Closest Pair Problem

- Given n points in d-dimensions, find two whose mutual distance is smallest.
- Fundamental problem in many applications as well as a key step in many algorithms.

• A naive algorithm takes $O(dn^2)$ time.
• Element uniqueness reduces to Closest Pair, so $\Omega(n \log n)$ lower bound.

- We will develop a divide-and-conquer based $O(n \log n)$ algorithm; dimension d assumed constant.
1-Dimension Problem

- 1D problem can be solved in $O(n \log n)$ via sorting.
- Sorting, however, does not generalize to higher dimensions. So, let’s develop a divide-and-conquer for 1D.
- Divide the points S into two sets S_1, S_2 by some x-coordinate so that $p < q$ for all $p \in S_1$ and $q \in S_2$.
- Recursively compute closest pair (p_1, p_2) in S_1 and (q_1, q_2) in S_2.
- Let δ be the smallest separation found so far:

$$\delta = \min(|p_2 - p_1|, |q_2 - q_1|)$$
The closest pair is \(\{p_1, p_2\} \), or \(\{q_1, q_2\} \), or some \(\{p_3, q_3\} \) where \(p_3 \in S_1 \) and \(q_3 \in S_2 \).

Key Observation: If \(m \) is the dividing coordinate, then \(p_3, q_3 \) must be within \(\delta \) of \(m \).

In 1D, \(p_3 \) must be the rightmost point of \(S_1 \) and \(q_3 \) the leftmost point of \(S_2 \), but these notions do not generalize to higher dimensions.

How many points of \(S_1 \) can lie in the interval \((m - \delta, m] \)?

By definition of \(\delta \), at most one. Same holds for \(S_2 \).
1D Divide & Conquer

- **Closest-Pair** \((S')\).

- If \(|S'| = 1\), output \(\delta = \infty\).

 If \(|S'| = 2\), output \(\delta = |p_2 - p_1|\).

 Otherwise, do the following steps:

1. Let \(m = \text{median}(S')\).
2. Divide \(S\) into \(S_1, S_2\) at \(m\).
3. \(\delta_1 = \text{Closest-Pair}(S_1)\).
4. \(\delta_2 = \text{Closest-Pair}(S_2)\).
5. \(\delta_{12}\) is minimum distance across the cut.
6. Return \(\delta = \min(\delta_1, \delta_2, \delta_{12})\).

- **Recurrence** is \(T(n) = 2T(n/2) + O(n)\), which
 solves to \(T(n) = O(n \log n)\).
2-D Closest Pair

- We partition \(S \) into \(S_1, S_2 \) by vertical line \(\ell \) defined by median \(x \)-coordinate in \(S \).

- Recursively compute closest pair distances \(\delta_1 \) and \(\delta_2 \). Set \(\delta = \min(\delta_1, \delta_2) \).

- Now compute the closest pair with one point each in \(S_1 \) and \(S_2 \).

- In each candidate pair \((p, q)\), where \(p \in S_1 \) and \(q \in S_2 \), the points \(p, q \) must both lie within \(\delta \) of \(\ell \).
2-D Closest Pair

- At this point, complications arise, which weren’t present in 1D. It’s entirely possible that all $n/2$ points of S_1 (and S_2) lie within δ of ℓ.

- Naively, this would require $n^2/4$ calculations.

- We show that points in P_1, P_2 (δ strip around ℓ) have a special structure, and solve the conquer step faster.
Conquer Step

- Consider a point \(p \in S_1 \). All points of \(S_2 \) within distance \(\delta \) of \(p \) must lie in a \(\delta \times 2\delta \) rectangle \(R \).

- How many points can be inside \(R \) if each pair is at least \(\delta \) apart?
- In 2D, this number is at most 6!
- So, we only need to perform \(6 \times n/2 \) distance comparisons!
- We don’t have an \(O(n \log n) \) time algorithm yet. Why?
Conquer Step Pairs

- In order to determine at most 6 potential mates of p, project p and all points of P_2 onto line ℓ.

- Pick out points whose projection is within δ of p; at most six.

- We can do this for all p, by walking sorted lists of P_1 and P_2, in total $O(n)$ time.

- The sorted lists for P_1, P_2 can be obtained from pre-sorting of S_1, S_2.

- Final recurrence is $T(n) = 2T(n/2) + O(n)$, which solves to $T(n) = O(n \log n)$.
Two key features of the divide and conquer strategy are these:

1. The step where subproblems are combined takes place in one lower dimension.

2. The subproblems in the combine step satisfy a sparsity condition.

3. **Sparsity Condition:** Any cube with side length 2δ contains $O(1)$ points of S.

4. Note that the original problem does not necessarily have this condition.
The Sparse Problem

• Given n points with δ-sparsity condition, find all pairs within distance $\leq \delta$.

• Divide the set into S_1, S_2 by a median place H. Recursively solve the problem in two halves.

• Project all points lying within δ thick slab around H onto H. Call this set S'.

• S' inherits the δ-sparsity condition. Why?.

• Recursively solve the problem for S' in $d - 1$ space.

• The algorithms satisfies the recurrence

\[U(n, d) = 2U(n/2, d) + U(n, d - 1) + O(n). \]

which solves to $U(n, d) = O(n(\log n)^{d-1})$.

Subhash Suri

UC Santa Barbara
Getting Sparsity

- Recall that divide and conquer algorithm solves the left and right half problems recursively.

- The sparsity holds for the merge problem, which concerns points within δ thick slab around H.

- If S is a set where inter-point distance is at least δ, then the δ-cube centered at p contains at most a constant number of points of S, depending on d.
Proof of Sparsity

- Let C be the δ-cube centered at p. Let L be the set of points in C.

- Imagine placing a ball of radius $\delta/2$ around each point of L.

- No two balls can intersect. Why?

- The volume of cube C is $(2\delta)^d$.

- The volume of each ball is $\frac{1}{c_d}(\delta/2)^d$, for a constant c_d.

- Thus, the maximum number of balls, or points, is at most $c_d 4^d$, which is $O(1)$.
Closest Pair Algorithm

- Divide the input S into S_1, S_2 by the median hyperplane normal to some axis.

- **Recursively compute** δ_1, δ_2 for S_1, S_2. Set $\delta = \min(\delta_1, \delta_2)$.

- Let S' be the set of points that are within δ of H, **projected onto H**.

- Use the δ-sparsity condition to recursively examine all pairs in S'—there are only $O(n)$ pairs.

- The recurrence for the final algorithm is:

$$T(n, d) = 2T(n/2, d) + U(n, d - 1) + O(n)$$
$$= 2T(n/2, d) + O(n(\log n)^{d-2}) + O(n)$$
$$= O(n(\log n)^{d-1}).$$
Improving the Algorithm

- If we could show that the problem size in the conquer step is \(m \leq n/(\log n)^{d-2} \), then \(U(m, d - 1) = O(m (\log m)^{d-2}) = O(n) \).

- This would give final recurrence \(T(n, d) = 2T(n/2, d) + O(n) + O(n) \), which solves to \(O(n \log n) \).

- **Theorem:** Given a set \(S \) with \(\delta \)-sparsity, there exists a hyperplane \(H \) normal to some axis such that

1. \(|S_1|, |S_2| \geq n/4d \).
2. Number of points within \(\delta \) of \(H \) is \(O\left(\frac{n}{(\log n)^{d-2}}\right) \).
3. \(H \) can be found in \(O(n) \) time.
Sparse Hyperplane

- We prove the theorem for 2D. Show there is a line with $\alpha \sqrt{n}$ points within δ of it, for some constant α.

- For contradiction, assume no such line exists.

- Partition the plane by placing vertical lines at distance 2δ from each other, where $n/8$ points to the left of leftmost line, and right of rightmost line.
• **If there are** \(k \) **slabs,** **we have** \(k\alpha \sqrt{n} \leq 3n/4, \)** **which gives** \(k \leq \frac{3}{4\alpha} \sqrt{n}. \)

• **Similarly,** **if there is no horizontal line with desired properties,** **we get** \(l \leq \frac{3}{4\alpha} \sqrt{n}. \)

• **By sparsity,** **number of points in any** \(2\delta \) **cell is some constant** \(c. \)
Sparse Hyperplane

- This gives that the num. of points inside all the slabs is at most ckl, which is at most $\left(\frac{3}{4\alpha}\right)^2 cn$.
- Since there are $\geq n/2$ points inside the slabs, this is a contradiction if we choose $\alpha \geq \frac{\sqrt{18c}}{4}$.
- So, one of these k vertical or l horizontal lines must satisfy the desired properties.
- Since we know δ, we can check these $k + l$ lines and choose the correct one in $O(n)$ time.
Optimal Algorithm

- Actually we can start the algorithm with such a hyperplane.

- The divide and conquer algorithm now satisfies the recurrence

\[T(n, d) = 2T(n/2, d) + U(m, d - 1) + O(n). \]

- By new sparsity claim, \(m \leq n/(\log n)^{d-2} \), and so \(U(m, d - 1) = O(m(\log m)^{d-2}) = O(n) \).

- Thus, \(T(n, d) = 2T(n/2, d) + O(n) + O(n) \), which solves to \(O(n \log n) \).

- Solves the Closest Pair problem in fixed \(d \) in optimal \(O(n \log n) \) time.