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Motivation
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• Most of the existing successful stories of deep 
learning are still based on supervised learning.

• For example, object recognition, machine 
translation, text classification.

• However, in many applications, it is not realistic 
to obtain large amount of labeled data.

• We need to leverage unlabeled data.



A Classic Example of Semi-Supervised Learning

• Co-Training (Blum and Mitchell, 1998)
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Challenges
• The two classifiers in co-training have to be 

independent.
• Choosing highly-confident self-labeled examples 

could be suboptimal.
• Sampling bias shift is common.
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Our Approach: Reinforced SSL

• Assumption: not all the unlabeled data are useful. 

• Idea: performance-driven semi-supervised learning 
that learns an unlabeled data selection policy with 
RL, instead of using random sampling.

• 1. Partition the unlabeled data space
• 2. Train a RL agent to select useful unlabeled data
• 3. Reward: change in accuracy on the validation set
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Reinforcement Learning

7

Environment

𝑎𝑡
𝑠$%&

𝑟$%&

𝑠$𝑟$

Agent

Agent Environment

Deep	Q-Network Unlabeled	Data



Reinforced Co-Training
(Wu et al., NAACL 2018)
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Deep Q-Learning
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Experiment 1: Clickbait Detection
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Experiment 1: Clickbait Detection
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Experiment 2: Generic Text Classification

12



Experiment 2: Generic Text Classification
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Conclusion

• We proposed a novel RL framework for semi-
supervised learning
• Strong results in SSL text classification
• Also showed effectiveness in relation extraction
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Deep Reinforcement Learning for 
Distantly Supervised Relation Extraction
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Plain Text Corpus
(Unstructured Info)

Classifier Entity-relation Triple
(Structured Info)

Relation Type with
Labeled Dataset

Relation Type without
Labeled Dataset
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Relation Extraction



“If two entities participate in a relation, any sentence
that contains those two entities might express that
relation.” (Mintz, 2009)
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Distant Supervision



Data(x): <Belgium, Nijlen>
Label(y): /location/contains

Target Corpus
(Unlabeled)

DS Label(y): /location/contains

Nijlen is a municipality
located in the Belgian
province of Antwerp.
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Distant Supervision

DS Data(x):



v Within-Sentence-Bag Level

v Entity-Pair Level

§ Hoffmann et al., ACL 2011.
§ Surdean et al., ACL 2012.
§ Zeng et al., ACL 2015. 
§ Li et al., ACL 2016.

§ None
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Wrong Labeling



§ Place_of_Death

i. Some New York city mayors – William O’Dwyer, Vincent 
R. Impellitteri and Abraham Beame – were born abroad.

ii. Plenty of local officials have, too, including two New 
York city mayors, James J. Walker, in 1932, and William 
O’Dwyer, in 1950. 
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Wrong Labeling

v Entity-Pair Level



v Most of entity pairs only have several sentences

1 Sentence
55%2 Sentence

32%

Other
4%
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Wrong Labeling

v Lots of entity pairs have repetitive sentences
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Sentence-Level Indicator

Entity-Pair Level Wrong Labeling Problem

Learn a Policy to Denoise the
Training Data
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General Purpose and Offline Process

Without Supervised Information

Requirements
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Overview



v State

27

v Action

v Reward
§ ???

Deep Reinforcement Learning

§ Sentence vector
§ The average vector of previous removed sentences

§ Remove & retain



v One relation type has an agent
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v Sentence-level

v Split into training set and validation set

Deep Reinforcement Learning

§ Positive: Distantly-supervised positive sentences
§ Negative: Randomly sampled



RL Agent Train
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Deep Reinforcement Learning
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Positive Set Negative Set

§ Accurate

§ Steady

§ Fast

Reward

False Positive

§ Obvious
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v Dataset: SemEval-2010 Task 8
v True Positive: Cause-Effect
v False Positive: Other

Evaluation on a Synthetic Noise
Dataset

v True Positive + False Positive: 1331 samples
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Evaluation on a Synthetic Noise
Dataset
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36

v CNN+ONE, PCNN+ONE
§ Distant supervision for relation extraction via piecewise 

convolutional neural networks. (Zeng et al., 2016)

v CNN+ATT, PCNN+ATT
§ Neural relation extraction with selective attention over 

instances. (Lin et al., 2016)

Distant Supervision
on NYT Freebase Dataset
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Distant Supervision
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Distant Supervision
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vWe propose a deep reinforcement learning
method for robust distant supervision relation
Extraction.

v Our method is model-agnostic. 

v Our method boost the performance of recently
proposed neural relation extractors.

Conclusion
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DSGAN: Adversarial Learning for Denoising
Distantly Supervised Relation Extraction

(Qin et al., ACL 2018b)
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DS data space

DS Positive Data

DS Negative Data

Distant Supervision Data Distribution
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DS data space
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Adversarial Training
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DSGAN (Qin et al., ACL 2018b)
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v Sentence-Level Noise Reduction
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v Training Without Supervised Information

v Model-Agnostic

Characteristics
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Distant Supervision Relation Extraction
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Distant Supervision Relation Extraction

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

PCNN-based
PCNN+ONE
PCNN+ONE_GANs
PCNN+ATT
PCNN+ATT_GANs



Conclusion

• We introduce Reinforced Co-Training, a new 
approach that combines reinforcement learning and 
semi-supervised learning.
• We show that in weakly-supervised relation 

extraction, reinforcement learning can be utilized to 
de-noise the training signals.
• Adversarial learning serves as a joint learning 

framework, and it can also be applied to de-noising 
distantly supervised IE data. 
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Thanks!

http://nlp.cs.ucsb.edu


