Classical Mechanics, Phys105A, Wim van Dam, UC Santa Barbara Homework 6; due Monday March 5, 11:30 am

Question 1 (Trigonometry, 4 points).
For fixed $\alpha, \beta, \omega \in \mathbb{R}$, let γ, δ be such that $\alpha \cos (\omega t)+\beta \sin (\omega t)=\gamma \cos (\omega t-\delta)$ for all t.
$\triangleright \quad$ (a) Provide a simple, elegant proof that gives the values of γ and δ in terms of α and β.
Question 2 (Taylor, Question 5.19, 8+8 points).
Consider a mass attached to four identical springs, as shown in Figure 5.7(b) in the textbook. Each spring has force constant k and unstretched length ℓ_{0}, and the length of each spring when the mass is at its equilibrium at the origin $(0,0)$ is a (which is not necessarily the same as l_{0}).
$\triangleright \quad(a)$ When the mass is displaced a small distance to the point (x, y), show that its potential energy has the form $1 / 2 k^{\prime} r^{2}$, just like an isotropic harmonic oscillator.
$\triangleright \quad(b)$ Show that $k^{\prime}=2 k\left(2-\ell_{0} / a\right)$.
Write the answers to the questions below on a separate set of pages.
Question 3 (Ratio between maxima, 8 points). Consider a weakly damped, harmonic oscillation and look at its local maxima.
\triangleright (a) Show that the ratio between two consecutive maxima in the displacement is constant.
Question 4 (Taylor, Question 5.45, 8+6+6 points).
Energy flow in damped, driven oscillation:
$\triangleright \quad$ (a) Taylor, Question 5.45(a)
$\triangleright \quad$ (b) Taylor, Question 5.45(b)
$\triangleright \quad(c)$ Taylor, Question 5.45(c)
Question 5 (Taylor, Question 5.26, 12 points). What happens with just a little bit of damping?
$\triangleright \quad$ (a) Taylor, Question 5.26.

