Ordinary Differential Equations and Partial Differential Equations: Solutions and Parallelism

UCSB CS240A

Tao Yang

Some slides are from K. Yalick/Demmel

Finite-Difference Method for ODE/PDE

- Discretize domain of a function
- For each point in the discretized domain, name it with a variable, setup equations.
- The unknown values of those points form equations. Then solve these equations

Euler Method

Approximate:
$$y'(x_0) \approx (y(x + \Delta h) - y(x_0)) / \Delta h$$

Then: $y_{n+1} = y_n + \Delta h y_n' + O(\Delta h^2)$

$$y_{n+1} = y_n + \Delta h f(x_n, y_n) + O(\Delta h^2)$$

Thus starting from an initial value y_0 $y_{n+1} \approx y_n + \Delta h f(x_n, y_n)$ with $O(\Delta h^2)$ error

Euler's Method: Example $\frac{dy}{dx} = x + y$ y(0) = 1

 $y_{n+1} \approx y_n + \Delta h f(x_n, y_n) = y_n + \Delta h (x_n + y_n)$

				Exact	Error	
X _n	y _n	y'n	hy'n	Solution		$\Delta h = 0.02$
0	1.00000	1.00000	0.02000	1.00000	0.00000	
0.02	1.02000	1.04000	0.02080	1.02040	-0.00040	
0.04	1.04080	1.08080	0.02162	1.04162	-0.00082	
0.06	1.06242	1.12242	0.02245	1.06367	-0.00126	
0.08	1.08486	1.16486	0.02330	1.08657	-0.00171	
0.1	1.10816	1.20816	0.02416	1.11034	-0.00218	
0.12	1.13232	1.25232	0.02505	1.13499	-0.00267	
0.14	1.15737	1.29737	0.02595	1.16055	-0.00318	
0.16	1.18332	1.34332	0.02687	1.18702	-0.00370	
0.18	1.21019	1.39019	0.02780	1.21443	-0.00425	
0.2	1.23799	1.43799	0.02876	1.24281	-0.00482	

ODE with boundary value

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{d}{dr}\frac{u}{dr} - \frac{u}{r^2} = 0$$

$$u(5) = 0.0038731",$$

 $u(8) = 0.0030769"$

Solution

Using the approximation of

$$\frac{d^{2}y}{dx^{2}} \approx \frac{y_{i+1} - 2y_{i} + y_{i-1}}{(\Delta x)^{2}} \quad \text{and} \quad \frac{dy}{dx} \approx \frac{y_{i+1} - y_{i-1}}{2(\Delta x)}$$
Gives you
$$\frac{u_{i+1} - 2u_{i} + u_{i-1}}{(\Delta r)^{2}} + \frac{1}{r_{i}} \frac{u_{i+1} - u_{i-1}}{2(\Delta r)} - \frac{u_{i}}{r_{i}^{2}} = 0$$

$$\left(-\frac{1}{2r_{i}(\Delta r)} + \frac{1}{(\Delta r)^{2}}\right)u_{i-1} + \left(-\frac{2}{(\Delta r)^{2}} - \frac{1}{r_{i}^{2}}\right)u_{i} + \left(\frac{1}{(\Delta r)^{2}} + \frac{1}{2r_{i}\Delta r}\right)u_{i+1} = 0$$

Solution Cont

Step 1 At node
$$i = 0, r_0 = a = 5$$

 $u_0 = 0.0038731$
Step 2 At node $i = 1, r_1 = r_0 + \Delta r = 5 + 0.6 = 5.6''$
 $\left(-\frac{1}{2(5.6)(0.6)} + \frac{1}{(0.6)^2}\right)u_0 + \left(-\frac{2}{(0.6)^2} - \frac{1}{(5.6)^2}\right)u_1 + \left(\frac{1}{0.6^2} + \frac{1}{2(5.6)(0.6)}\right)u_2 = 0$
 $2.6290u_0 - 5.5874u_1 + 2.9266u_2 = 0$
Step 3 At node $i = 2, r_2 = r_1 + \Delta r = 5.6 + 0.6 = 6.2$
 $\left(-\frac{1}{2(6.2)(0.6)} + \frac{1}{0.6^2}\right)u_1 + \left(-\frac{2}{0.6^2} - \frac{1}{6.2^2}\right)u_2 + \left(\frac{1}{0.6^2} + \frac{1}{2(6.2)(0.6)}\right)u_3 = 0$
 $2.6434u_1 - 5.5816u_2 + 2.9122u_3 = 0$

Solution Cont

Step 4 At node
$$i = 3$$
, $r_3 = r_2 + \Delta r = 6.2 + 0.6 = 6.8$
 $\left(-\frac{1}{2(6.8)(0.6)} + \frac{1}{0.6^2}\right)u_2 + \left(-\frac{2}{0.6^2} - \frac{1}{6.8^2}\right)u_3 + \left(\frac{1}{0.6^2} + \frac{1}{2(6.8)(0.6)}\right)u_4 = 0$
 $2.6552u_2 - 5.5772u_3 + 2.9003u_4 = 0$
Step 5 At node $i = 4$, $r_4 = r_3 + \Delta r = 6.8 + 0.6 = 7.4$
 $\left(-\frac{1}{2(7.4)(0.6)} + \frac{1}{0.6^2}\right)u_3 + \left(-\frac{2}{0.6^2} - \frac{1}{(7.4)^2}\right)u_4 + \left(\frac{1}{0.6^2} + \frac{1}{2(7.4)(0.6)}\right)u_5 = 0$
 $2.6651u_3 - 5.6062u_4 + 2.8903u_5 = 0$

Step 6 At node i = 5, $r_5 = r_4 + \Delta r = 7.4 + 0.6 = 8$

$$u_5 = u/_{r=b} = 0.0030769$$

Solving system of equations

1	0	0	0	0	0]	$\begin{bmatrix} u_0 \end{bmatrix}$		0.0038731	
2.6290	-5.5874	2.9266	0	0	0	$ u_1 $		0	
0	2.6434	-5.5816	2.9122	0	0	$ u_2 $		0	
0	0	2.6552	-5.5772	2.9003	0	u_3	=	0	
0	0	0	2.6651	-5.6062	2.8903	$ u_{4} $		0	
0	0	0	0	0	1	$ u_5 $		0.0030769	
_					-				

 $u_0 = 0.0038731$ $u_3 = 0.0032689$ Graph and "stencil" $u_1 = 0.0036115$ $u_4 = 0.0031586$ $u_2 = 0.0034159$ $u_5 = 0.0030769$ X X X

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Linear Programming Matrix

et anno 1986 - Rei anniel V D Welling and wei din 1986 and da shi ka naina di kananan da na da ana ing Taran.

A Sparse Matrix You Encounter Every Day

Compressed Sparse Row (CSR) Format

SpMV: $y = y + A^*x$, only store, do arithmetic, on nonzero entries

 $Matrix-vector\ multiply\ kernel:\ y(i) \leftarrow y(i) + A(i,j)\cdot X(j)$ for each row i

for k=ptr[i] to ptr[i+1]-1 do
 y[i] = y[i] + val[k]*x[ind[k]]

SpMV Parallelization

 How do we parallelize a matrix-vector multiplication ?

SpMV Parallelization

- How do we parallelize a matrix-vector multiplication ?
- By rows blocks
- No inter-thread data dependencies, but random access to x

Parallel Sparse Matrix-vector • $y = A^*x$, where A is a sparse n x n matrix

- Questions
 - which processors store
 - y[i], x[i], and A[i,j]
 - which processors compute
 - y[i] = sum (from 1 to n) A[i,j] * x[j]
 - = (row i of A) * x ... a sparse dot product
- Partitioning
 - Partition index set $\{1, ..., n\} = N1 \cup N2 \cup ... \cup Np$.
 - For all i in Nk, Processor k stores y[i], x[i], and row i of A
 - For all i in Nk, Processor k computes y[i] = (row i of A) * x
 - "owner computes" rule: Processor k compute the y[i]s it owns.

May require

communication

Graph Partitioning and Sparse Matrices

• Relationship between matrix and graph

- Edges in the graph are nonzero in the matrix:
- If divided over 3 procs, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

Application matrices

Intel Xeon E5345 (Clovertown)

AMD Opteron 2356 (Barcelona)

IBM QS20 Cell Blade

Intel Xeon E5345 (Clovertown)

(threads) AMD Opteron 2356 (Barcelona)

IBM QS20 Cell Blade

Sun T2+ T5140 (Victoria Falls)

(peak double precision flops) Intel Xeon E5345 (Clovertown) AMD Opteron 2356 (Barcelona)

Sun T2+ T5140 (Victoria Falls)

(Total DRAM bandwidth) vertown) AMD Opteron 2356 (Barcelona)

IBM QS20 Cell Blade

Sun T2+ T5140 (Victoria Falls)

SpMV Performance

(simple parallelization)

- Out-of-the box SpMV performance on a suite of 14 matrices
- Simplest solution = parallelization by rows (solves data dependency challenge)
- Scalability isn't great
- Is this performance good?

Naïve Pthreads

Naïve

27

Source: Sam Williams

Prefetch for SpMV

- SW prefetch injects more MLP into the memory subsystem.
- Supplement HW prefetchers
- Can try to prefetch the
 - values
 - indices
 - source vector
 - or any combination thereof
- In general, should only insert one prefetch per cache line (works best on unrolled code)

for(all rows){ y0 = 0.0;y1 = 0.0; $y^2 = 0.0;$ y3 = 0.0;for(all tiles in this row){ PREFETCH(V+i+PFDistance); y0+=v[i]*x[c[i]] y1+=V[i+1]*X[C[i]] y2+=v[i+2]*x[c[i]] y3+=V[i+3]*X[C[i]] } y[r+0] = y0;y[r+1] = y1;y[r+2] = y2;y[r+3] = y3;}

SpMV Performance

- NUMA-aware allocation is essential on memorybound NUMA SMPs.
 - Explicit software prefetching can boost bandwidth and change cache replacement policies
 - Cell PPEs are likely latency-limited.
- used exhaustive search for best prefetch distance

SpMV Performance

- After maximizing memory bandwidth, the only hope is to minimize memory traffic.
 - exploit:
 - register blocking
 - other formats
 - smaller indices
- Use a traffic minimization
 heuristic rather than search
 - Benefit is clearly matrix-dependent.
- Register blocking enables efficient software prefetching (one per cache line)

Cache blocking for SpMV

(Data Locality for Vectors)

- Store entire submatrices contiguously
- The columns spanned by each cache block are selected to use same space in cache, i.e. access same number of x(i)

 TLB blocking is a similar concept but instead of on 8 byte granularities, it uses 4KB granularities

Cache blocking for SpMV

(Data Locality for Vectors)

- Store entire submatrices contiguously
- The columns spanned by each cache block are selected to use same space in cache, i.e. access same number of x(i)

 TLB blocking is a similar concept but instead of on 8 byte granularities, it uses 4KB granularities

Auto-tuned SpMV Performance

(cache and TLB blocking)

Fully auto-tuned SpMV performance across the suite of matrices

٠

- Why do some optimizations work ٠ better on some architectures?
 - matrices with naturally small working sets
- architectures with giant caches

Auto-tuned SpMV Performance

(architecture specific optimizations)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store
 optimized version
- Why do some optimizations work better on some architectures?

Auto-tuned SpMV Performance

(max speedup)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

Source: Sam Williams

Solving PDEs

- Finite element method
- Finite difference method (our focus)
 - Converts PDE into matrix equation
 - Linear system over discrete basis elements
 - Result is usually a sparse matrix

Class of Linear Second-order PDEs

• Linear second-order PDEs are of the form $Au_{xx} + 2Bu_{xy} + Cu_{yy} + Eu_x + Fu_y + Gu = H$

where A - H are functions of x and y only

- Elliptic PDEs: B² AC < 0 (steady state heat equations)
- Parabolic PDEs: B² AC = 0 (heat transfer equations)

 Hyperbolic PDEs: B² - AC > 0 (wave equations)

PDE Example: Steady State Heat Distribution Problem

Ice bath

Steam

Solving the Problem

Underlying PDE is the Poisson equation

$$u_{xx} + u_{yy} = f(x, y)$$

- This is an example of an elliptical PDE
- Will create a 2-D grid
- Each grid point represents value of state state solution at particular (*x*, *y*) location in plate

Discrete 2D grid space

Finite-difference

Special case: f(x,y)=0

$$\frac{1}{h^2} (u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) + \frac{1}{h^2} (u_{i,j-1} - 2u_{i,j} + u_{i,j+1}) = 0$$

Namely

$$4u_{i,j} - u_{i,j-1} - u_{i,j+1} - u_{i-1,j} - u_{i+1,j} = 0$$

Heart of Iterative Program

Matrx vs. graph representation

Dependence: "5 point stencil"

3D case is analogous (7 point stencil)

Jacobi method

 Jacobi method allows full parallelism, but slower convergence

```
Repeat

For i=1 to n

For j=1 to n

u_{i,j}^{new} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}).

EndFor

EndFor

Until || u_{ij}^{new} - u_{ij} || < \epsilon
```

Gauss-Seidel Method

• Faster convergence

$$\begin{split} \text{Repeat} & u^{old} = u. \\ \text{For } i{=}1 \text{ to n} \\ \text{For } j{=}1 \text{ to n} \\ & u_{i,j} = 0.25(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}). \\ \text{EndFor} \\ \text{EndFor} \\ \text{Until } \parallel u_{ij} - u_{ij}^{old} \parallel < \epsilon \end{split}$$

enddo

Loop Skewing


```
do j=4, m+n-2
do i = max(2,j-m+1), min(n-1,j-2)
j'=j-i;
a[i,j']=a[i-1,j']+a[i,j'-1]+a[i+1,j']+a[i,j'+1]
enddo
enddo
```

02/01/2011

Matrix Reordering for More Parallelism

- Reordering variables to eliminate most of data
- dependence in the Gauss Seidel algorithm.
- Points are divided into white and black points.
- First, black points are computed using the old red point values.
- Second, while points are computed (using the new black point values).

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
 - Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice

Implemented using "ghost" regions.

Adds memory overhead

Composite mesh from a mechanical structure

Converting the mesh to a matrix

02/01/2011

Example of Matrix Reordering Application

Irregular mesh: NASA Airfoil in 2D (direct solution)

CS267 Lecture 5 $_{55}$

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement) See: http://www.llnl.gov/CASC/SAMRAI/

02/01/2011

Challenges of Irregular Meshes

- How to generate them in the first place
 - Start from geometric description of object
 - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
 - 3D harder!
- How to partition them
 - ParMetis, a parallel graph partitioner
- How to design iterative solvers
 - PETSc, a Portable Extensible Toolkit for Scientific Computing
 - Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
 - SuperLU, parallel sparse Gaussian elimination