CS-235

Computational Geometry

Subhash Suri

Computer Science Department UC Santa Barbara

Fall Quarter 2002.

Convex Hulls

1. Convex hulls are to CG what sorting is to discrete algorithms.
2. First order shape approximation. Invariant under rotation and translation.

3. Rubber-band analogy.
4. Many applications in robotics, shape analysis, line fitting etc.
5. Example: if $C H\left(P_{1}\right) \cap C H\left(P_{2}\right)=\emptyset$, then objects P_{1} and P_{2} do not intersect.
6. Convex Hull Problem:

Given a finite set of points S, compute its convex hull $C H(S)$. (Ordered vertex list.)

Classical Convexity

1. Given points $p_{1}, p_{2}, \ldots, p_{k}$, the point $\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{k} p_{k}$ is their convex combination if $\alpha_{i} \geq 0$ and $\sum_{i=1}^{k} \alpha_{i}=1$.
2. $C H(S)$ is union of all convex combinations of S.
3. S convex iff for all $x, y \in S, \overline{x y} \in S$.
4. $C H(S)$ is intersection of all convex sets containing S.
5. $C H(S)$ is intersection of all halfspaces containing S.
6. $C H(S)$ is smallest convex set containing S.
7. In $R^{2}, C H(S)$ is smallest area (perimeter) convex polygon containing S.
8. In $R^{2}, C H(S)$ is union of all triangles formed by triples of S.
9. These descriptions do not yield efficient algorithms. At best $O\left(N^{3}\right)$.

Efficient CH Algorithms

Gift Wrapping: [Jarvis '73; Chand-Kapur '70]

1. Start with bottom point p.
2. Angularly sort all points around p.
3. Point a with smallest angle is on $C H$.
4. Repeat algorithm at a.
5. Complexity $O(N h) ; 3 \leq h=|C H| \leq N$. Worst case $O\left(N^{2}\right)$.

Quick Hull Algorithm

Initialization

Recursive Elimination

1. Form initial quadrilateral Q, with left, right, top, bottom. Discard points inside Q.
2. Recursively, a convex polygon, with some points "outside" each edge.
3. For an edge $a b$, find the farthest outside point c. Discard points inside triangle $a b c$.
4. Split remaining points into "outside" points for $a c$ and $b c$.
5. Edge $a b$ on CH when no point outside.

Complexity of QuickHull

Initialization

Recursive Elimination

1. Initial quadrilateral phase takes $O(n)$ time.

2. $T(n)$: time to solve the problem for an edge with n points outside.
3. Let n_{1}, n_{2} be sizes of subproblems. Then,

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ n+T\left(n_{1}\right)+T\left(n_{2}\right) & \text { where } n_{1}+n_{2} \leq n\end{cases}
$$

4. Like QuickSort, this has expected running time $O(n \log n)$, but worst-case time $O\left(n^{2}\right)$.

Graham Scan

1. Sort by Y-order; $p_{1}, p_{2}, \ldots, p_{n}$.
2. Initialize. push (p_{i}, stack $), i=1,2$.
3. for $i=3$ to n do
while \angle next, top, $p_{i} \neq$ Left-Turn
pop (stack)
push (p_{i}, stack).
4. return stack.
5. Invented by R. Graham '73. (Left and Right convex hull chains separately.)

Analysis of Graham Scan

1. Invariant: $\left\langle p_{1}, \ldots, \operatorname{top}(\right.$ stack $\left.)\right\rangle$ is convex. On termination, points in stack are on CH .
2. Orientation Test: $D=\left\|\begin{array}{lll}1 & p_{x} & p_{y} \\ 1 & q_{x} & q_{y} \\ 1 & r_{x} & r_{y}\end{array}\right\|$
$\angle p, q, r$ is LEFT if $D>0$, RIGHT if $D<0$, and straight if $D=0$.
3. After sorting, the scan takes $O(n)$ time: in each step, either a point is deleted, or added to stack.

Divide and Conquer

- Sort points by X-coordinates.
- Let A be the set of $n / 2$ leftmost points, and B the set of $n / 2$ rightmost points.
- Recursively compute $C H(A)$ and $C H(B)$.
- Merge $C H(A)$ and $C H(B)$ to obtain $C H(S)$.

Merging Convex Hulls

Lower Tangent

- $a=$ rightmost point of $C H(A)$.
- $b=$ leftmost point of $C H(B)$.
- while $a b$ not lower tangent of $C H(A)$ and $C H(B)$ do

1. while $a b$ not lower tangent to $C H(A)$ set $a=a-1$ (move $a \mathbf{C W}$);
2. while $a b$ not lower tangent to $C H(B)$ set $b=b+1$ (move $b \mathbf{C C W}$);

- Return $a b$

Analysis of D\&C

- Initial sorting takes $O(N \log N)$ time.
- Recurrence for divide and conquer $T(N)=2 T(N / 2)+O(N)$
- $O(N)$ for merging (computing tangents).
- Recurrence solves to $T(N)=O(N \log N)$.

Applications of CH

A problem in statistics

- Given a set of N data points in R^{2}, fit a line that minimizes the maximum error.
- A data point's error is its L_{2} norm distance to the line.

Line Fitting

- Minimizing max error = parallel lines of support with Min separation.
- Max error D implies parallel lines of support with separation $2 D$, and vice versa.
- Min separation between parallel support lines is also called width of S.

Algorithm for Width

- Call a, b antipodal pair if they admit parallel lines of support.
- In R^{2}, only $O(N)$ antipodal pairs.
- If L_{1}, L_{2} are parallel support lines, with minimum separation, then at least one of the lines contains an edge of $C H(S)$.
- We can enumerate all antipodal pairs by a linear march around CH.

Noncrossing Matching

- Given N red and N blue points in the plane (no three collinear), compute a red-blue non-crossing matching.
- Does such a matching always exist?
- Find if one exists.

Noncrossing Matching

- A non-crossing matching always exists.
- (Non-constructive:) Matching of minimum total length must be non-crossing.

- But how about an algorithm?

Algorithm

- Compute $C H(R)$ and $C H(B)$.
- Compute a common tangent, say, rb.
- Output $r b$ as a matching edge; remove r, b, update convex hulls and iterate.

When CH Nest?

- Algorithm fails if $C H(R)$ and $C H(B)$ nest.

- Split by a vertical line, creating two smaller, hull-intersecting problems.
- [Hershberger-Suri '92] gives optimal $O(N \log N)$ solution.

Lower Bounds

- Reduce sorting to convex hull.
- List of numbers to sort $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ 。
- Create point $p_{i}=\left(x_{i}, x_{i}^{2}\right)$, for each i.
- Convex hull of $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ has points in sorted x-order. $\Rightarrow \mathrm{CH}$ of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

Output-Sensitive CH

1. Kirkpatrick-Seidel (1986) describe an $O(n \log h)$ worst-case algorithm. Always optimal-linear when $h=O(1)$ and $O(n \log n)$ when $h=\Omega(n)$.
2. T. Chan (1996) achieved the same result with a much simpler algorithm.
3. Remarkably, Chan's algorithm combines two slower algorithms (Jarvis and Graham) to get the faster algorithm.
4. Key idea of Chan is as follows.
(a) Partition the n points into groups of size m; number of groups is $r=\lceil n / m\rceil$.
(b) Compute hull of each group with Graham's scan.
(c) Next, run Jarvis on the groups.

Chan's Algorithm

1. The algorithm requires knowledge of CH size h.
2. Use m as proxy for h. For the moment, assume we know $m=h$.
3. Partition P into r groups of m each.
4. Compute $\operatorname{Hull}\left(P_{i}\right)$ using Graham scan, $i=1,2, \ldots, r$.
5. $p_{0}=(-\infty, 0)$; p_{1} bottom point of P.
6. For $k=1$ to m do

- Find $q_{i} \in P_{i}$ that maximizes the angle $\angle p_{k-1} p_{k} q_{i}$.
- Let p_{k+1} be the point among q_{i} that maximizes the angle $\angle p_{k-1} p_{k} q$.
- If $p_{k+1}=p_{1}$ then return $\left\langle p_{1}, \ldots, p_{k}\right\rangle$.

7. Return " m was too small, try again."

Illustration

Time Complexity

- Graham Scan: $O(r m \log m)=O(n \log m)$.
- Finding tangent from a point to a convex hull in $O(\log n)$ time.
- Cost of Jarvis on r convex hulls: Each step takes $O(r \log m)$ time; total $O(h r \log m)=((h n / m) \log m)$ time.
- Thus, total complexity

$$
O\left(\left(n+\frac{h n}{m}\right) \log m\right)
$$

- If $m=h$, this gives $O(n \log h)$ bound.
- Problem: We don't know h.

Finishing Chan

Hull (P)

- for $t=1,2, \ldots$ do

1. Let $m=\min \left(2^{2^{t}}, n\right)$.
2. Run Chan with m, output to L.
3. If $L \neq$ "try again" then return L.
4. Iteration t takes time $O\left(n \log 2^{2^{t}}\right)=O\left(n 2^{t}\right)$.
5. Max value of $t=\log \log h$, since we succeed as soon as $2^{2^{t}}>h$.
6. Running time (ignoring constant factors)

$$
\sum_{t=1}^{\lg \lg h} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h
$$

4. 2D convex hull computed in $O(n \log h)$ time.

Convex Hulls in d-Space

- New and unexpected phenomena occur in higher dimensions.

cube

$$
\mathbf{V}=8, \mathbf{F}=\mathbf{6}
$$

cross polytope
$\mathrm{V}=6, \mathrm{~F}=8$

- Number of vertices, faces, and edges not the same.
- How to represent the convex hull? Vertices alone may not contain sufficient information.

Faces

- In d-dimensions, a face can have any dimension k, where $k=0,1, \ldots, d-1$.
- Special names: Vertices (dim 0), Edges (dim 1), and Facets $(\operatorname{dim} d-1)$.
- In general, a k-dim face.

cube

$$
\mathbf{V}=8, \quad \mathbf{F}=6
$$

cross polytope

$$
\mathrm{V}=6, \mathrm{~F}=8
$$

- In 4-dimension, faces are 3d subspace, 2d faces, edges and vertices.

Facial Lattice

$$
V=8, F=6
$$

cross polytope

$$
V=6, F=8
$$

- Complete description of how faces of various dimension are incident to each other.

Face lattice of \mathbf{f}

Complexity

Cubes of $\operatorname{dim} 1,2,3 \ldots$

- How many vertices does d-dim cube have?
- How many facets does d-dim cube have?
- So, already as a function of d, there is exponential difference between V and F.
- But, for a fixed dimension d, how large can the face lattice be as a function of n, the number of vertices?

3 Dimensions

$$
\mathbf{V}=8, \mathbf{F}=6
$$

cross polytope

$$
\mathrm{V}=6, \mathrm{~F}=8
$$

- Steinitz: The facial lattice of a 3 -d convex polytope is isomorphic to a 3-connected planar graph and vice versa.
- By Euler's formula, $V-E+F=2$.
- Verify this for cube: $V=8, E=12, F=6$.
- In $3 \mathrm{D}, E$ and F are linear in n. $E \leq 3 n-6$, and $F \leq 2 n-4$.

Higher Dimensions

- Convex polytopes in higher dimensions can exhibit strange and unexpected behavior.
- In 4D, there are n points in general position so that the edge joining every pair of points is on the convex hull!
- That is, a 4D convex hull of n points can have $\Theta\left(n^{2}\right)$ edges!
- In d dimensions, the number of facets can be $n^{\lfloor d / 2\rfloor}$.
- Thus, explicit representation of convex hulls is not very practical in higher dimensions.
- But this does not mean they are useless: after all linear programming is optimization over convex polytopes.

Cyclic Polytopes

- Discovered in 1900 's, their importance comes from the Upper Bound Theorem by McMullen and Shephard 1971).
- Moment curve: $\gamma=\left\{\left(t, t^{2}, \ldots, t^{d}\right) \mid t \in R\right\}$.
- A point $p=\left(u, u^{2}, \ldots, u^{d}\right)$ is given by the single parameter u.
- Consider n values $u_{1}<u_{2}<\cdots<u_{n}$. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the corresponding points on the moment curve.
- Then, any k-tuple of points, where $k \leq d / 2$, is a face of their convex hull.

4D Example

- Moment curve is $\gamma=\left\{\left(t, t^{2}, t^{3}, t^{4}\right)\right\}$.
- Fix any two i, j. Consider the polynomial

$$
P(t)=\left(t-u_{i}\right)^{2}\left(t-u_{j}\right)^{2}
$$

- This polynomial can be written as:

$$
P(t)=t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}
$$

- Clearly, $P(t) \geq 0$, for all t. Furthermore, the only zeros of the polynomial occur at $t=u_{i}$ and $t=u_{j}$.

4D Example

- But $x_{4}+a_{3} x_{3}+a_{2} x_{2}+a_{1} x_{1}+a_{0}=0$ is the equation of a hyperplane. This evaluates to zero when $x=p_{i}$ or p_{j}.
- Since for all other points, the polynomial evaluates to ≥ 0, it means that the moment curves lies on the same side of this plane.
- Thus, this plane is the witness that $p_{i} p_{j}$ is on the convex hull.
- We chose i, j arbitrarily, so all pairs are on the convex hull.

Upper Bound Theorem

- Among all d-dim convex polytopes with n vertices, the cyclic polytope has the maximum number of faces of each dimension.
- A d-dim convex polytope with n vertices has at most $2\binom{n}{d / 2}$ facets and at most $2^{d+1}\binom{n}{d / 2}$ faces in total.
- Thus, asymptotically, a d-dim convex polytope has $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$ faces.
- A worst-case optimal algorithmn of this complexity is by Chazelle [1993].

