Knowledge Graph Reasoning: Recent Advances

William Wang Department of Computer Science

UC SANTA BARBARA

CIPS Summer School 2018

Beijing, China

Agenda

- Motivation
- Path-Based Reasoning
- Embedding-Based Reasoning
- Bridging Path-Based and Embedding-Based Reasoning: DeepPath, MINERVA, and DIVA
- Conclusions
- Other Research Activities at UCSB NLP

Knowledge Graphs are Not Complete

Benefits of Knowledge Graph

- Support various applications
 - Structured Search
 - Question Answering
 - Dialogue Systems
 - Relation Extraction
 - Summarization
- Knowledge Graphs can be constructed via information extraction from text, but...
 - There will be a lot of missing links.
 - Goal: complete the knowledge graph.

Reasoning on Knowledge Graph

KB Reasoning Tasks

- Predicting the missing link.
 - Given el and e2, predict the relation r.
- Predicting the missing entity.
 - Given el and relation r, predict the missing entity e2.
- Fact Prediction.
 - Given a triple, predict whether it is true or false.

Related Work

Path-based methods

- Path-Ranking Algorithm, Lao et al. 2011
- ProPPR, Wang et al, 2013 (My PhD thesis)
- Subgraph Feature Extraction, Gardner et al, 2015
- RNN + PRA, Neelakantan et al, 2015
- Chains of Reasoning, Das et al, 2017

Why do we need path-based methods? It's accurate and explainable!

Path-Ranking Algorithm (Lao et al., 2011)

- I. Run random walk with restarts to derive many paths.
- 2. Use supervised training to rank different paths.

ProPPR (Wang et al., 2013;2015)

- ProPPR generalizes PRA with recursive probabilistic logic programs.
- You may use other relations to jointly infer this target relation.

about(X,Z):- handLabeled(X,Z)	# base
about(X,Z):- sim(X,Y),about(Y,Z)	# prop
sim(X,Y):- $link(X,Y)$	# sim,link
sim(X,Y):-	
hasWord(X,W),hasWord(Y,W),	
linkedBy(X,Y,W)	# sim,word
linkedBy(X,Y,W):- true	# by(W)

Chain of Reasoning (Das et al, 2017)

- I. Use PRA to derive the path.
- 2. Use RNNs to perform reasoning of the target relation.

Related Work

Embedding-based method

- RESCAL, Nickel et al, 2011
- TransE, Bordes et al, 2013
- Neural Tensor Network, Socher et al, 2013
- TransR/CTransR, Lin et al, 2015
- Complex Embeddings, Trouillon et al, 2016

Embedding methods allow us to compare, and find similar entities in the vector space.

Bridging Path-Based and Embedding-Based Reasoning with Deep Reinforcement Learning: DeepPath (Xiong et al., 2017)

RL for KB Reasoning: DeepPath (Xiong et al., 2017)

- Learning the paths with RL, instead of using random walks with restart
- Model the path finding as a MDP
- > Train a RL agent to find paths
- Represent the KG with pretrained KG embeddings
- > Use the learned paths as logical formulas

Supervised v.s. Reinforcement

Supervised Learning

- Training based on supervisor/label/annotation
- Feedback is instantaneous
- Not much temporal aspects

Reinforcement Learning

- Training only based on reward signal
- Feedback is delayed
- Time matters
- Agent actions affect subsequent exploration

Reinforcement Learning

- RL is a general purpose framework for **decision making**
- • RL is for an *agent* with the capacity to *act*
- • Each *action* influences the agent's future *state*
- • Success is measured by a scalar *reward* signal
- • Goal: select actions to maximize future reward

Reinforcement Learning

DeepPath: RL for KG Reasoning

Components of MDP

- Markov decision process < S, A, P, R >
 - *S*: continuous states represented with embeddings
 - *A*: action space (relations)
 - $P(S_{t+1} = s' | S_t = s, A_t = a)$: transition probability
 - *R*(*s*, *a*): reward received for each taken step
- With pretrained KG embeddings

•
$$s_t = e_t \oplus (e_{target} - e_t)$$

• $A = \{r_1, r_2, \dots, r_n\}$, all relations in the KG

Reward Functions

Global Accuracy

 $r_{\rm GLOBAL} = \begin{cases} +1, & \text{if the path reaches } e_{target} \\ -1, & \text{otherwise} \end{cases}$

• Path Efficiency

$$r_{\rm efficiency} = \frac{1}{length(p)}$$

• Path Diversity

$$r_{\text{DIVERSITY}} = -\frac{1}{|F|} \sum_{i=1}^{|F|} \cos(\mathbf{p}, \mathbf{p}_i)$$

Training with Policy Gradient

 Monte-Carlo Policy Gradient (REINFORCE, William, 1992)

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{a \in \mathcal{A}} \pi(a|s_t; \theta) \nabla_{\theta} \log \pi(a|s_t; \theta) R(s_t, a_t)$$
$$\approx \nabla_{\theta} \sum_{t} \log \pi(a = r_t | s_t; \theta) R(s_t, a_t)$$

 $R(s_t, a_t) = \lambda_1 r_{global} + \lambda_2 r_{efficiency} + \lambda_3 r_{diversity}$

Challenge

Typical RL problems

Atari games (Mnih et al., 2015): 4~18 valid actions

- □ AlphaGo (Silver et al. 2016): ~250 valid actions
- □ Knowledge Graph reasoning: >= 400 actions

Issue:

Iarge action (search) space -> poor convergence properties

Supervised (Imitation) Policy Learning

- Use randomized BFS to retrieve a few paths
- Do imitation learning using the retrieved paths
- All the paths are assigned with +1 reward

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{a \in \mathcal{A}} \pi(a|s_{t};\theta) \nabla_{\theta} \log \pi(a|s_{t};\theta)$$
$$\approx \nabla_{\theta} \sum_{t} \log \pi(a=r_{t}|s_{t};\theta)$$

Datasets and Preprocessing

Dataset	# of Entities	# of Relations	# of Triples	# of Tasks
FB15k-237	14,505	237	310,116	20
NELL-995	75,492	200	154,213	12

FB15k-237: Sampled from FB15k (Bordes et al., 2013), redundant relations removes

NELL-995: Sampled from the 995th iteration of NELL system (Carlson et al., 2010b)

Dataset processing

- **Remove useless relations:** *haswikipediaurl, generalizations, etc*
- □ Add inverse relation links to the knowledge graph
- □ Remove the triples with task relations

Effect of Supervised Policy Learning

- **x-axis:** number of training epochs
- y-axis: success ratio (probability of reaching the target) on test set

-> Re-train the agent using reward functions

Inference Using Learned Paths

- Path as logical formula
 - FilmCountry: actionFilm⁻¹ -> personNationality
 - PersonNationality: placeOfBirth -> locationContains⁻¹
 - etc ...
- Bi-directional path-constrained search
 - Check whether the formulas hold for entity pairs

bi-directional search

Link Prediction Result

Tasks	PRA	Ours TransE		TransR	
worksFor	0.681	0.711	0.677	0.692	
atheletPlaysForTea m	0.987	0.955 0.896		0.784	
athletePlaysInLeag ue	0.841	0.960	0.773	0.912	
athleteHomeStadiu m	0.859	0.890	0.718	0.722	
teamPlaysSports	0.791	0.738	0.761	0.814	
orgHirePerson	0.599	0.742	0.719	0.737	
personLeadsOrg	0.700	0.795 0.751		0.772	
Overall	0.675	0.796	0.737	0.789	

Mean average precision on NELL-995

Qualitative Analysis

Path length distributions

Qualitative Analysis

Example Paths

Bridging Path-Finding and Reasoning w. Variational Inference (teaser): DIVA (Chen et al., NAACL 2018)

DIVA:Variational KB Reasoning (Chen et al., NAACL 2018)

• Inferring latent paths connecting entity nodes.

 $\bar{p} = argmax_p \log p(r|e_s, e_d)$

DIVA:Variational KB Reasoning (Chen et al., NAACL 2018)

 Inferring latent paths connecting entity nodes by parameterizing likelihood (path reasoning) and prior (path finding) with neural network modules.

$$p = argmax_p p(r|e_s, e_d) = argmax_p \log \int_{L}^{\infty} p(r|L)p(L|e_s, e_d)$$

DIVA:Variational KB Reasoning (Chen et al., NAACL 2018)

- Marginal likelihood $\log \int_L p(r|L)p(L|e_s, e_d)$ is intractable
- We resort to Variational Bayes by introduce a posterior distribution $q(L|e_s, e_d, r)$

DP Kingma et al. 2013

Parameterization – Path-finder

• Approximate posterior $q_{\varphi}(L|e_s, e_d, r)$ and prior $p_{\beta}(L|e_s, e_d)$: parameterize with RNN

Transition Probability: $p(a_{\tau+1}, e_{\tau+1} | a_{1:\tau}, e_{1:\tau})$

UCSE

Parameterization – Path Reasoner

• Likelihood p_{θ} (r|L) : parameterize with CNN

DIVA: Variational KB Reasoning (Chen et al., NAACL 2018)

• Training

posterior: q_{φ} , likelihood: p_{θ} (r|L), prior: $p_{\beta}(L|e_s, e_d)$

DIVA: Variational KB Reasoning (Chen et al., NAACL 2018)

• Testing

UCSB

posterior: q_{φ} , likelihood: p_{θ} (r|L), prior: $p_{\beta}(L|e_s, e_d)$

Conclusions

- Embedding-based methods are very scalable and robust.
- Path-based methods are more interpretable.
- There are some recent efforts in unifying embedding and path-based approaches.
- DIVA integrates path-finding and reasoning in a principled variational inference framework.

•Natural Language Processing

- Information Extraction: relation extraction, and distant supervision.
- Summarization: **abstractive summarization.**
- Social Media: non-standard English expressions.
- Language & Vision: action/relation detection, and video captioning.
- Spoken Language Processing: task-oriented neural dialogue systems.
- •Machine Learning
 - Statistical Relational Learning: neural symbolic reasoning.
 - Deep Learning: sequence-to-sequence models.
 - Structure Learning: learning the structures for neural models.
 - Reinforcement Learning: efficient and effective methods for DRL and NLP.

•Artificial Intelligence

- Knowledge Representation & Reasoning: **beyond Freebase/OpenIE.**
- Knowledge Graphs: construction, completion, and reasoning.

Other Research Activities at UCSB's NLP Group

Natural Language Generation

Reinforced Conditional Variational Autoencoder for Generating Emotional Sentences (Zhou and Wang, ACL 2018) https://arxiv.org/abs/1711.04090

Controlling Emotions for RC-VAE Generated Sentences

User's Input	sorry guys , was gunna stream tonight but i 'm still feeling sick		
Designated Emojis			
Generated by Seq2Seq Baseline	i 'm sorry you 're going to be missed it	i 'm sorry for your loss	
Generated By MojiTalk	hope you are okay hun !	hi jason , i 'll be praying for you	

Hierarchical Deep Reinforcement Learning for Video Captioning (Wang et al., CVPR 2018)

Caption #1: A woman offers her dog some food. Caption #2: A woman is eating and sharing food with her dog. Caption #3: A woman is sharing a snack with a dog.

Caption: A person sits on a bed and puts a laptop into a bag. The person stands up, puts the bag on one shoulder, and walks out of the room.

Deep Multimodal Video Captioning (Wang et al., NAACL 2018)

Video Only:

Ground Truth: A girl is singing. A girl sings to a song. A woman is talking in a room. Video + Audio: A girl is singing a song.

Adversarial Reward Learning for Visual Storytelling (Wang et al., ACL 2018)

XE-ss	We took a trip to the mountains.	There were many different kinds of different kinds.	We had a great time.	He was a great time.	lt was a beautiful day.
AREL	The family decided to take a trip to the countryside.	There were so many different kinds of things to see.	The family decided to go on a hike.	I had a great time.	At the end of the day, we were able to take a picture of the beautiful scenery.
Human- created Story	We went on a hike yesterday.	There were a lot of strange plants there.	I had a great time.	We drank a lot of water while we were hiking.	The view was spectacular.

Figure 6: Qualitative comparison example with XE-ss. The direct comparison votes (AREL:XE-ss:Tie) were 5:0:0 on Relevance, 4:0:1 on Expressiveness, and 5:0:0 on Concreteness.

Computational Social Science

Learning to Generate Slang Explanations (Ke Ni, IJCNLP 2017)

Automatic Generation of Slang Words (Kulkarni and Wang, NAACL 2018)

Word	Derived From	Туре
dink	double income no kids	alphabetism
lambortini	lamborghini + martini	blend
diamat	dialectical + materialism	blend
tude	attitude	clipping (fore)
brill	brilliant	clipping (back)
teenie-weenie	teenie	reduplicative
yik-yak	yik	reduplicative

Leveraging Intra-Speaker and Inter-Speaker Representation Learning for Hate Speech Detection (Qian et al., NAACL 2018)

Deep Reinforcement Learning

Scheduled Policy Optimization (Xiong et al., IJCAI 2018)

Combining Model-Free and Model Based Deep Reinforcement Learning (Wang et al., ECCV 2018)

Fig. 2: The overview of our method.

Structure Learning

Learning Activation Functions in Deep Neural Networks (Conner Vercellino, NIPS MetaLearning)

Acknowledgment

Sponsors: Adobe, Amazon, ByteDance, DARPA, Facebook, Google, IBM, LogMeIn, NVIDIA, Tencent.

Sponsors: Adobe, Amazon, ByteDance, DARPA, Facebook, Google, IBM, LogMeln, NVIDIA, Tencer**5**2

Thanks! Questions? nlp.cs.ucsb.edu

DeepPath Source code: https://github.com/xwhan/DeepPath **KBGAN** Source code: https://github.com/cai-lw/KBGAN **Scheduled Policy Optimization:** https://github.com/xwhan/walk the blocks **ProPPR Source code:** https://github.com/TeamCohen/ProPPR **AREL Source code:** https://github.com/littlekobe/AREL