Ordinary Differential Equations and Partial Differential Equations: Solutions and Parallelism

UCSB CS240A
 Tao Yang

Some slides are from K. Yalick/Demmel

Finite-Difference Method for ODE/PDE

- Discretize domain of a function
- For each point in the discretized domain, name it with a variable, setup equations.
- The unknown values of those points form equations. Then solve these equations

Euler's method for ODE Initial-Value Problems

Euler Method

Approximate: $\quad y^{\prime}\left(x_{0}\right) \approx\left(y(x+\Delta h)-y\left(x_{0}\right)\right) / \Delta h$
Then:

$$
\begin{gathered}
y_{\mathrm{n}+1}=y_{\mathrm{n}}+\Delta h y_{\mathrm{n}}^{\prime}+O\left(\Delta h^{2}\right) \\
y_{\mathrm{n}+1}=y_{\mathrm{n}}+\Delta h \mathrm{f}\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)+O\left(\Delta h^{2}\right)
\end{gathered}
$$

Thus starting from an initial value y_{0}
$y_{\mathrm{n}+1} \approx y_{\mathrm{n}}+\Delta h \mathrm{f}\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)$ with $O\left(\Delta h^{2}\right)$ error

Euler's Method: Example $\quad \frac{d y}{d x}=x+y \quad y(0)=$
$y_{\mathrm{n}+1} \approx y_{\mathrm{n}}+\Delta h \mathrm{f}\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)=y_{\mathrm{n}}+\Delta h\left(x_{\mathrm{n}}+y_{\mathrm{n}}\right)$

				Exact	Error
x_{n}	y_{n}	$\mathrm{y}_{\mathrm{n}}^{\prime}$	$\mathrm{hy}_{\mathrm{n}}^{\prime}$	Solution	
0	1.00000	1.00000	0.02000	1.00000	0.00000
0.02	1.02000	1.04000	0.02080	1.02040	-0.00040
0.04	1.04080	1.08080	0.02162	1.04162	-0.00082
0.06	1.06242	1.12242	0.02245	1.06367	-0.00126
0.08	1.08486	1.16486	0.02330	1.08657	-0.00171
0.1	1.10816	1.20816	0.02416	1.11034	-0.00218
0.12	1.13232	1.25232	0.02505	1.13499	-0.00267
0.14	1.15737	1.29737	0.02595	1.16055	-0.00318
0.16	1.18332	1.34332	0.02687	1.18702	-0.00370
0.18	1.21019	1.39019	0.02780	1.21443	-0.00425
0.2	1.23799	1.43799	0.02876	1.24281	-0.00482

ODE with boundary value

$$
\begin{aligned}
& \frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}-\frac{u}{r^{2}}=0 \\
& u(5)=0.0038731^{\prime \prime}, \\
& u(8)=0.0030769^{\prime \prime}
\end{aligned}
$$

Solution

Using the approximation of

$$
\frac{d^{2} y}{d x^{2}} \approx \frac{y_{i+1}-2 y_{i}+y_{i-1}}{(\Delta x)^{2}} \quad \text { and } \quad \frac{d y}{d x} \approx \frac{y_{i+1}-y_{i-1}}{2(\Delta x)}
$$

$$
\begin{aligned}
& \text { Gives you } \frac{u_{i+1}-2 u_{i}+u_{i-1}}{(\Delta r)^{2}}+\frac{1}{r_{i}} \frac{u_{i+1}-u_{i-1}}{2(\Delta r)}-\frac{u_{i}}{r_{i}^{2}}=0 \\
& \left(-\frac{1}{2 r_{i}(\Delta r)}+\frac{1}{(\Delta r)^{2}}\right) u_{i-1}+\left(-\frac{2}{(\Delta r)^{2}}-\frac{1}{r_{i}^{2}}\right) u_{i}+\left(\frac{1}{(\Delta r)^{2}}+\frac{1}{2 r_{i} \Delta r}\right) u_{i+1}=0
\end{aligned}
$$

Solution Cont

Step 1 At node $i=0, r_{0}=a=5$

$$
u_{0}=0.0038731
$$

Step 2 At node $i=1, r_{1}=r_{0}+\Delta r=5+0.6=5.6^{\prime \prime}$

$$
\begin{aligned}
& \left(-\frac{1}{2(5.6)(0.6)}+\frac{1}{(0.6)^{2}}\right) u_{0}+\left(-\frac{2}{(0.6)^{2}}-\frac{1}{(5.6)^{2}}\right) u_{1}+\left(\frac{1}{0.6^{2}}+\frac{1}{2(5.6)(0.6)}\right) u_{2}=0 \\
& 2.6290 u_{0}-5.5874 u_{1}+2.9266 u_{2}=0
\end{aligned}
$$

Step 3 At node $i=2, \quad r_{2}=r_{1}+\Delta r=5.6+0.6=6.2$

$$
\begin{aligned}
& \left(-\frac{1}{2(6.2)(0.6)}+\frac{1}{0.6^{2}}\right) u_{1}+\left(-\frac{2}{0.6^{2}}-\frac{1}{6.2^{2}}\right) u_{2}+\left(\frac{1}{0.6^{2}}+\frac{1}{2(6.2)(0.6)}\right) u_{3}=0 \\
& 2.6434 u_{1}-5.5816 u_{2}+2.9122 u_{3}=0
\end{aligned}
$$

Solution Cont

Step 4 At node $i=3, r_{3}=r_{2}+\Delta r=6.2+0.6=6.8$

$$
\begin{gathered}
\left(-\frac{1}{2(6.8)(0.6)}+\frac{1}{0.6^{2}}\right) u_{2}+\left(-\frac{2}{0.6^{2}}-\frac{1}{6.8^{2}}\right) u_{3}+\left(\frac{1}{0.6^{2}}+\frac{1}{2(6.8)(0.6)}\right) u_{4}=0 \\
2.6552 u_{2}-5.5772 u_{3}+2.9003 u_{4}=0
\end{gathered}
$$

Step 5 At node $i=4, r_{4}=r_{3}+\Delta r=6.8+0.6=7.4$

$$
\begin{gathered}
\left(-\frac{1}{2(7.4)(0.6)}+\frac{1}{0.6^{2}}\right) u_{3}+\left(-\frac{2}{0.6^{2}}-\frac{1}{(7.4)^{2}}\right) u_{4}+\left(\frac{1}{0.6^{2}}+\frac{1}{2(7.4)(0.6)}\right) u_{5}=0 \\
2.6651 u_{3}-5.6062 u_{4}+2.8903 u_{5}=0
\end{gathered}
$$

Step 6 At node $i=5, r_{5}=r_{4}+\Delta r=7.4+0.6=8$

$$
u_{5}=u /_{r=b}=0.0030769
$$

Solving system of equations

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2.6290 & -5.5874 & 2.9266 & 0 & 0 & 0 \\
0 & 2.6434 & -5.5816 & 2.9122 & 0 & 0 \\
0 & 0 & 2.6552 & -5.5772 & 2.9003 & 0 \\
0 & 0 & 0 & 2.6651 & -5.6062 & 2.8903 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]=\left[\begin{array}{c}
0.0038731 \\
0 \\
0 \\
0 \\
0 \\
0.0030769
\end{array}\right]
$$

$$
\begin{array}{ll}
u_{0}=0.0038731 & u_{3}=0.0032689 \\
u_{1}=0.0036115 & u_{4}=0.0031586 \\
u_{2}=0.0034159 & u_{5}=0.0030769
\end{array}
$$

Graph and "stencil"

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Linear Programming Matrix

A Sparse Matrix You Encounter Every Day

Compressed Sparse Row (CSR) Format

SpMV: $y=y+A * x, \quad$ only store, do arithmetic, on nonzero entries

Representation of A
 X

Matrix-vector multiply kernel: $\mathrm{y}(\mathrm{i}) \leftarrow \mathrm{y}(\mathrm{i})+\mathrm{A}(\mathrm{i}, \mathrm{j}) \cdot \mathrm{x}(\mathrm{j})$
for each row i
for $k=p t r[i]$ to ptr[i+1]-1 do

$$
y[i]=y[i]+\operatorname{val}[k] * x[i n d[k]]
$$

SpMV Parallelization

- How do we parallelize a matrix-vector multiplication?

SpMV Parallelization

- How do we parallelize a matrix-vector multiplication ?
- By rows blocks
- No inter-thread data dependencies, but random access to x

Parallel Sparse Matrix-vector multiplication
 - $y=A^{*} x$, where A is a sparse $n x n$ matrix

- Questions
- which processors store
- $\mathrm{y}[\mathrm{i}], \mathrm{x}[\mathrm{i}]$, and $\mathrm{A}[\mathrm{i}, \mathrm{j}]$
- which processors compute

- $y[i]=\operatorname{sum}($ from 1 to $n) A[i, j]$ * $x[j]$

$$
=(\text { row } i \text { of } A) * x \quad \text {... a sparse dot product }
$$

May require communication

- For all i in Nk, Processor k stores $y[i], x[i]$, and row i of A
- For all in in Nk, Processor k computes $y[i]=($ row i of $A) * x$
- "owner computes" rule: Processor k compute the y[i]s it owris.

Graph Partitioning and Sparse Matrices

- Relationship between matrix and graph

	1	2	3	4	5	6
1	1	1		1	1	
2			1	1	1	
3		1	1			1
4	1	1		1		1
5	1	1			1	1
6			1	1	1	1

- Edges in the graph are nonzero in the matrix:
- If divided over 3 procs, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

Application matrices

2K x 2K Dense matrix stored in sparse format
Dense

Multicore SMPs Used

Intel Xeon E5345 (Clovertown)

AMD Opteron 2356 (Barcelona)

IBM QS20 Cell Blade

Multicore SMPs Used

Sun T2+ T5140 (Victoria Falls)
IBM QS20 Cell Blade

${ }^{*}$ SPEs only ${ }_{2}$

Multicore SMPs Used

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade

${ }^{*}$ SPEs only ${ }_{2}$

Multicore SMPs Used

(Total DRAM bandwidth)

Intel Xeon E5345 (Clovertown)
 21 GB/s (read)
 $10 \mathrm{~GB} / \mathrm{s}$ (write)
 $8 \times 667 \mathrm{MHz}$ FBDIMMs

AMD Opteron 2356 (Barcelona)

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade

SpMV Performance

(simple parallelization)

- Out-of-the box SpMV performance on a suite of 14 matrices
- Simplest solution $=$ parallelization by rows (solves data dependency challenge)
- Scalability isn't great
- Is this performance good?

Naïve Pthreads

Naïve

Source: Sam Williams

Prefetch for SpMV

- SW prefetch injects more MLP into the memory subsystem.
- Supplement HW prefetchers
- Can try to prefetch the
- values
- indices
- source vector
- or any combination thereof
- In general, should only insert one prefetch per cache line (works best on unrolled code)

$$
\begin{gathered}
\text { for (a11 rows) \{ } \\
\qquad \begin{array}{c}
y 0=0.0 ; \\
y 1=0.0 ; \\
y 2=0.0 ; \\
y 3=0.0 ;
\end{array}
\end{gathered}
$$

for(a11 tiles in this row)\{ PREFETCH(V+i+PFDistance);

$$
y 0+=V[i \quad] * x[C[i]]
$$

$$
y 1+=V[i+1] * x[C[i]]
$$

$$
y 2+=V[i+2] * x[C[i]]
$$

$$
y 3+=V[i+3] * x[c[i]]
$$

\}
$y[r+0]=y 0 ;$

$$
y[r+1]=y 1
$$

$$
y[r+2]=y 2 ;
$$

$$
y[r+3]=y 3 ;
$$

$$
\}
$$

SpMV Performance

* NUMA-aware allocation is essential on memorybound NUMA SMPs.
* Explicit software prefetching can boost bandwidth and change cache replacement policies
* Cell PPEs are likely latency-limited.
* used exhaustive search for best prefetch distance

SpMV Performance

Source：Sam Williams

$$
\begin{aligned}
& n \\
& 0.0 \\
& 0.0 \\
& 0 \\
& 0 \\
& 0.0 \\
& 2.0 \\
& 1.0
\end{aligned}
$$

1.0
0.0

y
d
듬
U
芯
Harbor

Epidem
Accel
刿荛

＊After maximizing memory bandwidth，the only hope is to minimize memory traffic． ＊exploit：
－register blocking
－other formats
－smaller indices
＊Use a traffic minimization heuristic rather than search
＊Benefit is clearly matrix－dependent．
＊Register blocking enables efficient software prefetching （one per cache line）

Cache blocking for SpMV

(Data Locality for Vectors)

- Store entire submatrices contiguously
- The columns spanned by each cache block are selected to use same space in cache, i.e. access same number of $x(i)$
- TLB blocking is a similar concept but instead of on 8 byte granularities, it uses 4KB granularities

Cache blocking for SpMV

(Data Locality for Vectors)

- Store entire submatrices contiguously
- The columns spanned by each cache block are selected to use same space in cache, i.e. access same number of $x(i)$
- TLB blocking is a similar concept but instead of on 8 byte granularities, it uses $4 K B$ granularities

Auto-tuned SpMV Performance

(cache and TLB blocking)

- Fully auto-tuned SpMV performance across the suite of matrices
- Why do some optimizations work better on some architectures?
- matrices with naturally small working sets
architectures with giant caches

Source: Sam Williams

Auto-tuned SpMV Performance

(architecture specific optimizations)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

Source: Sam Williams

Auto-tuned SpMV Performance
 (max speedup)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

+Cache/LS/TLB Blocking
+Matrix Compression
+SW Prefetching
+NUMA/Affinity
Naïve Pthreads
Naïve
Source: Sam Williams

Solving PDEs

- Finite element method
- Finite difference method (our focus)
- Converts PDE into matrix equation
- Linear system over discrete basis elements
- Result is usually a sparse matrix

Class of Linear Second-order PDEs

- Linear second-order PDEs are of the form

$$
A u_{x x}+2 B u_{x y}+C u_{y y}+E u_{x}+F u_{y}+G u=H
$$

where A - H are functions of x and y only

- Elliptic PDEs: $B^{2}-A C<0$
(steady state heat equations)
- Parabolic PDEs: $B^{2}-A C=0$
(heat transfer equations)
- Hyperbolic PDEs: $B^{2}-A C>0$
(wave equations)

PDE Example: Steady State Heat Distribution Problem

Ice bath

Steam

Steam
\square 80-100
$\square 60-80$
\square 40-60
\square 20-40
$\square 0-20$

Steam

Solving the Problem

- Underlying PDE is the Poisson equation

$$
u_{x x}+u_{y y}=f(x, y)
$$

- This is an example of an elliptical PDE
- Will create a 2-D grid
- Each grid point represents value of state state solution at particular (x, y) location in plate

Discrete 2D grid space

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Finite-difference

- Special case: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathbf{0}$

$$
\begin{aligned}
& \frac{1}{h^{2}}\left(u_{i-1, j}-2 u_{i, j}+u_{i+1, j}\right) \\
& \quad+\frac{1}{h^{2}}\left(u_{i, j-1}-2 u_{i, j}+u_{i, j+1}\right)=0
\end{aligned}
$$

- Namely

$$
4 u_{i, j}-u_{i, j-1}-u_{i, j+1}-u_{i-1, j}-u_{i+1, j}=0
$$

Heart of Iterative Program

$$
\mathrm{w}[\mathrm{i}][\mathrm{j}]=(\mathrm{u}[\mathrm{i}-1][\mathrm{j}]+\mathrm{u}[\mathrm{i}+1][\mathrm{j}]+\mathrm{t}
$$

Matrx vs. graph representation

Jacobi method

- Jacobi method allows full parallelism, but slower convergence

Repeat
For $\mathrm{i}=1$ to n
For $\mathrm{j}=1$ to n

$$
u_{i, j}^{\text {new }}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)
$$

EndFor
EndFor
Until $\left\|u_{i j}^{\text {new }}-u_{i j}\right\|<\epsilon$

Gauss-Seidel Method

- Faster convergence

Repeat

$$
u^{o l d}=u
$$

For $\mathrm{i}=1$ to n
For $\mathrm{j}=1$ to n

$$
u_{i, j}=0.25\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) .
$$

EndFor
EndFor
Until $\left\|u_{i j}-u_{i j}^{o l d}\right\|<\epsilon$

Parallelism and program

 transformation- Code structure with Gauss-Seidel method

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } j=2, m-1 \\
& \quad a[i, j]=a[i-1, j]+a[i, j-1]+a[i+1, j]+a[i, j+1] ;
\end{aligned}
$$

enddo
enddo

Loop Skewing

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } j=2, m-1 \\
& \quad a[i, j]=a[i-1, j]+a[i, j-1]+a[i+1, j]+a[i, j+1] ;
\end{aligned}
$$

enddo
enddo

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } j=i+2, i+m-1
\end{aligned}
$$

$$
{ }^{j} \quad j^{\prime}=j-i ;
$$

$$
\rightarrow a\left[i, j^{\prime}\right]=a\left[i-1, j^{\prime}\right]+a\left[i, j^{\prime}-1\right]+a\left[i+1, j^{\prime}\right]+a\left[i, j^{\prime}+1\right]
$$

enddo
enddo

Loop Skewing

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } j=i+2, i+m-1 \\
& \quad j^{\prime}=j-i ; \\
& a\left[i, j^{\prime}\right]=a\left[i-1, j^{\prime}\right]+a\left[i, j^{\prime}-1\right]+a\left[i+1, j^{\prime}\right]+a\left[i, j^{\prime}+1\right] \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

Loop interchange
Loop i can run in parallel

$$
\begin{aligned}
& \text { do } j=4, m+n-2 \\
& \text { do } i=\max (2, j-m+1), \min (n-1, j-2) \\
& \quad j^{\prime}=j-i ; \\
& \quad a\left[i, j^{\prime}\right]=a\left[i-1, j^{\prime}\right]+a\left[i, j^{\prime}-1\right]+a\left[i+1, j^{\prime}\right]+a\left[i, j^{\prime}+1\right] \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

Matrix Reordering for More Parallelism

- Reordering variables to eliminate most of data dependence in the Gauss Seidel algorithm.
- Points are divided into white and black points.
- First, black points are computed using the old red point values.
- Second, while points are computed (using the new black point values).

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
- need to communicate mesh points near boundary to neighboring processors.
- Often done with ghost regions
- Surface-to-volume ratio keeps communication down, but
- Still may be problematic in practice
 Implemented using "ghost" regions.
Adds memory overhead

Composite mesh from a mechanical

structure

Converting the mesh to a matrix

Example of Matrix Reordering Application

When performing Gaussian Elimination Zeros can be filled $:$

02/01/2011

Irregular mesh: NASA Airtoil in 2D (direct

solution)

Irregular mesh: Tapered Tube (multigrid)
 Example of Prometheus meshes

${ }^{*}$ gruce E Sample input grid and coarse grids

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement) See: http://www.llnl.gov/CASC/SAMRAI/

Challenges of Irregular Meshes

- How to generate them in the first place
- Start from geometric description of object
- Triangle, a 2D mesh partitioner by Jonathan Shewchuk
- 3D harder!
- How to partition them
- ParMetis, a parallel graph partitioner
- How to design iterative solvers
- PETSc, a Portable Extensible Toolkit for Scientific Computing
- Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
- SuperLU, parallel sparse Gaussian elimination

