prefix problem), as was the case in Huffman. Second, the in-order of the keys is fixed—dictated by the ordering of the keys.
• The Dynamic Program for the optimal search tree follows the same pattern we have seen multiple times now.

 - We consider a sub-problem \([i, j]\), namely, the subset of words \(w_i, \ldots, w_j\).
 - Let \(S(i, j)\) be the total search cost for the optimal tree for this subproblem.
 - Suppose the opt tree for this subproblem has \(w_r\) as root, where \(i \leq r \leq j\), with depth 0, then the picture looks like the following:

\[
\begin{array}{c}
 w_r \\
 w_i, \ldots, w_{r-1} \quad w_{r+1}, \ldots, w_j
\end{array}
\]

• We can therefore write the following recurrence for the total cost of this tree:

\[
S(i, j) = p_r + S(i, r - 1) + S(r + 1, j) + \sum_{k=i}^{r-1} p_k + \sum_{k=r+1}^{j} p_k,
\]

which has the following explanation.

• The root \(w_r\) has depth 0, and search cost 1, so it contributes \(p_r \times 1\) to the overall cost.

• \(S(i, r - 1)\) and \(S(r + 1, j)\) are the search trees for their subproblems assuming we count the search from their respective roots.

• Making them children of \(w_r\) increases the path length of each of their nodes by 1, and so the two remaining terms are simply adding those additional costs.

• We can simplify this calculation as follows:

\[
S(i, j) = S(i, r - 1) + S(r + 1, j) + \sum_{k=i}^{j} p_k
\]

• This shows that the problem satisfies the principle of optimality: since the last term is fixed regardless of how the two subtrees are built, the optimal solution for \([i, j]\) must use optimal solutions for the subproblems \([i, r - 1]\) and \([r + 1, j]\).
• Finally, as usual, since we don’t the r, we optimize this expression over all choices of r, giving us the final recurrence, for $i < j$.

$$S(i, j) = \min_{i \leq r \leq j} \{S(i, r - 1) + S(r + 1, j) + \sum_{k=i}^{j} p_k\}$$

If $i \geq j$, then $S[i, j] = 0$ clearly.

• The running time is $O(n^3)$ time.