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Agenda
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Knowledge Graphs are Not Complete
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Benefits of Knowledge Graph

• Support various applications
• Structured Search
• Question Answering
• Dialogue Systems
• Relation Extraction
• Summarization

• Knowledge Graphs can be constructed via 
information extraction from text, but…

• There will be a lot of missing links.
• Goal: complete the knowledge graph.

4



Reasoning on Knowledge Graph

Query node: Band of brothers

Query relation: tvProgramLanguage

tvProgramLanguage(Band of Brothers, ?)
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KB Reasoning Tasks

• Predicting the missing link.
• Given e1 and e2, predict the relation r.

• Predicting the missing entity.
• Given e1 and relation r, predict the missing entity e2.

• Fact Prediction.
• Given a triple, predict whether it is true or false.
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Related Work

• Path-based methods
• Path-Ranking Algorithm, Lao et al. 2011
• ProPPR, Wang et al, 2013 (My PhD thesis)
• Subgraph Feature Extraction, Gardner et al, 2015
• RNN + PRA, Neelakantan et al, 2015
• Chains of Reasoning, Das et al, 2017
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Why do we need path-based methods?

It’s accurate and explainable!



Path-Ranking Algorithm (Lao et al., 2011)

• 1. Run random walk with restarts to derive many paths.

• 2. Use supervised training to rank different paths.
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ProPPR (Wang et al., 2013;2015)

• ProPPR generalizes PRA with recursive probabilistic 
logic programs.

• You may use other relations to jointly infer this 
target relation.
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Chain of Reasoning (Das et al, 2017)
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• 1. Use PRA to derive the path.

• 2. Use RNNs to perform reasoning of the target relation.



Related Work

• Embedding-based method
• RESCAL, Nickel et al, 2011
• TransE, Bordes et al, 2013
• Neural Tensor Network, Socher et al, 2013
• TransR/CTransR, Lin et al, 2015
• Complex Embeddings, Trouillon et al, 2016
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Embedding methods allow us to compare, and find 
similar entities in the vector space.



Bridging Path-Based and Embedding-Based 
Reasoning with Deep Reinforcement Learning:

DeepPath (Xiong et al., 2017)
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RL for KB Reasoning: 
DeepPath (Xiong et al., 2017)

Ø Learning the paths with RL, instead of using 
random walks with restart

Ø Model the path finding as a MDP
ØTrain a RL agent to find paths
Ø Represent the KG with pretrained KG 

embeddings
Ø Use the learned paths as logical formulas
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Supervised v.s.Reinforcement

Supervised Learning
◦ Training	basedon
supervisor/label/annotation
◦ Feedback	isinstantaneous
◦ Not	much	temporal	aspects

Reinforcement Learning
◦ Training	only	basedon
reward signal
◦ Feedback	isdelayed
◦ Timematters
◦ Agent	actionsaffect
subsequent exploration

1
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Reinforcement Learning
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• RL is a general purpose framework for decision
making
• ◦ RL is for an agent	with the capacity toact
• ◦ Each action	influences the agent’s future state
• ◦ Success is measured by a scalar rewardsignal
• ◦ Goal: select	actions	to	maximize	futurereward



Reinforcement Learning
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DeepPath: RL for KG Reasoning
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Components of MDP

• Markov decision process < 𝑆, 𝐴, 𝑃, 𝑅 >
• 𝑆: continuous	states	represented	with	embeddings
• 𝐴:	action	space	(relations)
• 𝑃 𝑆$%& = 𝑠F 𝑆$ = 𝑠, 𝐴$ = 𝑎 :	transition	probability
• 𝑅 𝑠, 𝑎 : reward	received	for	each	taken	step

• With	pretrained KG	embeddings
• 𝑠$ = 𝑒$ ⊕ (𝑒$MNOP$ 	− 𝑒$)
• 𝐴 = 𝑟&, 𝑟R, … , 𝑟T ,	all	relations	in	the	KG
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Reward Functions

• Global Accuracy

• Path Efficiency

• Path Diversity
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Training with Policy Gradient

• Monte-Carlo Policy Gradient (REINFORCE, 
William, 1992)
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Challenge

ØTypical RL problems
qAtari games (Mnih et al., 2015): 4~18 valid actions
qAlphaGo (Silver et al. 2016): ~250 valid actions
q Knowledge Graph reasoning: >= 400 actions

Issue: 
q large action (search) space -> poor convergence 

properties
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Supervised (Imitation) Policy Learning

§ Use randomized BFS to retrieve a few paths

§ Do imitation learning using the retrieved paths
§ All the paths are assigned with +1 reward
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Datasets and Preprocessing

Dataset #	of	Entities #	of	Relations #	of Triples #	of	Tasks

FB15k-237 14,505 237 310,116 20

NELL-995 75,492 200 154,213 12
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Ø Dataset	processing
q Remove	useless	relations:	haswikipediaurl,	generalizations,	etc
q Add	inverse		relation	links	to	the	knowledge	graph
q Remove	the	triples	with	task	relations	

FB15k-237:	Sampled	from	FB15k	(Bordes et	al.,	2013),	redundant	relations	
removes
NELL-995:	Sampled	from	the	995th iteration	of	NELL	system	(Carlson	et	al.,	2010b)



Effect of Supervised Policy Learning
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• x-axis:	 number	of	training	epochs
• y-axis:	 success	ratio	(probability	of	reaching	the	target)	on	test	set

->	Re-train	the	agent	using	reward	functions



Inference Using Learned Paths

§ Path as logical formula
§ FilmCountry: actionFilm-1 -> personNationality
§ PersonNationality: placeOfBirth -> locationContains-1

§ etc …

§ Bi-directional path-constrained search
§ Check whether the formulas hold for entity pairs
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… …

Uni-directional	search bi-directional	search



Link Prediction Result
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Tasks PRA Ours TransE TransR
worksFor 0.681 0.711 0.677 0.692

atheletPlaysForTea
m

0.987 0.955 0.896 0.784

athletePlaysInLeag
ue

0.841 0.960 0.773 0.912

athleteHomeStadiu
m

0.859 0.890 0.718 0.722

teamPlaysSports 0.791 0.738 0.761 0.814
orgHirePerson 0.599 0.742 0.719 0.737
personLeadsOrg 0.700 0.795 0.751 0.772

…

Overall 0.675 0.796 0.737 0.789

Mean	average	precision	on	NELL-995



Qualitative Analysis

Path length distributions
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Qualitative Analysis
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Example	Paths

personNationality:

placeOfBirth ->	locationContains-1

peoplePlaceLived ->	locationContains-1

placeOfBirth ->	locationContains

peopleMariage ->	locationOfCeremony ->	locationContains-1

tvProgramLanguage:

tvCountryOfOrigin ->	countryOfficialLanguage

tvCountryOfOrigin ->	filmReleaseRegion-1	-> filmLanguage

tvCastActor ->	personLanguage

athletePlaysForTeam:

athleteHomeStadium ->	teamHomeStadium-1

atheleteLedSportsTeam

athletePlaysSports ->	teamPlaysSports-1



Bridging Path-Finding and Reasoning w. 
Variational Inference (teaser):

DIVA (Chen et al., NAACL 2018)

30



DIVA: Variational KB Reasoning
(Chen et al., NAACL 2018)

• Inferring latent paths connecting entity nodes.
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DIVA: Variational KB Reasoning
(Chen et al., NAACL 2018)

• Inferring latent paths connecting entity nodes by 
parameterizing likelihood (path reasoning) and 
prior (path finding) with neural network modules.
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• Marginal likelihood	log∫ 𝑝 𝑟 𝐿 𝑝(𝐿|𝑒U, 𝑒V)
�
h is 

intractable

• We resort to Variational Bayes by introduce a 
posterior distribution 𝑞 𝐿 𝑒U, 𝑒V, 𝑟

33DP	Kingma et al.	 2013

log p r 𝑒U, 𝑒V

𝔼m 𝐿 𝑒U, 𝑒V, 𝑟 log 𝑝 𝑟 𝐿

𝐾𝐿(𝑞 𝐿 𝑒U, 𝑒V, 𝑟 ||𝑝(𝐿|𝑒U, 𝑒V))

≥ 	−𝐸𝐿𝐵𝑂

DIVA: Variational KB Reasoning
(Chen et al., NAACL 2018)



Parameterization – Path-finder

• Approximate posterior 𝑞r 𝐿 𝑒U, 𝑒V, 𝑟 and prior 
𝑝s	 𝐿 𝑒U, 𝑒V : parameterize with RNN
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Parameterization – Path Reasoner

• Likelihood 𝑝x	(𝑟|𝐿) : parameterize with CNN
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• Training
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relation

𝑒V𝑒U

𝑝x	(𝑟|𝐿)𝑞r(𝐿)

KG	connected	Path

𝑒U 𝑒V

𝑝s	(𝐿)

KL-
divergence

KG	connected	Path
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𝔼m~ 𝐿 𝑒U, 𝑒V, 𝑟 log 𝑝x 𝑟 𝐿

relation

𝐾𝐿(𝑞r 𝐿 𝑒U, 𝑒V, 𝑟 ||𝑝s(𝐿|𝑒U, 𝑒V))

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟: 𝑞r, likelihood: 𝑝x	 𝑟 𝐿 , prior: 𝑝s(𝐿|𝑒U, 𝑒V)

DIVA: Variational KB Reasoning
(Chen et al., NAACL 2018)



• Testing
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(Chen et al., NAACL 2018)



Conclusions

• Embedding-based methods are very scalable and 
robust.

• Path-based methods are more interpretable.
• There are some recent efforts in unifying 

embedding and path-based approaches.

• DIVA integrates path-finding and reasoning in a 
principled variational inference framework.
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UCSB NLP
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•Natural Language Processing
• Information Extraction: relation extraction, and distant supervision.
• Summarization: abstractive summarization.
• Social Media: non-standard English expressions.
• Language & Vision: action/relation detection, and video captioning.
• Spoken Language Processing: task-oriented neural dialogue systems.

•Machine Learning
• Statistical Relational Learning: neural symbolic reasoning.
• Deep Learning: sequence-to-sequence models.
• Structure Learning: learning the structures for neural models.
• Reinforcement Learning: efficient and effective methods for DRL 

and NLP.
•Artificial Intelligence

• Knowledge Representation & Reasoning: beyond Freebase/OpenIE.
• Knowledge Graphs: construction, completion, and reasoning.



Other Research Activities at 
UCSB’s NLP Group
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Natural Language Generation
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Reinforced Conditional Variational Autoencoder for 
Generating Emotional Sentences (Zhou and Wang, ACL 2018)

https://arxiv.org/abs/1711.04090
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Controlling Emotions for 
RC-VAE Generated Sentences
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Generated by 
Seq2Seq Baseline

i ’m sorry you 
’re going to be 

missed it

i ’m sorry for 
your loss

User’s Input
sorry guys , was gunna stream 

tonight but i ’m still feeling sick

Designated Emojis

Generated By 
MojiTalk

hope you are 
okay hun !

hi jason , i ’ll be 
praying for you



Hierarchical Deep Reinforcement Learning for 
Video Captioning (Wang et al., CVPR 2018)
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Deep Multimodal Video Captioning
(Wang et al., NAACL 2018)
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Adversarial Reward Learning for Visual 
Storytelling (Wang et al., ACL 2018)
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Computational Social Science
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Learning to Generate Slang Explanations 
(Ke Ni, IJCNLP 2017)
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Automatic Generation of Slang Words
(Kulkarni and Wang, NAACL 2018)
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Leveraging Intra-Speaker and Inter-Speaker 
Representation Learning for Hate Speech 

Detection (Qian et al., NAACL 2018)
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Deep Reinforcement Learning
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Scheduled Policy Optimization
(Xiong et al., IJCAI 2018)
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Combining Model-Free and Model 
Based Deep Reinforcement Learning 

(Wang et al., ECCV 2018)
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Structure Learning
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Learning Activation Functions in Deep Neural 
Networks (Conner Vercellino, NIPS MetaLearning)
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Thanks!	Questions?
nlp.cs.ucsb.edu

DeepPath Source	code:	
https://github.com/xwhan/DeepPath
KBGAN	Source	code:
https://github.com/cai-lw/KBGAN
Scheduled	Policy	Optimization:	
https://github.com/xwhan/walk_the_blocks
ProPPR Source	code:
https://github.com/TeamCohen/ProPPR
AREL	Source	code:
https://github.com/littlekobe/AREL


