
Ordinary Differential Equations and
Partial Differential Equations:

Solutions and Parallelism

UCSB CS240A

Tao Yang

Some slides are from K. Yalick/Demmel

Finite-Difference Method for ODE/PDE

• Discretize domain of a function

• For each point in the discretized domain,
name it with a variable, setup equations.

• The unknown values of those points form
equations. Then solve these equations

Euler’s method for ODE
Initial-Value Problems

00 y)y(x);y,x(fy
dx

dy

x0 x1 x2 x3

y0

h h h

Straight line approximation

Euler Method

 ' 2

nn1n hOyhyy

 error),f(2

nnn1n hOwithyxhyy

 2

nnn1n),f(hOyxhyy

Thus starting from an initial value y0

 hxyhxyxy /)(00Approximate:

Then:

Euler’s Method: Example

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482

yx
dx

dy
 10 y

02.0h

)(),f(nnnnnn1n yxhyyxhyy

ODE with boundary value

http://numericalmethods.eng.usf.edu
6

"0030769.0)8(

,"0038731.0)5(

0
1

22

2

u

u

r

u

dr

ud

rdr

ud

Solution

http://numericalmethods.eng.usf.edu
7

 2
11

2

2 2

x

yyy

dx

yd iii

Using the approximation of

 x

yy

dx

dy ii

2

11
and

0

2

12
2

11

2

11

i

iii

i

iii

r

u

r

uu

rr

uuu

0

2

11121

2

1
122212

 i

i

i

i

i

i

u
rrr

u
rr

u
rrr

Gives you

Solution Cont

http://numericalmethods.eng.usf.edu
8

5,0 0 ariStep 1 At node

0038731.00 u

Step 2 At node

Step 3 At node

"6.56.05,1 01 rrri

0

6.06.52

1

6.0

1

6.5

1

6.0

2

6.0

1

6.06.52

1
2212202

 uuu

09266.25874.56290.2 210 uuu

,2i 2.66.06.512 rrr

0

6.02.62

1

6.0

1

2.6

1

6.0

2

6.0

1

6.02.62

1
3222212

 uuu

09122.25816.56434.2 321 uuu

Solution Cont

http://numericalmethods.eng.usf.edu
9

Step 4 At node ,3i 8.66.02.623 rrr

0

6.08.62

1

6.0

1

8.6

1

6.0

2

6.0

1

6.08.62

1
4232222

 uuu

09003.25772.56552.2 432 uuu

Step 5 At node

Step 6 At node

,4i 4.76.08.634 rrr

0

6.04.72

1

6.0

1

4.7

1

6.0

2

6.0

1

6.04.72

1
5242232

 uuu

08903.26062.56651.2 543 uuu

,5i 86.04.745 rrr

0030769.0/5 bruu

Solving system of equations

http://numericalmethods.eng.usf.edu
10

100000

8903.26062.56651.2000

09003.25772.56552.200

009122.25816.56434.20

0009266.25874.56290.2

000001

5

4

3

2

1

0

u

u

u

u

u

u

0030769.0

0

0

0

0

0038731.0

=

0038731.00 u

0036115.01 u

0034159.02 u

0032689.03 u

0031586.04 u

0030769.05 u
x x x

Graph and “stencil”

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Linear Programming Matrix

…

A Sparse Matrix You Encounter
Every Day

15

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)x(j)

Compressed Sparse Row (CSR) Format

for each row i

 for k=ptr[i] to ptr[i+1]-1 do

 y[i] = y[i] + val[k]*x[ind[k]]

A
y

x Representation of A

SpMV: y = y + A*x, only store, do arithmetic, on nonzero entries

SpMV Parallelization

• How do we parallelize a matrix-vector
multiplication ?

16 Source: Sam Williams

SpMV Parallelization

• How do we parallelize a matrix-vector multiplication ?

• By rows blocks

• No inter-thread data dependencies, but random access to x

19

th
re

a
d
 0

th

re
a
d
 1

th

re
a
d
 2

th

re
a
d
 3

Source: Sam Williams

CS267 Lecture 4 20

Parallel Sparse Matrix-vector
multiplication

• y = A*x, where A is a sparse n x n matrix

• Questions
– which processors store

• y[i], x[i], and A[i,j]

– which processors compute
• y[i] = sum (from 1 to n) A[i,j] * x[j]

 = (row i of A) * x … a sparse dot product

• Partitioning
– Partition index set {1,…,n} = N1 N2 … Np.

– For all i in Nk, Processor k stores y[i], x[i], and row i of A

– For all i in Nk, Processor k computes y[i] = (row i of A) * x
• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y

P1

P2

P3

P4

May require

communication

CS267 Lecture 4 21

Graph Partitioning and Sparse Matrices

 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix:

• If divided over 3 procs, there are 14 nonzeros outside

the diagonal blocks, which represent the 7

(bidirectional) edges

4

22

Application matrices

Dense

Protein
FEM /

Spheres

FEM /

Cantilever

Wind

Tunnel

FEM /

Harbor
QCD

FEM /

Ship
Economics Epidemiology

FEM /

Accelerator
Circuit webbase

LP

2K x 2K Dense matrix

stored in sparse format

Well Structured

(sorted by nonzeros/row)

Poorly Structured

hodgepodge

Extreme Aspect Ratio

(linear programming)

Source: Sam Williams

Samuel Williams, Oliker, W. Vuduc, Shalf, A. Yelick, James

Demmel, "Optimization of sparse matrix-vector multiplication on emerging

multicore platforms", Parallel Computing, 2008, 35:38

23

Multicore SMPs Used
AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

Source: Sam Williams

24

Multicore SMPs Used
(threads)

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

8 threads 8 threads

16* threads 128 threads

*SPEs only Source: Sam Williams

25

Multicore SMPs Used
(peak double precision flops)

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

75 GFlop/s 74 Gflop/s

29* GFlop/s 19 GFlop/s

*SPEs only Source: Sam Williams

Multicore SMPs Used
(Total DRAM bandwidth)

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

21 GB/s (read)

10 GB/s (write)
21 GB/s

51 GB/s
42 GB/s (read)

21 GB/s (write)

*SPEs only Source: Sam Williams

27

SpMV Performance
(simple parallelization)

• Out-of-the box SpMV
performance on a suite of 14
matrices

• Simplest solution =
parallelization by rows
(solves data dependency
challenge)

• Scalability isn’t great

• Is this performance good?

Naïve Pthreads

Naïve

Source: Sam Williams

Prefetch for SpMV

• SW prefetch injects more MLP into the
memory subsystem.

• Supplement HW prefetchers

• Can try to prefetch the

– values

– indices

– source vector

– or any combination thereof

• In general, should only insert one prefetch
per cache line (works best on unrolled
code)

28

for(all rows){

 y0 = 0.0;

 y1 = 0.0;

 y2 = 0.0;

 y3 = 0.0;

 for(all tiles in this row){

 PREFETCH(V+i+PFDistance);

 y0+=V[i]*X[C[i]]

 y1+=V[i+1]*X[C[i]]

 y2+=V[i+2]*X[C[i]]

 y3+=V[i+3]*X[C[i]]

 }

 y[r+0] = y0;

 y[r+1] = y1;

 y[r+2] = y2;

 y[r+3] = y3;

}

 Source: Sam Williams

SpMV Performance
(NUMA and Software Prefetching)

29

 NUMA-aware allocation is
essential on memory-
bound NUMA SMPs.

 Explicit software
prefetching can boost
bandwidth and change

cache replacement
policies

 Cell PPEs are likely
latency-limited.

 used exhaustive search
for best prefetch distance

Source: Sam Williams

SpMV Performance
(Matrix Compression)

31

 After maximizing memory
bandwidth, the only hope is to

minimize memory traffic.

 exploit:

 register blocking

 other formats

 smaller indices
 Use a traffic minimization

heuristic rather than search

 Benefit is clearly

 matrix-dependent.

 Register blocking enables
efficient software prefetching

(one per cache line)

Source: Sam Williams

Cache blocking for SpMV
(Data Locality for Vectors)

• Store entire submatrices contiguously

• The columns spanned by each cache

 block are selected to use same space

 in cache, i.e. access same number of x(i)

• TLB blocking is a similar concept but

 instead of on 8 byte granularities,

 it uses 4KB granularities

32

th
re

ad
 0

th

re
ad

 1

th
re

ad
 2

th

re
ad

 3

Source: Sam Williams

Cache blocking for SpMV
(Data Locality for Vectors)

33

th
re

ad
 0

th

re
ad

 1

th
re

ad
 2

th

re
ad

 3

Source: Sam Williams

• Store entire submatrices contiguously

• The columns spanned by each cache

 block are selected to use same space

 in cache, i.e. access same number of x(i)

• TLB blocking is a similar concept but

 instead of on 8 byte granularities,

 it uses 4KB granularities

34

Auto-tuned SpMV Performance
(cache and TLB blocking)

• Fully auto-tuned SpMV
performance across the suite of
matrices

• Why do some optimizations work
better on some architectures?

• matrices with naturally small
working sets

• architectures with giant caches

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

Source: Sam Williams

35

Auto-tuned SpMV Performance
(architecture specific optimizations)

• Fully auto-tuned SpMV
performance across the suite of
matrices

• Included SPE/local store
optimized version

• Why do some optimizations work
better on some architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

Source: Sam Williams

36

Auto-tuned SpMV Performance
(max speedup)

• Fully auto-tuned SpMV
performance across the suite of
matrices

• Included SPE/local store
optimized version

• Why do some optimizations work
better on some architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

2.7x 4.0x

2.9x 35x

Source: Sam Williams

Solving PDEs

• Finite element method

• Finite difference method (our focus)
– Converts PDE into matrix equation

• Linear system over discrete basis elements

– Result is usually a sparse matrix

Class of Linear
Second-order PDEs

• Linear second-order PDEs are of the form

 where A - H are functions of x and y only

• Elliptic PDEs: B2 - AC < 0
(steady state heat equations)

• Parabolic PDEs: B2 - AC = 0
(heat transfer equations)

• Hyperbolic PDEs: B2 - AC > 0
(wave equations)

HGuFuEuCuBuAu yxyyxyxx 2

PDE Example: Steady State Heat Distribution
Problem

80-100

60-80

40-60

20-40

0-20

Steam

Steam Steam

Ice bath

Solving the Problem

• Underlying PDE is the Poisson equation

• This is an example of an elliptical PDE

• Will create a 2-D grid

• Each grid point represents value of state state
solution at particular (x, y) location in plate

),(yxfuu yyxx

Discrete 2D grid space

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

2

)()(2)(
)(''

h

hxfxfhxf
xf

Finite-difference
• Special case: f(x,y)=0

• Namely

0)2(
1

)2(
1

1,,1,2

,1,,12

jijiji

jijiji

uuu
h

uuu
h

04 ,1,11,1,, jijijijiji uuuuu

Heart of Iterative Program

w[i][j] = (u[i-1][j] + u[i+1][j] +

 u[i][j-1] + u[i][j+1]) / 4.0;

u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)

Matrx vs. graph representation

02/01/2011

44

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L =

4

-1

-1

-1

-1

Dependence: “5 point stencil”

3D case is

analogous (7 point

stencil)

Jacobi method

02/01/2011

• Jacobi method allows full parallelism, but
slower convergence

Gauss-Seidel Method

02/01/2011

• Faster convergence

Parallelism and program
transformation

• Code structure with Gauss-Seidel method

02/01/2011 47

Loop Skewing

02/01/2011 48

Loop skewing

Loop Skewing

02/01/2011

Loop interchange

Loop i can run in parallel

Matrix Reordering for More Parallelism

02/01/2011

• Reordering variables to eliminate most of data

dependence in the Gauss Seidel algorithm.

• Points are divided into white

and black points.

• First, black points are computed

 using the old red point values.

• Second, while points are

computed (using the new black

 point values).

Parallelism in Regular meshes
• Computing a Stencil on a regular mesh

– need to communicate mesh points near boundary to
neighboring processors.
• Often done with ghost regions

– Surface-to-volume ratio keeps communication down, but
• Still may be problematic in practice

02/01/2011 CS267 Lecture 5 51

Implemented using

“ghost” regions.

Adds memory overhead

Composite mesh from a mechanical
structure

02/01/2011 CS267 Lecture 5 52

Converting the mesh to a
matrix

02/01/2011 CS267 Lecture 5 53

Example of Matrix Reordering Application

02/01/2011 CS267 Lecture 7 54

When performing

Gaussian Elimination

Zeros can be filled

Matrix can be reordered to

reduce this fill

But it’s not the same

ordering as for parallelism

Irregular mesh: NASA Airfoil in 2D (direct
solution)

02/01/2011 CS267 Lecture 5 55

Irregular mesh: Tapered Tube
(multigrid)

02/01/2011 CS267 Lecture 9 56

Adaptive Mesh

02/01/2011 CS267 Lecture 5 57

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement) See:

http://www.llnl.gov/CASC/SAMRAI/

http://www.llnl.gov/CASC/SAMRAI/

Challenges of Irregular Meshes
• How to generate them in the first place

– Start from geometric description of object

– Triangle, a 2D mesh partitioner by Jonathan Shewchuk

– 3D harder!

• How to partition them

– ParMetis, a parallel graph partitioner

• How to design iterative solvers

– PETSc, a Portable Extensible Toolkit for Scientific Computing

– Prometheus, a multigrid solver for finite element problems
on irregular meshes

• How to design direct solvers

– SuperLU, parallel sparse Gaussian elimination

02/01/2011 CS267 Lecture 5 58

