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Finite-Difference Method for ODE/PDE 

• Discretize domain of a function 

• For each point in the discretized domain, 
name it with a variable, setup equations.  

• The unknown values  of those points form 
equations. Then solve these equations 

 



Euler’s method for ODE 
Initial-Value Problems 
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Euler’s Method: Example 

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482

yx
dx

dy
   10 y
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ODE with boundary value 
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Step 3   At node  
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Step 4   At node  ,3i 8.66.02.623  rrr
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Step 5   At node  

Step 6   At node  
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Solving system of equations 
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Graph and “stencil” 



Source: Accelerator Cavity Design Problem (Ko via Husbands) 



Linear Programming Matrix 

… 



A Sparse Matrix You Encounter 
Every Day 
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Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)x(j) 

Compressed Sparse Row (CSR) Format 

for each row i 

  for k=ptr[i] to ptr[i+1]-1 do 

  y[i] = y[i] + val[k]*x[ind[k]] 

A 
y 

x Representation of A 

SpMV: y = y + A*x,       only store, do arithmetic, on nonzero entries 



SpMV Parallelization 

• How do we parallelize a matrix-vector 
multiplication ? 

16 Source: Sam Williams 



SpMV Parallelization 

• How do we parallelize a matrix-vector multiplication ? 

• By rows blocks 

• No inter-thread data dependencies, but random access to x 
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Source: Sam Williams 
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Parallel Sparse Matrix-vector 
multiplication 

• y = A*x, where A is a sparse  n x n matrix 

 

 

 

• Questions 
– which processors store 

• y[i], x[i], and A[i,j] 

– which processors compute 
• y[i] = sum (from 1 to n) A[i,j] * x[j] 

            = (row i of A) * x          … a sparse dot product 

• Partitioning 
– Partition index set {1,…,n} = N1  N2  …  Np. 

– For all i in Nk, Processor k stores y[i], x[i], and row i of A  

– For all i in Nk, Processor k computes y[i] = (row i of A) * x 
• “owner computes” rule: Processor k compute the y[i]s it owns. 

x 

y 

P1 

P2 

P3 

P4 

May require 

communication 
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Graph Partitioning and Sparse Matrices  

 1    1                     1      1 

2            1     1       1      1 

3           1     1                      1 

4    1     1              1              1  

5    1     1                      1      1 

6                    1     1      1      1 

  1     2      3      4      5      6 

3 

6 

1 

5 

2 

• Relationship between matrix and graph 

• Edges in the graph are nonzero in the matrix: 

• If divided over 3 procs, there are 14 nonzeros outside 

the diagonal blocks, which represent the 7 

(bidirectional) edges 

4 
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Application matrices 

Dense 

Protein 
FEM / 

Spheres 

FEM / 

Cantilever 

Wind 

Tunnel 

FEM / 

Harbor 
QCD 

FEM / 

Ship 
Economics Epidemiology 

FEM / 

Accelerator 
Circuit webbase 

LP 

2K x 2K Dense matrix 

stored in sparse format 

Well Structured 

(sorted by nonzeros/row) 

Poorly Structured 

hodgepodge 

Extreme Aspect Ratio 

(linear programming) 

Source: Sam Williams 

Samuel Williams, Oliker, W. Vuduc, Shalf, A. Yelick, James 

Demmel, "Optimization of sparse matrix-vector multiplication on emerging 

multicore platforms", Parallel Computing, 2008, 35:38 
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Multicore SMPs Used 
AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

Source: Sam Williams 
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Multicore SMPs Used 
(threads) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

8 threads 8 threads 

16* threads 128 threads 

*SPEs only Source: Sam Williams 
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Multicore SMPs Used 
(peak double precision flops) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

75 GFlop/s 74 Gflop/s 

29* GFlop/s 19 GFlop/s 

*SPEs only Source: Sam Williams 



Multicore SMPs Used 
(Total DRAM bandwidth) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

21 GB/s (read) 

10 GB/s (write) 
21 GB/s 

51 GB/s 
42 GB/s (read) 

21 GB/s (write) 

*SPEs only Source: Sam Williams 



27 

SpMV Performance 
(simple parallelization) 

• Out-of-the box SpMV 
performance on a suite of 14 
matrices 

• Simplest solution = 
parallelization by rows 
(solves data dependency 
challenge) 

 

• Scalability isn’t great 

• Is this performance good? 

 

Naïve Pthreads 

Naïve 

Source: Sam Williams 



Prefetch for SpMV 

• SW prefetch injects more MLP into the 
memory subsystem. 

• Supplement HW prefetchers 

• Can try to prefetch the 

– values 

– indices 

– source vector 

– or any combination thereof 

• In general, should only insert one prefetch 
per cache line (works best on unrolled 
code)  

28 

for(all rows){ 

  y0 = 0.0; 

  y1 = 0.0; 

  y2 = 0.0; 

  y3 = 0.0; 

  for(all tiles in this row){ 

    PREFETCH(V+i+PFDistance); 

    y0+=V[i  ]*X[C[i]] 

    y1+=V[i+1]*X[C[i]] 

    y2+=V[i+2]*X[C[i]] 

    y3+=V[i+3]*X[C[i]] 

  } 

  y[r+0] = y0; 

  y[r+1] = y1; 

  y[r+2] = y2; 

  y[r+3] = y3; 

} 

 Source: Sam Williams 



SpMV Performance 
(NUMA and Software Prefetching) 

29 

 NUMA-aware allocation is 
essential on memory-
bound NUMA SMPs. 

 Explicit software 
prefetching can boost 
bandwidth and change 

cache replacement 
policies 

 Cell PPEs are likely 
latency-limited. 

 

 used exhaustive search 
for best prefetch distance 

Source: Sam Williams 



SpMV Performance 
(Matrix Compression) 

31 

 After maximizing memory 
bandwidth, the only hope is to 

minimize memory traffic. 

 exploit: 

 register blocking 

 other formats 

 smaller indices 
 Use a traffic minimization 

heuristic rather than search 

 Benefit is clearly 

 matrix-dependent. 

 Register blocking enables 
efficient software prefetching 

(one per cache line) 

Source: Sam Williams 



Cache blocking for SpMV 
(Data Locality for Vectors) 

• Store entire submatrices contiguously 

   

• The columns spanned by each cache 

 block are selected to use same space 

     in cache, i.e. access same number of x(i) 

  

  

• TLB blocking is a similar concept but 

 instead of on 8 byte granularities,  

 it uses 4KB granularities 
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Cache blocking for SpMV 
(Data Locality for Vectors) 

33 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 

Source: Sam Williams 

• Store entire submatrices contiguously 

   

• The columns spanned by each cache 

 block are selected to use same space 

     in cache, i.e. access same number of x(i) 

  

  

• TLB blocking is a similar concept but 

 instead of on 8 byte granularities,  

 it uses 4KB granularities 
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Auto-tuned SpMV Performance 
(cache and TLB blocking) 

• Fully auto-tuned SpMV 
performance across the suite of 
matrices 

• Why do some optimizations work 
better on some architectures? 

 

• matrices with naturally small 
working sets 

 

• architectures with giant caches 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 
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Auto-tuned SpMV Performance 
(architecture specific optimizations) 

• Fully auto-tuned SpMV 
performance across the suite of 
matrices 

• Included SPE/local store 
optimized version 

• Why do some optimizations work 
better on some architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 
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Auto-tuned SpMV Performance 
(max speedup) 

• Fully auto-tuned SpMV 
performance across the suite of 
matrices 

• Included SPE/local store 
optimized version 

• Why do some optimizations work 
better on some architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 

Source: Sam Williams 



Solving PDEs 

• Finite element method 

• Finite difference method (our focus) 
– Converts PDE into matrix equation 

• Linear system over discrete basis elements 

– Result is usually a sparse matrix 



Class of Linear  
Second-order PDEs 

• Linear second-order PDEs are of the form 

 

 where A - H are functions of x and y only 

• Elliptic PDEs: B2 - AC < 0 
(steady state heat equations) 

• Parabolic PDEs: B2 - AC = 0 
(heat transfer equations) 

• Hyperbolic PDEs: B2 - AC > 0  
(wave equations) 

HGuFuEuCuBuAu yxyyxyxx  2



PDE Example: Steady State Heat Distribution 
Problem 

80-100

60-80

40-60

20-40

0-20

Steam 

Steam Steam 

Ice bath 



Solving the Problem 

• Underlying PDE is the Poisson equation 

 

 

• This is an example of an elliptical PDE 

• Will create a 2-D grid 

• Each grid point represents value of state state 
solution at particular (x, y) location in plate 

),( yxfuu yyxx 



Discrete 2D grid space 
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Finite-difference  
• Special case: f(x,y)=0 
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Heart of Iterative Program 

w[i][j] = (u[i-1][j] + u[i+1][j] + 

           u[i][j-1] + u[i][j+1]) / 4.0; 

 
u(i,j+1)

u(i+1,j)

w(i,j)

u(i-1,j)

u(i,j-1)



Matrx vs. graph representation  

02/01/2011 
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4    -1           -1 

-1    4    -1          -1 
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-1 

Dependence: “5 point stencil” 

3D case is 

analogous (7 point 

stencil) 



Jacobi method 

02/01/2011 

• Jacobi method allows full parallelism, but 
slower convergence 



Gauss-Seidel Method 

02/01/2011 

• Faster convergence 



Parallelism and program 
transformation 

• Code structure with Gauss-Seidel method 

02/01/2011 47 



Loop Skewing 

02/01/2011 48 

Loop skewing 



Loop Skewing 

02/01/2011 

Loop interchange 

Loop i can run in parallel 



Matrix Reordering for More Parallelism 

02/01/2011 

• Reordering variables to eliminate most of data 

dependence in the Gauss Seidel algorithm. 

• Points are divided into white 

and black points. 

• First, black points are computed 

 using the old red point values. 

• Second, while points are  

computed (using the new black 

 point values). 



Parallelism in  Regular meshes 
• Computing a Stencil on a regular mesh 

– need to communicate mesh points near boundary to 
neighboring processors. 
• Often done with ghost regions 

– Surface-to-volume ratio keeps communication down, but 
• Still may be problematic in practice 

02/01/2011 CS267 Lecture 5 51 

Implemented using 

“ghost” regions.   

Adds memory overhead 



Composite mesh from a mechanical 
structure 

02/01/2011 CS267 Lecture 5 52 



Converting the mesh to a 
matrix 

02/01/2011 CS267 Lecture 5 53 



Example of Matrix Reordering Application 

02/01/2011 CS267 Lecture 7 54 

When performing 

Gaussian Elimination 

Zeros can be filled  

Matrix can be reordered to 

reduce this fill 

But it’s not the same 

ordering as for parallelism 



Irregular mesh: NASA Airfoil in 2D (direct 
solution) 

02/01/2011 CS267 Lecture 5 55 



Irregular mesh: Tapered Tube 
(multigrid) 

02/01/2011 CS267 Lecture 9 56 



Adaptive Mesh 

02/01/2011 CS267 Lecture 5 57 

Shock waves in  gas dynamics using AMR (Adaptive Mesh Refinement) See: 

http://www.llnl.gov/CASC/SAMRAI/  

http://www.llnl.gov/CASC/SAMRAI/


Challenges of Irregular Meshes 
• How to generate them in the first place 

– Start from geometric description of object 

– Triangle, a 2D mesh partitioner by Jonathan Shewchuk 

– 3D harder! 

• How to partition them 

– ParMetis, a parallel graph partitioner 

• How to design iterative solvers 

– PETSc, a Portable Extensible Toolkit for Scientific Computing 

– Prometheus, a multigrid solver for finite element problems 
on irregular meshes 

• How to design direct solvers 

– SuperLU, parallel sparse Gaussian elimination 

 

02/01/2011 CS267 Lecture 5 58 


